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Abstract The stochastic transport equation is considered where the randomness is given by
a symmetric integral with respect to a stochastic measure. For a stochastic measure, only
σ -additivity in probability and continuity of paths is assumed. Existence and uniqueness of
a weak solution to the equation are proved.
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1 Introduction

We consider the stochastic transport equation that formally can be written in the form

∂u(t, x)

∂t
dt + b(t, x)

∂u(t, x)

∂x
dt + ∂u(t, x)

∂x
◦ dμ(t) = 0,

u(0, x) = u0(x), x ∈ R, t ∈ [0, T ].
(1)

Here μ is a stochastic measure (SM), see Definition 1 below. We assume that μ

is defined on the Borel σ -algebra of [0, T ], and the process μt = μ((0, t]) has a
continuous paths. Assumptions on b and u0 are given in Section 3. Equation (1) is to
be understood in the weak sense. The definition of a weak solution is given in (6).

We will prove existence and uniqueness of the solution. Similarly to other types of
stochastic transport equation, we demonstrate that the solution is given by the formula
u(t, x) = u0(X

−1
t (x)) where Xt(x) satisfies the auxiliary equation (7).
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The stochastic integral with respect to μ is defined as a symmetric integral. This
Stratonovich-type integral was studied in [18], we recall its definition and basic prop-
erties in Section 2.2. SMs include many important classes of processes, but we can
prove existence of the integral only for integrands of the form f (μt , t) where f ∈
C

1,1(R × [0, T ]). Thus, we will find our solution u having this form.
For the stochastic transport equation driven by the Wiener process, the existence

and uniqueness of the solution were proved under different assumptions on b and u0,
see [3, 5, 7, 12, 25]. It was shown that a stochastic term in the transport equation leads
to regularization of the solution, see [1, 6, 7]. Equation in bounded domain was stud-
ied in [14]. In these papers, the stochastic term is given by the Stratonovich integral
and solution is considered in the weak sense. In [26] the existence and uniqueness of
stochastic strong solution are obtained, the renormalized weak solution was studied
in [28].

Transport equation with other stochastic integrators is less studied. The existence
and uniqueness of the solution to equation driven by the Lévy white noise was proved
in [16], to equation driven by the fractional Brownian motion – in [15]. In the latter
papers, techniques from white noise analysis and the Malliavin calculus approach
were used.

In this paper, we consider the rather general stochastic integrator. At the same
time, we assume some restrictive assumptions on b and u0, and study the case of
one-dimensional spatial variable.

The recent results for the equations driven by stochastic measures may be found
in [2, 9, 10].

The rest of the paper is organized as follows. In Section 2 we recall the definitions
and basic facts concerning stochastic measures and symmetric integrals. Also we
prove the analogue of the Fubini theorem for our integral that we will need below.
In Section 3 we give our assumptions on the equation and formulate the main result.
Section 4 is devoted to the proof of the existence of the solution, and we give the
explicit formula for u. In Section 5, under some additional assumptions, we obtain
the uniqueness of the solution.

2 Preliminaries

2.1 Stochastic measures

Let L0 = L0(�,F , P) be the set of all real-valued random variables defined on the
complete probability space (�,F , P) (more precisely, the set of equivalence classes).
Convergence in L0 means the convergence in probability. Let X be an arbitrary set and
B be a σ -algebra of subsets of X.

Definition 1. A σ -additive mapping μ : B → L0 is called stochastic measure (SM).

We do not assume existence of moments or martingale properties for the SM. In
other words, μ is L0-valued vector measure.

Important examples of SMs are orthogonal stochastic measures, α-stable random
measures defined on a σ -algebra for α ∈ (0, 1) ∪ (1, 2] (see [21, Chapter 3]).
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Many examples of the SMs on the Borel subsets of [0, T ] may be given by the
Wiener-type integral

μ(A) =
∫

[0,T ]
1A(t) dXt . (2)

We note the following cases of processes Xt in (2) that generate SM.

1. Xt is any square integrable continuous martingale.

2. Xt = WH
t is the fractional Brownian motion with Hurst index H > 1/2, see

Theorem 1.1 [11].

3. Xt = Sk
t is the sub-fractional Brownian motion for k = H − 1/2, 1/2 < H <

1, see Theorem 3.2 (ii) and Remark 3.3 c) in [23].

4. Xt = Zk
H (t) is the Hermite process, 1/2 < H < 1, k ≥ 1, see [8], [24, Sec-

tion 3.1.3]. Z2
H (t) is known as the Rosenblatt process, see also [22, Section 3].

The detailed theory of stochastic measures is presented in [20].
The results of this paper will be obtained under the following assumption on μ.

Assumption A1. μ is an SM on Borel subsets of [0, T ], and the process μt =
μ((0, t]) has continuous paths on [0, T ].

Processes Xt in examples 1–4 are continuous, therefore A1 holds in these cases.

2.2 Symmetric integral

The symmetric integral of random functions with respect to stochastic measures was
considered in [18]. We review the basic facts and definitions concerning this integral.

Definition 2. Let ξt and ηt be random processes on [0, T ], 0 = tn0 < tn1 < · · · <

tnjn
= T be a sequence of partitions such that maxk |tnk − tnk−1| → 0, n → ∞. We

define ∫
(0,T ]

ξt ◦ dηt := p- lim
n→∞

jn∑
k=1

ξtnk−1
+ ξtnk

2
(ηtnk

− ηtnk−1
), (3)

provided that this limit in probability exists for any such sequence of partitions.

For a Wiener process ηt and adapted ξt we obtain the classical Stratonovich inte-
gral. If ηt and ξt are Hölder continuous with exponents γη and γξ , γη + γξ > 1, then
value of (3) equals to the integral defined in [27].

The following theorem describes the class of processes for which the integral is
well-defined.

Theorem 1 (Theorem 4.6 [18]). Let A1 hold, f ∈ C
1,1(R×[0, T ]). Then integral (3)

of f (μt , t) with respect to μt is well-defined, and∫
(0,T ]

f (μt , t) ◦ dμt = F(μT , T ) −
∫

(0,T ]
F ′

t (μt , t) dt, (4)

where F(z, t) = ∫ z

0 f (y, t) dy.

Some other properties and equations with the symmetric integral are considered
in [18–20].



200 V. Radchenko

2.3 Fubini theorem for symmetric integral

We will need the following auxiliary statement.

Lemma 1. Let f : R×[0, T ]×R → R be measurable and has continuous derivatives
f ′

y(y, t, x), f ′
t (y, t, x). Assume that

|f (y, t, x)| ≤ g(x), |f ′
y(y, t, x)| ≤ g1(x), |f ′

t (y, t, x)| ≤ g2(x)

for some g, g1, g2 ∈ L1(R, dx). Then
∫
R

∫
(0,T ]

f (μt , t, x) ◦ dμt dx =
∫

(0,T ]

∫
R

f (μt , t, x) dx ◦ dμt . (5)

Proof. Denote

F(z, t, x) =
∫ z

0
f (y, t, x) dy, F̃ (z, t) =

∫ z

0

∫
R

f (y, t, x) dx dy, z ∈ R.

Theorem 1 and assumptions of the lemma imply that the integrals in (5) are well-
defined. Applying (4), we transform left-hand side and right-hand side of (5)
∫
R

∫
(0,T ]

f (μt , t, x) ◦ dμt dx =
∫
R

(
F(μT , T , x) −

∫
(0,T ]

F ′
t (μt , t, x) dt

)
dx,

∫
(0,T ]

∫
R

f (μt , t, x) dx ◦ dμt = F̃ (μT , T ) −
∫

(0,T ]
F̃ ′

t (μt , t) dt.

The equalities
∫
R

F(μT , T , x) dx = F̃ (μT , T )

⇔
∫
R

∫ μT

0
f (y, T , x) dy dx =

∫ μT

0

∫
R

f (y, T , x) dx dy,

∫
R

∫
(0,T ]

F ′
t (μt , t, x) dt dx =

∫
(0,T ]

F̃ ′
t (μt , t) dt

⇔
∫
R

∫
(0,T ]

∫ μt

0
f ′

t (y, t, x) dy dt dx =
∫

(0,T ]

∫ μt

0

∫
R

f ′
t (y, t, x) dx dy dt.

hold by usual Fubini’s theorem.

3 The problem. Formulation of the main result

We consider equation (1) in the weak form. This means that u : [0, T ]×R×� → R

is a measurable random function such that for each ϕ ∈ C
∞
0 (R) holds

∫
R

u(t, x)ϕ(x) dx =
∫
R

u0(x)ϕ(x) dx

+
∫ t

0

∫
R

u(s, x)
(
b(s, x)ϕ′(x) + ∂b(s, x)

∂x
ϕ(x)

)
dx ds
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+
∫ t

0

∫
R

u(s, x)ϕ′(x) dx ◦ dμ(s). (6)

By C
∞
0 (R) we denote the class of infinitely differentiable functions with the compact

support.
For our equation, we will refer to the following assumptions.

Assumption A2. u0 : R×� → R is measurable and has continuous derivative in x.

Assumption A3. |u0(x)| ≤ C(ω) for some finite random constant C(ω).

Assumption A4. b : [0, T ] × R → R is continuous, ∂b(t,x)
∂x

is continuous and
bounded.

Assumption A5. supt∈[0,T ]
∫
|x|≥r

|b(t,x)|
1+|x| dx → 0, r → ∞.

Note that, by A4, b is globally Lipschitz continuous in x.
For each fixed ω ∈ �, we consider the following auxiliary equation

Xt(x) = x +
∫ t

0
b(r,Xr(x)) dr + μt , 0 ≤ t ≤ T . (7)

Assumption A4 imply that (7) has a unique solution on [0, T ] for each x.
By the well known result of theory of ordinary differential equations, the solution

has a continuous derivative

X′
t (x) = ∂

∂x
Xt(x).

We have

X′
t (x) = 1 +

∫ t

0

∂b(r,Xr(x))

∂x
X′

r (x) dr

⇒ ∂

∂t
X′

t (x) = ∂b(t, Xt (x))

∂x
X′

t (x)

⇒ X′
t (x) = exp

{∫ t

0

∂b(s,Xs(x))

∂x
ds

}
. (8)

Therefore, X′
t (x) > 0, and the function X−1

t (x), where the inverse is taken with
respect to variable x, is well-defined.

Note that Xt is the sum of a differentiable function of t and μt , X′
t is a differen-

tiable function of t . Therefore, by Theorem 1, the integral of the form
∫

(0,T ]
g(Xt ,X

′
t , μt , t) ◦ dμt , g ∈ C

1,1,1,1(R3 × [0, T ]),

is well-defined.
The main result of the paper is the following.

Theorem 2. 1) Let Assumptions A1, A2, A4 hold, Xt(x) be the solution of (7). Then
the random function

u(t, x) = u0(X
−1
t (x)) (9)

satisfies (6).
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2) In addition, let Assumptions A3 and A5 hold. Then solution (9) is unique in
the class of measurable random functions u(t, x) = h(μt , t, x), such that h(·, ·, x) ∈
C

1,1(R × [0, T ]) for each x ∈ R, and |u(t, x)| ≤ C(ω) for some finite random
constant C(ω).

Remark 1. Note that u(t, x) = u0(X
−1
t (x)) has a form h(μt , t, x) from the second

part of the theorem. This follows from Assumption A2 and standard statements about
the differentiability of inverse functions. From (7) and (8) we have that Xt(x) =
g(μt , t, x), where g ∈ C

1,1,1(R × [0, T ] × R). For the mapping

(μ, t, x) → (μ, t, g(μ, t, x)),

the matrix of the first derivatives is nondegenerated. Therefore, the inverse mapping
is well-defined and smooth (see, for example, [17, Section 7.3]).
Remark 2. Let us compare our assumptions with those made in other papers. Usually,
it is supposed that u0 is measurable and bounded (see, for example, [7, 12, 15, 25]).
We additionally assume that u0 has a continuous derivative, we need this to guarantee
that the symmetric integral of u0(X

−1
t (x)) be well-defined.

Condition of differentiability of b is standard, boundedness of ∂b
∂x

may be assumed
in some Lp norm (see [7, 25]) or uniformly ([15]). Note that in [12] the main result
was obtained for arbitrary bounded measurable b.

Our integrability condition A5 is technical and is important for our method. It is
similar to respective assumptions in [1, 3, 13].

4 Existence of the solution

In this section, we prove the first statement of our theorem.
By the chain rule (4), for ϕ ∈ C

∞
0 (R) we have

dt

[
X′

t (x)ϕ(Xt (x))
]

= ϕ(Xt(x))dt

[
X′

t (x)
]

+ X′
t (x)dt

[
ϕ(Xt(x))

]

(7), (8)= ϕ(Xt(x))
∂b(t, Xt (x))

∂x
X′

t (x) dt

+X′
t (x)ϕ′(Xt (x))b(t, Xt (x)) dt + X′

t (x)ϕ′(Xt (x)) ◦ dμ(t). (10)

Applying the change of variables y = Xt(x), we get
∫
R

u0(X
−1
t (y))ϕ(y) dy =

∫
R

u0(x)X′
t (x)ϕ(Xt (x)) dx

=
∫
R

u0(x)
[
X′

t (x)ϕ(Xt (x))

∣∣∣
t=0

+
∫ t

0
ds

[
X′

s(x)ϕ(Xs(x))
]]

dx

(10)=
∫
R

u0(x)ϕ(x) dx +
∫
R

u0(x)

∫ t

0
ϕ(Xs(x))

∂b(s,Xs(x))

∂x
X′

s(x) ds dx

+
∫
R

u0(x)

∫ t

0
X′

s(x)ϕ′(Xs(x))b(s,Xs(x)) ds dx

+
∫
R

u0(x)

∫ t

0
X′

s(x)ϕ′(Xs(x)) ◦ dμs dx
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(5)=
∫
R

u0(x)ϕ(x) dx +
∫ t

0

∫
R

u0(x)ϕ(Xs(x))
∂b(s,Xs(x))

∂x
X′

s(x) dx ds

+
∫ t

0

∫
R

u0(x)X′
s(x)ϕ′(Xs(x))b(s,Xs(x)) dx ds

+
∫ t

0

∫
R

u0(x)X′
s(x)ϕ′(Xs(x)) dx ◦ dμs.

Lemma 1 may be applied here because ϕ has a compact support. Assumption A4
and (8) imply that C1 ≤ X′

s ≤ C2 for some positive constants C1 and C2, therefore
set {x : ϕ′(Xs(x)) �= 0} is bounded.

Taking the inverse change of variable x = X−1
t (y), we obtain

∫
R

u0(X
−1
t (y))ϕ(y) dy

=
∫
R

u0(x)ϕ(x) dx +
∫ t

0

∫
R

u0(X
−1
s (y))ϕ(y)

∂b(s, y)

∂x
dy ds

+
∫ t

0

∫
R

u0(X
−1
s (y))ϕ′(y)b(s, y) dy ds +

∫ t

0

∫
R

u0(X
−1
s (y))ϕ′(y) dy ◦ dμs.

Thus, u(t, x) = u0(X
−1
t (x)) satisfies (6).

5 Uniqueness of the solution

In this section, we prove the second statement of our theorem. We will follow the stan-
dard approach (see, for example, proof of the uniqueness of the solution in [3, 13]).

Let u(t, x) satisfy (6) with u0(x) = 0. We will obtain that u(t, x) = 0 what
implies the uniqueness of the solution.

For this case, from (6) for ϕ ∈ C
∞
0 (R) we get

∫
R

u(t, x)ϕ(x) dx =
∫ t

0

∫
R

u(s, x)
(
b(s, x)ϕ′(x) + ∂b(s, x)

∂x
ϕ(x)

)
dx ds

+
∫ t

0

∫
R

u(s, x)ϕ′(x) dx ◦ dμs. (11)

Our solution has a form u(t, x) = h(μt , t, x). Denote

G(μt , t, y) =
∫
R

u(t, x)ϕ(x − y) dx,

where G(z, t, y) ∈ C
1,1,∞(R × [0, T ] × R). We have that G(z, 0, y) = 0 because

u(0, x) = 0, and

∂

∂μt

G(μt , t, μt ) = ∂

∂z
G(μt , t, μt ) + ∂

∂y
G(μt , t, μt )

= ∂

∂z
G(μt , t, μt ) −

∫
R

u(t, x)ϕ′(x − μt) dx. (12)
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We obtain

G(μt , t, μt )
(4)=

∫
(0,t]

∂

∂s
G(μs, s, μs) ds +

∫
(0,t]

∂

∂μs

G(μs, s, μs) ◦ dμs

(11), (12)=
∫ t

0

∫
R

b(s, x)u(s, x)ϕ′(x − μs) dx ds

+
∫ t

0

∫
R

∂b(s, x)

∂x
u(s, x)ϕ(x − μs) dx ds

+
∫ t

0

∫
R

u(s, x)ϕ′(x − μs) dx ◦ dμs −
∫ t

0

∫
R

u(s, x)ϕ′(x − μs) dx ◦ dμs

=
∫ t

0

∫
R

b(s, x)u(s, x)ϕ′(x − μs) dx ds

+
∫ t

0

∫
R

∂b(s, x)

∂x
u(s, x)ϕ(x − μs) dx ds.

For V (t, z) = u(t, z + μt), applying the change of the variable x = z + μt , get
∫
R

V (t, z)ϕ(z) dz =
∫ t

0

∫
R

b(s, z + μs)V (s, z)
dϕ(z)

dz
dz ds

+
∫ t

0

∫
R

∂b(s, z + μs)

∂z
V (s, z)ϕ(z) dz ds. (13)

Let φε be a standard mollifier,

φε(x) = 1

ε
φ
(x

ε

)
, φ ∈ C

∞
0 (R), supp φ ⊂ [−1, 1],

φ(x) ≥ 0,

∫
R

φ(x) dx = 1.

Denote Vε(t, x) := V (t, ·)∗φε . Substituting ϕ(z) = φε(x − z) in (13), we obtain that

Vε(t, x) =
∫
R

V (t, z)φε(x − z) dz

= −
∫ t

0

∫
R

b(s, z + μs)V (s, z)φ′
ε(x − z) dz ds

+
∫ t

0

∫
R

∂b(s, z + μs)

∂z
V (s, z)φε(x − z) dz ds.

We take the derivative with respect to t , use the notation B(t, z) = b(t, z + μt), and
get

∂Vε(t, x)

∂t
= −

∫
R

B(t, z)V (t, z)
∂φε(x − z)

∂x
dz

+
∫
R

∂B(t, z)

∂z
V (t, z)φε(x − z) dz

= − ∂

∂x

∫
R

B(t, z)V (t, z)φε(x − z) dz
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+
∫
R

[ ∂

∂z
[B(t, z)V (t, z)] − B(t, z)

∂V (t, z)

∂z

]
φε(x − z) dz

(�)= − ∂

∂x
(BV (t, ·) ∗ φε)(x) + ∂

∂x
(BV (t, ·) ∗ φε)(x)

−
∫
R

B(t, z)
∂V (t, z)

∂z
φε(x − z) dz = −

∫
R

B(t, z)
∂V (t, z)

∂z
φε(x − z) dz.

In (�) we have used that φε has a compact support, and, by integration by parts,
∫
R

∂

∂z
[B(t, z)V (t, z)]φε(x − z) dz =

∫
R

φε(x − z) d[B(t, z)V (t, z)]

= −
∫
R

[B(t, z)V (t, z)] dzφε(x − z) =
∫
R

[B(t, z)V (t, z)]∂φε(x − z)

∂x
dz

= ∂

∂x
(BV (t, ·) ∗ φε)(x).

Thus,

∂Vε(t, x)

∂t
+

(
B(t, z)

∂V (t, z)

∂z

)
∗ φε(x) = 0. (14)

Denote

Rε(B, V ) = ∂Vε(t, x)

∂t
+ B(t, x)

∂Vε(t, x)

∂x

(14)= B
∂(φε ∗ V )

∂x
− φε ∗

(
B

∂V

∂x

)
. (15)

Lemma II.1 i) [4] gives that for each fixed t

Rε(B, Vε) → 0, ε → 0 in L1
loc(R, dx), (16)

provided that B(t, ·) ∈ W1,1
loc(R), V (t, ·) ∈ L∞

loc(R, dx). These conditions hold due to
assumptions of our theorem.

Consider πr(x) = π1(x/r), where

π1(x) =

⎧⎪⎪⎨
⎪⎪⎩

1, |x| < 1,

1 − 2(|x| − 1)2, 1 ≤ |x| ≤ 3/2,

2(|x| − 2)2 ∈ [0, 1], 3/2 ≤ |x| ≤ 2,

0, |x| > 2.

Then πr ∈ C
(1)(R), and |π ′

r | ≤ C
r

. We have that
∫
R

dx(B(Vε)
2πr) = lim

x→+∞ B(Vε)
2πr(x) − lim

x→−∞ B(Vε)
2πr(x) = 0

because πr has a bounded support, therefore
∫
R

(Vε)
2πr dxB +

∫
R

Bπr dx(Vε)
2 +

∫
R

B(Vε)
2 dπr = 0

⇔
∫
R

BπrVε

∂Vε

∂x
dx = −1

2

∫
R

(Vε)
2πr

∂B

∂x
dx − 1

2

∫
R

B(Vε)
2π ′

r dx.
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We multiply (15) by Vε(t, x)πr(x), take the integral over R, and get

∫
R

Rε(B, Vε)Vεπr dx = 1

2

∫
R

∂V 2
ε

∂t
πr dx +

∫
R

BVεπr

∂Vε

∂x
dx

⇔
∫
R

Rε(B, Vε)Vεπr dx = 1

2

∂

∂t

∫
R

V 2
ε πr dx − 1

2

∫
R

(Vε)
2πr

∂B

∂x
dx

−1

2

∫
R

B(Vε)
2π ′

r dx.

From (16) it follows that for fixed r and t

∫
R

Rε(B, Vε)Vεπr dx → 0, ε → 0.

Therefore,

lim
ε→0

( ∂

∂t

∫
R

V 2
ε πr dx −

∫
R

(Vε)
2πr

∂B

∂x
dx −

∫
R

B(Vε)
2π ′

r dx
)

= 0

⇔ ∂

∂t

∫
R

V 2πr dx −
∫
R

V 2πr

∂B

∂x
dx =

∫
R

BV 2π ′
r dx. (17)

Because π ′
r (x) = 0 for |x| ≤ r or |x| ≥ 2r , and |π ′

r | ≤ C
r

, we have

∣∣∣
∫
R

BV 2π ′
r dx

∣∣∣ ≤ ‖V ‖2
L∞

∫
r≤|x|≤2r

|B(t, x)|
1 + |x| (1 + |x|)|π ′

r (x)| dx → 0,

r → ∞, (18)

where convergence holds uniformly in t for each fixed ω.
In (18) we have used the following estimates. If supt |μt | = M(ω), then

∫
r≤|x|≤2r

|B(t, x)|
1 + |x| dx

y=x+μt=
∫

r≤|y−μt |≤2r

|b(t, y)|
1 + |y − μt | dy

≤
∫

|y|≥r−M(ω)

|b(t, y)|
1 + |y| − M(ω)

dy
A5→ 0, r → ∞.

Integrating (17) in t and taking into account that
∫
R

V 2(t, x)πr(x) dx

∣∣∣
t=0

=
∫
R

u(0, x)2πr(x) dx = 0,

we get

∫
R

V 2πr dx =
∫ t

0

∫
R

V 2πr

∂B

∂x
dx ds +

∫ t

0

∫
R

BV 2π ′
r dx ds. (19)

Consider
gr(t, x) = V 2(t, x)πr(x).
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By A4, we have
∣∣∣ ∂B

∂x

∣∣∣ ≤ K for some constant K . From (19), we get

∫
R

gr(t, x) dx ≤
∫ t

0

∫
R

gr(s, x)

∣∣∣∂B

∂x

∣∣∣ dx ds + Rr

≤ K

∫ t

0

∫
R

gr(s, x) dx ds + Rr,

Rr = sup
t

∣∣∣
∫ t

0

∫
R

BV 2π ′
r dx ds

∣∣∣ (18)→ 0, r → ∞.

From the Gronwall inequality for h(t) = ∫
R

gr(t, x) dx, we get

∫
R

gr(t, x) dx ≤ Rre
Kt .

Taking r → ∞, we get
∫
R

gr(t, x) dx →
∫
R

V 2 dx, Rre
Kt → 0 ⇒ V = 0

that finishes the proof of uniqueness of the solution.
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