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Abstract A new modified �-Sobolev inequality for canonical L2-Lévy processes, which are
hybrid cases of the Brownian motion and pure jump-Lévy processes, is developed. Existing
results included only a part of the Brownian motion process and pure jump processes. A gen-
eralized version of the �-Sobolev inequality for the Poisson and Wiener spaces is derived.
Furthermore, the theorem can be applied to obtain concentration inequalities for canonical
Lévy processes. In contrast to the measure concentration inequalities for the Brownian motion
alone or pure jump Lévy processes alone, the measure concentration inequalities for canonical
Lévy processes involve Lambert’s W -function. Examples of inequalities are also presented,
such as the supremum of Lévy processes in the case of mixed Brownian motion and Poisson
processes.

Keywords Malliavin calculus, Lévy processes, logarithmic Sobolev inequalities, �-Sobolev
inequalities, deviation inequalities, concentration inequalities
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1 Introduction

For smooth convex function � on an interval of R, the �-entropy of a random variable
F is defined as

Ent�(F) = E[�(F)] − �(E[F ]).
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In this paper, we deal with a (modified) �-Sobolev inequality and related concentra-
tion inequalities for canonical Lévy processes. Such inequalities related to �-entropies
can be seen as an inclusive interpolation between Poincaré and Gross logarithmic
Sobolev inequalities.

The logarithmic Sobolev inequalities (LSI) give an infinite-dimensional analog
of Sobolev inequalities on finite-dimensional space such as Euclidean space. In a
seminal paper [14], the following LSI on the Wiener space was introduced:

E[F 2 log F 2] − E[F 2] logE[F 2] ≤ 2E[|DWF |2
H
],

for any F which is in the stochastic Sobolev space based on the Wiener process, where
|·|H is the norm of the Cameron–Martin Hilbert space and DW is the Malliavin gradi-
ent operator. However, it should be noted that this is a modern formulation and not the
original one. The stochastic Sobolev space with respect to the Wiener process is the
domain of the Malliavin gradient operator DW . The left term in the above inequality
means the entropy of a random variable F 2. For more details of the Malliavin cal-
culus concerning the Wiener processes, see [20]. This inequality does not depend on
the dimension of underlying space and is equivalent to the hyper-contractivity, and it
implies Poincaré inequalities (or spectral gap inequalities) such as

E[F 2] − (E[F ])2 ≤ E[|DWF |2
H
].

We also remark that the Gaussian logarithmic Sobolev inequality goes back to [26].
The authors of [6] proved the logarithmic Sobolev inequalities on path space.

Martingale representation has become the standard method for proving logarithmic
Sobolev inequalities. Capitaine et al. (see [6]) gave a simple proof of the log-Sobolev
inequality for functionals of the Brownian motion by using the Clark–Ocone–Hauss-
mann formula. The Clark–Ocone–Haussmann formula leads to an explicit martin-
gale representation for random variables in terms of the Malliavin derivatives. More-
over, they proved the logarithmic Sobolev inequalities for the Brownian motion on a
manifold by the Clark–Ocone–Haussmann formula. Furthermore, they obtained some
isoperimetric inequalities on path spaces.

We now review studies for the extension of LSI from the view of Poisson space.
Surgailis (see [27]) proved that the logarithmic Sobolev inequalities failed for the
Poisson space compared to the Wiener process case. Let πθ be the Poisson measure
on N with parameter θ > 0 and consider the Dirichlet form on L2(πθ ) given by

EPoi(f, g) =
∫

N

(Dπf · Dπg)dπθ ,

where
Dπf (x) = f (x + 1) − f (x)

for all x ∈ N. He proved that

∃C(2) > 0,∀F ∈ L2(πθ ) : Eπθ [F 2 log F 2]−Eπθ [F 2]logEπθ [F 2]≤C(2)EPoi(F, F )

does not hold. Alternatively, Wu ([31]) proved a modified logarithmic Sobolev in-
equality for a Poisson space by using the Clark–Ocone type formula on the Poisson
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space. From the modified logarithmic Sobolev inequality, several previously known
inequalities were derived similar to the logarithmic Sobolev inequality for Gaussian
random variables. The author also proved a deviation inequality for a Poisson space
as an application.

In the paper [7], Chafaï provides a synthesis for LSI. For a smooth convex func-
tion �, he introduced �-Sobolev functional inequality for the Wiener and Poisson
spaces.

There are also LSI for discrete settings. The LSI for the Poisson space leads to
deeper geometric extension. Privault ([22]) proved the log-Sobolev inequalities and
deviation inequalities for discrete-time random walks (see also [21]). Moreover, the
author introduced log-Sobolev and deviation inequalities for normal martingales on
the Wiener and Poisson spaces. These inequalities were proved by using Clark–Ocone
type formulas.

We now review a significant recent development for LSI. Bourguin and Peccati
([5]), by using Mehler’s formula, provided direct, intrinsic proof of a modified log-
arithmic Sobolev inequality proved by Wu in [31]. Note that they did not use the
Clark–Ocone type formula. As an application of the inequality, Bachmann and Pec-
cati ([3]) deal with Poisson functionals and provide general concentration inequalities
by combining logarithmic Sobolev inequalities for Poisson random measures with a
Herbst-type argument. Moreover, Nourdin, Peccati and Yang ([19]) proved restricted
hyper-contractivity on the Poisson space by using the modified logarithmic Sobolev
inequality.

We also review a significant recent development for �-Sobolev inequality. By
using the same sort argument as [6], Chafaï derived a �-Sobolev inequality for the
Wiener measure (see Theorem 4.2 in [7]). Moreover, a modified �-Sobolev inequality
for Poisson processes was derived by Chafaï in [7]. By using a modified �-Sobolev
inequality derived by Chafaï in [7], Gusakova et al. ([15]) established a recursion
scheme for moments. They applied its scheme to derive moment and concentration
inequalities for functionals on abstract Poisson spaces. Moreover, they also applied
the general results to stochastic geometry, namely Poisson cylinder models and Pois-
son random polytopes. On the other hand, Hariya ([16]) derived a family of inequal-
ities that unifies the exponential and original hyper-contractivities; a generalization
of the Gaussian logarithmic Sobolev inequality was obtained as a result. He also dis-
cussed a connection of those results with �-entropy inequalities in a general frame-
work of Markov semi-groups. Unification of the exponential hyper-contractivity and
the reverse hyper-contractivity of the Ornstein–Uhlenbeck semi-group Q was also
provided.

The results mentioned above dealt with only the Gaussian part or the pure jump
part. In this paper, in contrast, we treat them at the same time. The following modified
�-Sobolev type inequality on canonical space (�,F ,P) are obtained:

Ent�(F) ≤ 1

2
σ 2

E

[ ∫ T

0
�′′(F )|Dt,0F |2dt

]

+ E

[ ∫ T

0

∫
R0

(�t,z�(F ) − �′(F )�t,zF )zν(dz)dt
]
, (1.1)



148 N. Sakuma, R. Suzuki

for F ∈ D
1,2 satisfying F > 0 with probability one and convex functions with some

properties (we defined below in Section 3), where R0 = R\{0}, σ is constant number,
ν the Lévy measure for the canonical Lévy process, D1,2 the stochastic Sobolev space
for canonical Lévy processes and �t,z the Malliavin increment quotient operator for
functionals of canonical Lévy processes defined in [24] (see also [13]). To show the
main theorem, we adopt the Malliavin calculus for canonical Lévy processes, based
on [24, 13, 11, 29] and [28]. We provide a simple proof of a modified logarithmic
Sobolev inequality (1.1) by using a Clark–Ocone type formula for Lévy processes.
This modified logarithmic Sobolev inequality (1.1) for the canonical Lévy process
unifies the logarithmic Sobolev inequalities for the Wiener, Poisson, and Lévy pro-
cesses and derives the Poincaré inequalities for each process. In addition, as its appli-
cation, we derive a concentration inequality for canonical Lévy processes:

P(F − E[F ] > r)

≤ exp
[

− r2

2α2 − γ 2

2α2β2

(
2α2 + 2βr + γ 2

)

+ α2

2β2

(
W(

γ 2

α2 exp{βr + γ 2

α2 })
)2 + α2

β2W(
γ 2

α2 exp{βr + γ 2

α2 })
]

for all r > 0, where F ∈ D
1,2 is such that

zDt,zF ≤ β ∈ (0,∞), q ⊗ P-a.e.,

σ 2
∫ T

0
|Dt,0F |2dt ≤ α2 < ∞, P-a.e.,

and
∫

[0,T ]×R0

|Dt,zF |2z2ν(dz)dt ≤ γ 2 < ∞, P-a.e.,

and W is the principal branch of the Lambert W-function on (−e−1,∞). Note that
there are many seminal pieces of research for W-function (see, e.g., [4, 8], and [30]).

This paper is organized as follows. In Section 2, we review the Malliavin calculus
for canonical Lévy processes, based on [24, 11], and [29], and [28]. In Section 3, by
using the results of Section 2, we prove a modified logarithmic Sobolev inequality
for canonical Lévy processes. In Section 4, we discuss applications of the modified
logarithmic Sobolev inequality for canonical Lévy processes. Especially logarithmic
Sobolev inequalities for the Wiener and Poisson processes, Poincaré type inequalities,
and stochastic exponent are considered. In Section 5, a concentration inequality for
canonical Lévy processes is proved as an application of the main theorem.

2 Malliavin calculus for canonical Lévy processes

There are various ways to develop the Malliavin calculus for Lévy processes. In this
paper, we adopt the approach from [24], based on a chaos representation and incre-
ment quotient operator (see also, [11, 29] and [28]). The approach is suitable for our
problems, especially since we can use some helpful calculation formulas and a Clark–
Ocone type formula (see Propositions 2.1 and 2.4). In this setting, we shall construct
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a suitable canonical space on which a variational derivative with respect to the pure
jump part of a Lévy process can be computed in a pathwise sense. The canonical
space was constructed by [24].

In this section, we will give an overview of the approach of the Malliavin calculus
on the canonical Lévy space according to [24].

2.1 Chaotic representation

We now recall chaotic representation based on Lévy processes. Itô first established
the chaos representation for multiple Brownian integrals in [17] and generalized it to
the Lévy case in [18].

We construct a probability space from the Wiener and canonical Lévy space. Let
T > 0 be a finite time horizon, (�W ,FW,PW) the Wiener space, that is, the usual
canonical space for a one-dimensional standard Brownian motion, with the space of
continuous functions on [0, T ], the σ -algebra generated by the topology of uniform
convergence and Wiener measure; W its coordinate mapping process, that is, a one-
dimensional standard Brownian motion with W0 = 0. Consider (�J ,FJ ,PJ ) to be
the canonical Lévy space for a pure jump Lévy process J on [0, T ] with Lévy measure
ν, and for its proper definition we refer to [24]. Now, we assume that

∫
R0

z2ν(dz) <

∞. We denote (�,F ,P) = (�W ×�J ,FW ⊗FJ ,PW ⊗PJ ) and call it the canonical
space. Furthermore, we regard F = {Ft }t∈[0,T ] as the canonical filtration completed
for P. In the canonical space (�,F ,P;F), we can study a two-parameter Malliavin
derivative.

To formulate the Malliavin calculus on the canonical space, we also need to pre-
pare the Lévy–Itô decomposition for the Lévy process on (�,F ,P). It is well known
that a square integrable centered Lévy process X = (Xt )t∈[0,T ] on (�,F ,P) is given
by

Xt = σWt + Jt − t

∫
R0

zν(dz), (2.1)

where σ ≥ 0 (see, e.g., pp. 162 in [12]). Note that Jt is given by

Jt =
∫ t

0

∫
R0

zN(ds, dz),

where N is the Poisson random measure defined as

N(t, A) =
∑
s≤t

1A(�Xs),

for A ∈ B(R0), t ∈ [0, T ], and �Xs = Xs − Xs−.
Moreover, we give another representation. Denoting the compensated measure of

the Poisson random measure N by

Ñ(dt, dz) = N(dt, dz) − ν(dz)dt,

we have the following Lévy–Itô representation for Xt with respect to the compensated
measure Ñ as

Xt = σWt +
∫ t

0

∫
R0

zÑ(ds, dz). (2.2)
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We shall give measures to establish the chaotic representation, which follows
the exposition from [24]. With the preceding notations, define a finite measure q

on [0, T ] × R by

q(E) = σ 2
∫

E(0)

dtδ0(dz) +
∫

E′
z2dtν(dz), E ∈ B([0, T ] × R),

where E(0) = {(t, 0) ∈ [0, T ] × R; (t, 0) ∈ E}, E′ = E − E(0) and δ0 denotes the
Dirac measure located at the origin, and the random measure Q on [0, T ] × R by

Q(E) = σ

∫
E(0)

dWtδ0(dz) +
∫

E′
zÑ(dt, dz), E ∈ B([0, T ] × R).

For n ∈ N and a simple function hn = 1E1×···×En , with pairwise disjoints sets
E1, . . . , En ∈ B([0, T ] × R), a multiple two-parameter integral with respect to the
random measure Q

In(hn) =
∫

([0,T ]×R)n
hn((t1, z1), . . . , (tn, zn))Q(dt1, dz1) · · · Q(dtn, dzn)

can be defined as In(hn) = Q(E1) · · · Q(En). It is well known that the integral can
be extended to the space L2

T ,q,n of product measurable, deterministic functions hn :
([0, T ] × R)n → R satisfying

‖hn‖2
L2

T ,q,n

=
∫

([0,T ]×R)n
|hn((t1, z1), . . . , (tn, zn))|2q(dt1, dz1) · · · q(dtn, dzn) < ∞.

Theorem 2 of [18] yields that any F-measurable square-integrable random vari-
able F on the canonical space has a unique chaotic representation

F =
∞∑

n=0

In(hn), P-a.s.,

with functions hn ∈ L2
T ,q,n that are symmetric in the n pairs (ti , zi), 1 ≤ i ≤ n, and

we have the isometry

E[F 2] =
∞∑

n=0

n!‖hn‖2
L2

T ,q,n

.

See also Section 2 of [24] and Section 3 of [11].

2.2 Stochastic Sobolev spaces and Malliavin derivatives

Thanks to the chaotic representation, we can introduce some classes of stochastic
Sobolev spaces D

1,2, D1,2
0 , D1,2

1 , Dom(DW), DW , DJ and D
1,2
J , and the Malliavin

derivatives.
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Denote by D
1,2 the set of F-measurable random variables F ∈ L2(P) with the

representation F = ∑∞
n=0 In(hn) satisfying

∞∑
n=1

nn!‖hn‖2
L2

T ,q,n

< ∞.

The Malliavin derivative DF : � × [0, T ] × R → R of a random variable
F ∈ D

1,2 is a stochastic process defined by

Dt,zF =
∞∑

n=1

nIn−1(hn((t, z), ·)), valid for q-a.e. (t, z) ∈ [0, T ] × R,P-a.s.

To establish useful calculation formulas for the Mallivin calculus, we shall divide
it into two cases; the case of z = 0 and the case of z = 0.

If the Brownian motion part exists, that is, σ = 0, we can consider the Malli-
avin derivative to the Brownian part. The class D1,2

0 means the set of F-measurable
random variables F ∈ L2(P) with the representation F = ∑∞

n=0 In(fn) satisfying

∞∑
n=1

nn!
∫ T

0
‖fn(·, (t, 0))‖2

L2
T ,q,n−1

σ 2dt < ∞,

and we can define

Dt,0F =
∞∑

n=1

nIn−1(fn((t, 0), ·)), valid for q-a.e. (t, 0) ∈ [0, T ] × {0},P-a.s.,

for F ∈ D
1,2
0 .

If there exists the jump part, that is, ν = 0, D1,2
1 is the set of F-measurable random

variables F ∈ L2(P) with the representation F = ∑∞
n=0 In(fn) satisfying

∞∑
n=1

nn!
∫ T

0

∫
R0

‖fn(·, (t, z))‖2
L2

T ,q,n−1
z2ν(dz)dt < ∞.

Then, we can define, for F ∈ D
1,2
1 ,

Dt,zF =
∞∑

n=1

nIn−1(fn((t, z), ·)), valid for q-a.e. (t, z) ∈ [0, T ] × R0,P-a.s.

In the next two subsubsections, we shall summarize the Malliavin calculus on the
Wiener spaces and pure jump Lévy spaces, and the mixtures.

2.2.1 Malliavin calculus on the Wiener spaces
We summarize the Malliavin calculus on the Wiener spaces. For n ∈ N, let L2

T ,λ,n

denote the set of product measurable, deterministic functions hW
n : ([0, T ])n → R

satisfying

‖hW
n ‖2

L2
T ,λ,n

=
∫

([0,T ])n
|hW

n (t1, . . . , tn)|2dt1 · · · dtn < ∞.
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For n ∈ N and hW
n ∈ L2

T ,λ,n, we denote

IW
n (hn) =

∫
([0,T ])n

hW
n (t1, . . . , tn)dWt1 · · · dWtn.

In this setting, the Malliavin differential operator for the Wiener functionals is defined
by

DW
t F =

∞∑
n=1

nIW
n−1(f

W
n (t, ·)),

λ-a.e. t ∈ [0, T ], P-a.s., for

F ∈ Dom(DW) = {F =
∞∑

n=0

IW
n (f W

n ) ∈ L2(PW);
∞∑

n=1

nn!‖f W
n ‖2

L2
T ,λ,n

< ∞}.

2.2.2 Malliavin calculus for pure jump Lévy processes
We summarize the Malliavin calculus for pure jump Lévy processes. For n ∈ N, let
L2

T ,λ×ν,n denote the set of product measurable, deterministic functions hJ
n : ([0, T ]×

R0)
n → R satisfying

‖hJ
n‖2

L2
T ,λ×ν,n

=
∫

([0,T ]×R0)
n

|hJ
n ((t1, z1), . . . , (tn, zn))|2dt1ν(dz1) · · · dtnν(dzn) < ∞.

Moreover, for n ∈ N and hJ
n ∈ L2

T ,λ×ν,n, we denote

IJ
n (hn) =

∫
([0,T ]×R0)

n

hJ
n ((t1, z1), . . . , (tn, zn))Ñ(dt1, dz1) · · · Ñ(dtn, dzn).

Then, the Malliavin difference operator for pure jump Lévy functionals is defined by

DJ
(t,z)F =

∞∑
n=1

nIJ
n−1(f

J
n ((t, z), ·)),

λ × ν-a.e. (t, z) ∈ [0, T ] × R0,P-a.s., for

F ∈ D
1,2
J = {F =

∞∑
n=0

IJ
n (f J

n ) ∈ L2(PJ );
∞∑

n=1

nn!‖f J
n ‖2

L2
T ,λ×ν,n

< ∞}.

2.2.3 The increment quotient operator for Lévy functionals
We next consider the increment quotient operator for Lévy functionals defined by
[24]. Let F be a random variable on �W ×�J . Then we define the increment quotient
operator

�t,zF = F(ωW ,ω
t,z
J ) − F(ωW ,ωJ )

z
, z = 0,

where ω
t,z
J transforms a family ωJ = ((t1, z1), (t2, z2), . . . ) ∈ �J into a new family

ω
t,z
J = ((t, z), (t1, z1), (t2, z2), . . . ) ∈ �J , by adding a jump of size z at time t into

the trajectory.
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2.3 Related formulas

In this subsection, we introduce calculation formulas for the Malliavin calculus for
the Lévy processes. To this end, we first define the following classes:

D
W =

{
F ∈ L2(P); F(·, ωJ ) ∈ Dom(DW) for PN -a.e. ωJ ∈ �J

}
and

D
J =

{
F ∈ L2(P);E

[ ∫ T

0

∫
R0

|�t,zF |2z2ν(dz)dt
]

< ∞
}
.

With the preceding settings, thanks to Propositions 2.6.1–2.6.2 in [10], the result
of Section 3.3 in [1], Proposition 5.5, Remark 2.2 in [24], and the definitions of the
Malliavin operators for the Wiener and pure jump Lévy functionals, we can derive
the following formulas.

Proposition 2.1. D
1,2 is equal to D

W ∩ D
J , and the following formulas hold.

(1) Let F ∈ D
W . Then F ∈ D

1,2
0 and

Dt,0F = 1{σ>0}σ−1DW
t F (·, ωJ )(ωW )

holds for q -a.e. (t, z) ∈ [0, T ] × {0},P-a.s.

(2) If F ∈ D
J , then F ∈ D

1,2
1 and Dt,zF = �t,zF for q-a.e. (t, z) ∈ [0, T ] ×

R0,P-a.s.

(3) In the case σ = 0, ν = 0, we have D
1,2 = D

1,2
J and DJ

(t,z)
F = zDt,zF for

q-a.e. (t, z) ∈ [0, T ] × R0,P-a.s.

(4) When σ = 0, ν = 0, one has D
1,2 = Dom(DW) and DW

t F = σDt,0F for
q-a.e. (t, z) ∈ [0, T ] × {0},P-a.s.

Remark 2.2. Let F ∈ D
1,2 be such that F > 0 with probability one. Then, F +

zDt,zF > 0 for (t, z) ∈ [0, T ] × R0, q × P-a.e. Indeed, Proposition 2.1 (2) implies
that

F + zDt,zF = F + z�t,zF

= F + z
F (ωW ,ω

t,z
J ) − F(ωW ,ωJ )

z

= F + F(ωW ,ω
t,z
J ) − F(ωW ,ωJ ) = F(ωW ,ω

t,z
J ) > 0, z = 0

because F > 0 a.s.

The Malliavin derivative satisfies the following chain rule (see [29] and [28]).

Proposition 2.3 (Chain rule). Let ϕ ∈ C1(Rn;R) and F = (F1, . . . , Fn), where
F1, . . . , Fn ∈ D

1,2. Assume further that ϕ(F ) ∈ L2(P) and

n∑
k=1

∂

∂xk

ϕ(F )Dt,0Fk1{0}(z)
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+ ϕ(F1 + zDt,zF1, . . . , Fn + zDt,zFn) − ϕ(F1, . . . , Fn)

z
1R0(z) ∈ L2(q × P).

Then, we obtain ϕ(F ) ∈ D
1,2 and

Dt,zϕ(F ) =
n∑

k=1

∂ϕ

∂xk

(F )Dt,0Fk1{0}(z)

+ ϕ(F1 + zDt,zF1, . . . , Fn + zDt,zFn) − ϕ(F1, . . . , Fn)

z
1R0(z).

We next present an explicit form of the martingale representation formula based
on the Malliavin calculus (see, e.g., Theorem 3.5.2 in [10] and Theorem 10 in [25]).
This is a key formula for the main theorem.

Proposition 2.4 (Clark–Ocone type formula for canonical Lévy functionals).

F = E[F ] +
∫

[0,T ]×R

E[Dt,zF |Ft−]Q(dt, dz)

= E[F ] + σ

∫ T

0
E[Dt,0F |Ft−]dWt +

∫ T

0

∫
R0

E[Dt,zF |Ft−]zÑ(dt, dz)

holds for all F ∈ D
1,2.

By Proposition 2.4, we can derive the following Poincaré inequality.

Proposition 2.5 (Poincaré inequality). For F ∈ D
1,2, one has

E[(F − E[F ])2] ≤ E

[ ∫
[0,T ]×R

|Dt,zF |2q(dt, dz)
]
.

Proof. Proposition 2.4 implies that

E[(F − E[F ])2] = E

[( ∫
[0,T ]×R

E[Dt,zF |Ft−]Q(dt, dz)
)2]

= E

[ ∫
[0,T ]×R

(E[Dt,zF |Ft−])2q(dt, dz)
]

≤ E

[ ∫
[0,T ]×R

|Dt,zF |2q(dt, dz)
]

by the Itô isometry and Jensen’s inequality.

3 �-entropy and a modified �-Sobolev inequality for canonical Lévy processes

To derive a modified �-Sobolev inequality for canonical Lévy processes, we first
introduce the following class of functions, as introduced in the work by Chafaï in [7].

Definition 3.1. We denote by C the space of functions � : R+ → R satisfying the
following three properties:

(1) � is convex and continuous,



A modified �-Sobolev inequality for canonical Lévy processes 155

(2) � is twice differentiable on (0,∞),

(3) � is either affine or �′′ is strictly positive, and 1/�′′ is concave.

Typical examples of functions belonging to C are �log(x) = x log x, x ∈ R+,
and �r(x) = x2/r , r ∈ (1, 2), x ∈ R+. We next define the �-entropy.

Definition 3.2 (�-entropy). For � ∈ C , the �-entropy of a random variable F is
defined as

Ent�(F) = E[�(F)] − �(E[F ]).
In particular, the classical entropy

Ent�log [F ] = E[F log F ] − E[F ] logE[F ]
of F is recovered by taking �(x) = �log(x), x ∈ R+.

Based on the previous preparation, we derive the following theorem.

Theorem 3.3. Let F ∈ D
1,2 be such that F > 0 with probability one. Then,

Ent�(F) ≤ 1

2
σ 2

E

[ ∫ T

0
�′′(F )|Dt,0F |2dt

]

+ E

[ ∫ T

0

∫
R0

(�t,z�(F ) − �′(F )�t,zF )zν(dz)dt
]

holds for � ∈ C .

Proof. First, note that by a standard approximation argument, we can assume that
there exist finite constants ε, η such that 0 < ε < F < η with probability one. In this
way, classical measure-theoretical results justify all computations appearing below,
involving, particularly, exchanging derivations and expectations. Moreover, note that
F is FT −-measurable.

Propositions 2.1 and 2.4 imply that

F = E[F ] + σ

∫ T

0
E[Dt,0F |Ft−]dWt +

∫ T

0

∫
R0

E[Dt,zF |Ft−]zÑ(dt, dz)

= E[F ] + σ

∫ T

0
E[Dt,0F |Ft−]dWt +

∫ T

0

∫
R0

E[�t,zF |Ft−]zÑ(dt, dz). (3.1)

Denoting Ut = E[F |Ft−], ζt = E[Dt,0F |Ft−] and ξt,z = E[z�t,zF |Ft−], we have

�(F) − �(E[F ]) = σ

∫ T

0
�′(Ut )ζtdWt + 1

2
σ 2

∫ T

0
�′′(Ut )ζ

2
t dt

+
∫ T

0

∫
R0

{�(Ut + ξt,z) − �(Ut ) − �′(Ut )ξt,z}ν(dz)dt

+
∫ T

0

∫
R0

{�(Ut + ξt,z) − �(Ut )}Ñ(dt, dz)
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by the Itô formula (see, e.g., Theorem 9.4 in [12]) and (3.1). Hence, we obtain

E[�(F)] − �(E[F ])

= 1

2
σ 2

∫ T

0
E[�′′(Ut )ζ

2
t ]dt

+
∫ T

0

∫
R0

E[{�(Ut + ξt,z) − �(Ut ) − �′(Ut )ξt,z}]ν(dz)dt

= 1

2
σ 2

∫ T

0
E[�̃1(Ut , ζt )]dt +

∫ T

0

∫
R0

E[�̃2(Ut , ξt,z)]ν(dz)dt,

where
�̃1(x, y) = �′′(x)y2, x ∈ R+, y ∈ R,

and
�̃2(x, y) = �(x + y) − �(x) − �′(x)y, x, y ∈ R+.

(1) Since � ∈ C , �̃1 is convex on {(x, y) ∈ R+×R} from [7]. Thus, using Jensen’s
inequality, we see that P-almost surely and for dt-almost all t ∈ [0, T ],

�̃1(Ut , ζt ) = �̃1(E[F |Ft−],E[Dt,0F |Ft−]) ≤ E[�̃1(F,Dt,0F)|Ft−].

(2) From [7], for � ∈ C , the function �̃2 is convex on {(x, y) ∈ R+ × R+ :
x + y > 0}. Hence, using Jensen’s inequality, we see that P-almost surely and
for ν(dz)dt-almost all (t, z) ∈ [0, T ] × R0,

�̃2(Ut , ξt,z) = �̃2(E[F |Ft−],E[z�t,zF |Ft−]) ≤ E[�̃2(F, z�t,zF )|Ft−].

As a consequence, we conclude that

Ent�(F) = E[�(F)] − �(E[F ])

≤ 1

2
σ 2

∫ T

0
E[E[�̃1(F,Dt,0F)|Ft−]dt

+
∫ T

0

∫
R0

E[E[�̃2(F, z�t,zF )|Ft−]]ν(dz)dt

= 1

2
σ 2

∫ T

0
E[�̃1(F,Dt,0F)]dt +

∫ T

0

∫
R0

E[�̃2(F, z�t,zF )]ν(dz)dt

= 1

2
σ 2

E

[ ∫ T

0
�′′(F )|Dt,0F |2dt

]

+ E

[ ∫ T

0

∫
R0

(�(F + z�t,zF ) − �(F) − z�′(F )�t,zF )ν(dz)dt
]

= 1

2
σ 2

E

[ ∫ T

0
�′′(F )|Dt,0F |2dt

]

+ E

[ ∫ T

0

∫
R0

(�t,z�(F ) − �′(F )�t,zF )zν(dz)dt
]
,
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where we use

�t,z�(F ) = �(F + z�t,zF ) − �(F)

z
, (t, z) ∈ [0, T ] × R0.

Remark 3.4. By using Theorem 3.3, we shall derive a modified log-Sobolev inequal-
ity and a Poincaré type inequality for L2-canonical Lévy processes.

(1) Let F ∈ D
1,2 be such that F > 0 with probability one and take �(x) = x log x,

x > 0. Then, we obtain that

Ent�log [F ] ≤ 1

2
σ 2

E

[ ∫ T

0

1

F
|Dt,0F |2dt

]

+ E

[ ∫ T

0

∫
R0

(�t,z(F log F) − (log F + 1)�t,zF )zν(dz)dt
]

holds. This is a modified log-Sobolev inequality for L2-canonical Lévy pro-
cesses.

(2) Taking F ∈ D
1,2 such that F > 0 with probability one and �(x) = x2, x ∈ R,

we have

Var[F ] ≤ 1

2
σ 2

E

[ ∫ T

0
2|Dt,0F |2dt

]

+ E

[ ∫ T

0

∫
R0

(�t,zF
2 − 2F�t,zF )zν(dz)dt

]

= σ 2
E

[ ∫ T

0
|Dt,0F |2dt

]

+ E

[ ∫ T

0

∫
R0

(2F�t,zF + z(�t,zF )2 − 2F�t,zF )zν(dz)dt
]

= E

[ ∫ T

0
|Dt,0F |2σ 2dt +

∫ T

0

∫
R0

(�t,zF )2z2ν(dz)dt
]

= E

[ ∫ T

0
|Dt,0F |2σ 2dt +

∫ T

0

∫
R0

(Dt,zF )2z2ν(dz)dt
]

= E

[ ∫ T

0

∫
R0

(Dt,zF )2q(dt, dz)
]
,

since �′(x) = 2x, �′′(x) = 2, �t,zF
2 = 2F�t,zF + z(�t,zF )2 and �t,zF =

Dt,zF for F ∈ D
1,2 hold. This is a Poincaré type inequality for L2-canonical

Lévy processes.

Theorem 3.3 and Proposition 2.1 imply the following result immediately.

Corollary 3.5. Let F ∈ D
1,2 be such that F > 0 with probability one. Then, under

the assumption, we obtain the following:
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(1) If σ = 0 and ν = 0, then

Ent�(F) ≤ 1

2
E

[ ∫ T

0
�′′(F )|DW

t F |2dt
]
.

This is a �-Sobolev inequality for the Wiener functionals.

(2) If σ = 0 and ν = 0, then

Ent�(F) ≤ E

[ ∫ T

0

∫
R0

(DJ
(t,z)�(F ) − �′(F )DJ

(t,z)F )ν(dz)dt
]
.

This is a Chafaï type �-Sobolev inequality for pure jump Lévy functionals.

We can also derive the following.

Corollary 3.6. Fix r ∈ (1, 2) and let F ∈ D
1,2 be such that F > 0 with probability

one. Then

Ent�r (F ) ≤ 1

2
σ 2

E

[ ∫ T

0

2

r

(2

r
− 1

)
F

2
r
−2|Dt,0F |2dt

]

+ E

[ ∫ T

0

∫
R0

(�t,z(F )
2
r − 2

r
F

2
r
−1�t,zF )zν(dz)dt

]
.

Proof. This is a direct consequence of Theorem 3.3 with � = �r , since �′
r (x) =

2
r
x

2
r
−1 and �′′

r (x) = 2
r

(
2
r

− 1
)
x

2
r
−2.

From the same sort of arguments as in [15], we obtain the following:

(1) As r → 1, we have

Var[F ] ≤ E

[ ∫
[0,T ]×R

(Dt,zF )2q(dt, dz)
]
.

(2) As r → 2, we have

Ent�log(F ) ≤ 1

2
σ 2

E

[ ∫ T

0

1

F
|Dt,0F |2dt

]

+ E

[ ∫ T

0

∫
R0

(�t,z(F log F) − (log F + 1)�t,zF )zν(dz)dt
]
.

To show Theorem 4.1, we also derive the following.

Corollary 3.7. If F ∈ D
1,2 satisfies:

(1) eF ∈ L2(P),

(2)

eF Dt,zF1{0}(z) + eF (ezDt,zF − 1)

z
1R0(z) ∈ L2(q × P),
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(3) FeF ∈ L2(P),

(4)
eF (FezDt,zF + zDt,zF · FezDt,zF − F)

z
1R0(z) ∈ L2(q × P),

then,

Ent�log[eF ] ≤ 1

2
σ 2

E

[ ∫ T

0
eF |Dt,0F |2dt

]

+ E

[ ∫ T

0

∫
R0

eF (zDt,zF · ezDt,zF − ezDt,zF + 1)ν(dz)dt
]

(3.2)

holds.

Proof. From the assumptions (1), (2) and F ∈ D
1,2, Proposition 2.3 implies that

eF ∈ D
1,2 and

Dt,ze
F = eF Dt,0F1{0}(z) + eF (ezDt,zF − 1)

z
1R0(z). (3.3)

Since eF > 0, Theorem 3.3 shows that

Ent�log [eF ] (3.4)

≤ 1

2
σ 2

E

[ ∫ T

0

1

eF
|Dt,0e

F |2dt
]

+ E

[ ∫ T

0

∫
R0

{Dt,z(FeF ) − (F + 1)Dt,ze
F }zν(dz)dt

]

= 1

2
σ 2

E

[ ∫ T

0
eF |Dt,0F |2dt

]

+ E

[ ∫ T

0

∫
R0

{zDt,z(FeF ) − (F + 1)eF (ezDt,zF − 1)}ν(dz)dt
]

= 1

2
σ 2

E

[ ∫ T

0
eF |Dt,0F |2dt

]

+ E

[ ∫ T

0

∫
R0

{zDt,z(FeF ) − eF [FezDt,zF − F + ezDt,zF − 1]}ν(dz)dt
]

(3.5)

where we use (3.3). We next calculate zDt,z(FeF ). From assumptions (3) and (4),
Proposition 2.3 implies that

zDt,z(FeF ) = (F + zDt,zF )eF+zDt,zF − FeF

= eF {(F + zDt,zF )ezDt,zF − F }
= eF {FezDt,zF + zDt,zF ezDt,zF − F }. (3.6)
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Hence, combining (3.4) with (3.6), we have

Ent�log[eF ] ≤ 1

2
σ 2

E

[ ∫ T

0
eF |Dt,0F |2dt

]

+ E

[ ∫ T

0

∫
R0

eF (zDt,zF · ezDt,zF − ezDt,zF + 1)ν(dz)dt
]
.

4 Some applications to concentration inequalities

In this section, from Corollary 3.7, we shall derive some concentration inequalities
by following the Herbst method.

Theorem 4.1. Let F ∈ D
1,2 be such that

zDt,zF ≤ β ∈ (0,∞), q ⊗ P-a.e.,

σ 2
∫ T

0
|Dt,0F |2dt ≤ α2 < ∞, P-a.e.,

and
∫

[0,T ]×R0

|Dt,zF |2z2ν(dz)dt ≤ γ 2 < ∞, P-a.e. (4.1)

Then, we have

P(F − E[F ] > r)

≤ exp
[

− sup
λ>0

{
λr − α2λ2

2
− γ 2

β2 (eλβ − λβ − 1)
}]

(4.2)

= exp
[

− r2

2α2 − γ 2

2α2β2

(
2α2 + 2βr + γ 2

)

+ α2

2β2

(
W(

γ 2

α2 exp{βr + γ 2

α2 })
)2 + α2

β2W(
γ 2

α2 exp{βr + γ 2

α2 })
]

(4.3)

for all r > 0, where W is the principal branch of the Lambert W-function on
(−e−1,∞). The Lambert W-function W(x) represents the solutions y of the equa-
tion yey = x for any complex number x (see [8]).

Further, assuming zDt,zF ≤ 0, q ⊗ P-a.e., we have

P(F − E[F ] > r) ≤ exp
[

− r2

2(α2 + γ 2)

]
(4.4)

for all r > 0.

Proof. When β decreases to zero, the inequality (4.3) becomes

P(F − E[F ] > r) ≤ exp
[

− sup
λ>0

{
λr − α2 + γ 2

2
λ2

}]

= exp
[

− r2

2(α2 + γ 2)

]
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for all r > 0. Hence, we obtain (4.4).
Assume at first that F is bounded. Applying (3.2) to eλF , λ > 0, we have

Ent�log [eλF ] ≤ 1

2
σ 2λ2

E

[
eλF

∫ T

0
|Dt,0F |2dt

]

+ E

[ ∫ T

0

∫
R0

eλF (λzDt,zF · eλzDt,zF − eλzDt,zF + 1)ν(dz)dt
]

≤ 1

2
λ2α2

E[eλF ]

+ E

[ ∫ T

0

∫
R0

eλF (λzDt,zF · eλzDt,zF − eλzDt,zF + 1)ν(dz)dt
]
.

(4.5)

Let g(x) = xex − ex + 1. Then, g(−x) ≤ 1
2x2 for all x ≥ 0, g(x)

x2 is increasing

for x > 0 and limx→0+ g(x)

x2 = 1
2 . Hence, we have g(x) ≤ (g(λβ)/λ2β2)x2 for all

−∞ < x ≤ λβ(> 0) and

g(λzDt,zF ) ≤ g(λβ)
1

β2 (zDt,zF )2. (4.6)

Thus, combining (4.5) with (4.6), we get

Ent�log [eλF ] ≤ 1

2
λ2α2

E[eλF ] + g(λβ)

β2 E

[
eλF

∫ T

0

∫
R0

(zDt,zF )2ν(dz)dt
]

≤
[1

2
α2λ2 + g(λβ)

β2 γ 2
]
E[eλF ]. (4.7)

Let H(λ) = λ−1 logE[eλF ]. Then, we have H(0+) = E[F ] and

H ′(λ) = Ent�log[eλF ]
λ2E[eλF ] ≤ α2

2
+ g(λβ)

β2λ2 γ 2.

Whence

H(λ) ≤ E[F ] + α2λ

2
+ γ 2

β2

∫ λ

0

uβeuβ − euβ + 1

u2 du

= E[F ] + α2λ

2
+ γ 2

β2

eλβ − λβ − 1

λ
.

In other words, we obtain

E[eλF ] ≤ exp
[
λE[F ] + α2λ2

2
+ γ 2

β2 (eλβ − λβ − 1)
]
. (4.8)

Hence, Chebychev’s inequality implies that
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P[F − E[F ] > r]
≤ inf

λ>0
e−λr

E[eλ(F−E[F ])]

≤ exp
[

− sup
λ>0

{
λr − α2λ2

2
− γ 2

β2 (eλβ − λβ − 1)
}]

= exp
[

−
{
r
γ 2 + βr − α2W(

γ 2

α2 exp{βr+γ 2

α2 })
α2β

−
(
γ 2 + βr − α2W(

γ 2

α2 exp{βr+γ 2

α2 )
)2

2α2β2

}]

× exp
[γ 2

β2

(
exp

{γ 2 + βr − α2W(
γ 2

α2 exp{βr+γ 2

α2 })
α2

}

− γ 2 + βr − α2W(
γ 2

α2 exp{βr+γ 2

α2 })
α2 − 1

)]
= exp

[
− r2

2α2 − γ 2

2α2β2

(
2α2 + 2βr + γ 2

)
+ α2

2β2

(
W(

γ 2

α2 exp{βr + γ 2

α2 })
)2

+ α2

β2W(
γ 2

α2 exp{βr + γ 2

α2 })
]

=: d(α, β, γ, r), (4.9)

where W is the Lambert W-Function. Hence, (4.2) is shown in the bounded case.
In the unbounded case, we can apply a similar argument as in the proof of Propo-

sition 3.1 in [31]. Let FN = [(−N) ∨ F ] ∧ N . It satisfies (4.1) again. By Proposi-
tion 2.5, if limk→∞ E[FNk

] = ±∞ for some subsequence (Nk) tending to infinity,
then FNk

→ ±∞ in probability P. This is in contradiction to FN → F ∈ L0(P)

in probability. Consequently, {E[FN ]; N ≥ 1} is bounded. From condition (4.2) and
Proposition 4.1 again, {E[F 2

N ]; N ≥ 1} is bounded, too. Thus {Fn; N ≥ 1} is uni-
formly integrable, and then E[|F |] < +∞ and E[|FN − F |] → 0. Therefore,

P(F − E[F ] > r) ≤ lim inf
N→∞ P(FN − E[FN ] > r) ≤ d(α, β, γ, r).

The proof is concluded.

Remark 4.2. For A,B,C, r > 0 and the Lambert W-function W , we can show that

W(CeA+Br) = Br − log(Br) + A + log C + o(r−1+ε) as r → +∞ for some ε > 0

holds (note that in the case r = eA

B
> 0, we obtain W(CeA+Br) = Br − log(Br) +

A + log C) since we know the following asymptotic behavior of W(r) (pp. 25–26 in
[9]):

W(r) = log(r) − log log(r) + O

(
log log r

r

)
as r → ∞.
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Therefore, (4.3) in Theorem 4.1 can be rewritten as

P[F − E[F ] > r]

≤ exp
[

− r2

2α2 − γ 2

2α2β2

(
2α2 + 2βr + γ 2

)

+ α2

2β2

(
W(

γ 2

α2 exp{βr + γ 2

α2 })
)2 + α2

β2W(
γ 2

α2 exp{βr + γ 2

α2 })
]

= exp
[

− r2

2α2 − γ 2

2α2β2

(
2α2 + 2βr + γ 2

)

+ α2

2β2

( β

α2 r − log
( β

α2 r
)

+ γ 2

α2 + log
(γ 2

α2

))2

+ α2

β2

( β

α2 r − log
( β

α2 r
)

+ γ 2

α2 + log
(γ 2

α2

))
+ o(r−1+ε)

]

= exp
[

− r2

2α2 − γ 2

2α2β2

(
2α2 + 2βr + γ 2

)

+ α2

2β2

(β2

α4 r2 − 2
β

α2

(γ 2

α2 + log
(γ 2

α2

))
r + 2

(γ 2

α2 + log
(γ 2

α2

))
log

( β

α2 r
)

+
(

log
( β

α2 r
))2 − 2

β

α2 r log
( β

α2 r
)

+
(γ 2

α2 + log
(γ 2

α2

))2)
+ α2

β2

( β

α2 r − log
( β

α2 r
)

+ γ 2

α2 + log
(γ 2

α2

))
+ o(r−1+ε)

]

= exp
[

−
{ 2γ 2

α2β
+ 1

β

(
log

(γ 2

α2

)
− 1

)}
r

+ α2

β2

{γ 2

α2 + log
(γ 2

α2

)
− β

α2 r − 1 + 1

2
log

( β

α2 r
)}

log
( β

α2 r
)

+ α2

β2

{
log

(γ 2

α2

)
+ 1

2

(γ 2

α2 + log
(γ 2

α2

))2} − γ 4

2α2β2 + o(r−1+ε)
]

= C exp
[

− β

α2 r log
( β

α2 r
)

+ o(r log r)
]
, (4.10)

where C is a constant, as r → ∞ for some ε > 0.

Remark 4.3. This concentration inequality looks a little bit complex but unifies all
cases. We explain it in the following items.

(1) The Wiener space case: ν = 0 and σ = 0. Taking γ → 0 in (4.3), we obtain

P(F − E[F ] > r) ≤ exp
[

− r2

2α2

]
for all r > 0.

(2) The Poisson space case: ν = 0 and σ = 0. Take α → 0 in (4.2). Hence, we
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have

P(F − E[F ] > r) ≤ exp
[

− sup
λ>0

{
λr − γ 2

β2 (eλβ − λβ − 1)
}]

= exp
[

−
( r

β
+ γ 2

β2

)
log

(
1 + βr

γ 2

)
+ r

β

]
≤ exp

[
− r

2β
log

(
1 + βr

γ 2

)]
. (4.11)

Moreover, in the case zDt,zF ≤ 0, ν ⊗ P-a.e., letting β → 0 in (4.11), we
obtain

P(F − E[F ] > r) ≤ exp
[

− r2

2γ 2

]
.

It recovers Proposition 3.1 in [31].

Remark 4.4. Three conditions (4.1) in Theorem 4.1 are a little bit strong and difficult.
In fact, our estimation cannot be applied to many cases, including the pure jump case,
which Wu claimed (see [31]). In the following subsection, we show some examples
to which we can apply our result.

4.1 Examples

In this subsection, we will give examples of concentration inequalities in Theorem 4.1.

Example 4.5. Let f : R → R be a bounded Lipschitz continuous function with Lip-
schitz constant Lf and supx∈R |f (x)| > 0. We now consider the following function

F : F = f (XT ), where XT = σWT + ∫ T

0

∫
R0

xÑ(ds, dx) = I1(1) ∈ D
1,2, σ > 0.

Then, Proposition 5.1 in [13] implies that f (XT ) ∈ D
1,2 and

Dt,zF = GDt,0XT 1{0}(z) + f (XT + zDt,zXT ) − f (XT )

z
1R0(z)

= G1{0}(z) + f (XT + z) − f (XT )

z
1R0(z), (4.12)

where G is a random variable which is a.s. bounded by Lf . By using (4.12), we have

σ 2
∫ T

0
|Dt,0F |2dt = σ 2T |G|2 ≤ σ 2T L2

f =: α2 < ∞,

zDt,zF = f (XT + z) − f (XT )

≤ |f (XT + z) − f (XT )| ≤ 2 sup
x∈R

|f (x)| =: β ∈ (0,∞),

and∫ T

0

∫
R0

|zDt,zF |2ν(dz)dt =
∫ T

0

∫
R0

|f (XT + z) − f (XT )|2ν(dz)dt
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≤ L2
f T

∫
R0

z2ν(dz) =: γ 2 = α2

σ 2

∫
R0

z2ν(dz) < ∞.

Therefore, Theorem 4.1 shows that

P(f (XT ) − E[f (XT )] > r)

≤ exp
[

− r2

2α2 − γ 2

2α2β2

(
2α2 + 2βr + γ 2

)

+ α2

2β2

(
W(

γ 2

α2 exp{βr + γ 2

α2 })
)2 + α2

β2W(
γ 2

α2 exp{βr + γ 2

α2 })
]

= exp
[

− r2

2α2 − σ−2
∫
R0

z2ν(dz)

2β2

(
α2(2 + σ−2

∫
R0

z2ν(dz)) + 2βr
)

+ α2

2β2

(
W(σ−2

∫
R0

z2ν(dz) exp{ β

α2 r + σ−2
∫
R0

z2ν(dz)})
)2

+ α2

β2W(σ−2
∫
R0

z2ν(dz) exp{ β

α2 r + σ−2
∫
R0

z2ν(dz)})
]

for all r > 0, where W is the Lambert W-function. Moreover, from (4.10) and taking
m2 = ∫

R0
z2ν(dz) and M = supx∈R |f (x)|, we obtain the following approximation

result:

P(f (XT ) − E[f (XT )] > r)

≤ exp
[

− r2

2α2 − γ 2

2α2β2

(
2α2 + 2βr + γ 2

)

+ α2

2β2

(
W(

γ 2

α2 exp{βr + γ 2

α2 })
)2 + α2

β2W(
γ 2

α2 exp{βr + γ 2

α2 })
]

= exp
[

−
{ m2

σ 2M
+ 1

2M
log

(m2

σ 2

)}
r + r

2M

+ σ 2T 2L2
f

4(M)2

{m2

σ 2 + log
(m2

σ 2

)
− 2

M

σ 2T L2
f

r − 1
}

log
( 2M

σ 2T L2
f

r
)

+ σ 2T 2L2
f

8(M)2

(
log

( 2M

σ 2T L2
f

r
))2

+ σ 2T 2L2
f

4(M)2

{
log

(m2

σ 2

)
+ 1

2

(m2

σ 2 +log
(m2

σ 2

))2
}

− T L2
f m2

2

8σ 2(M)2 + o(r−1+ε)
]

= C exp
[

− 2M

σ 2T L2
f

r log
( 2M

σ 2T L2
f

r
)

+ o(r log r)
]
, (4.13)

where C is a constant, as r → ∞ for some ε > 0 and r > 0.

Example 4.6. The put option is a typical example of contingent claims in mathemat-
ical finance. The payoff of the put option with strike price K > 0 is expressed by
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max{K − ST , 0}, where ST is a risky asset price process at maturity T ; we omit the
details of it. Now, as an example of Theorem 4.1, we deal with the following. Let

F = max{K − max(XT , 0), 0}, K > 0.

Since f (x) = max{K − max(x, 0), 0}, x ∈ R, is bounded Lipschitz continuous with
Lipschitz constant 1, Proposition 5.1 in [13] implies that F = f (XT ) belongs to D

1,2

and
Dt,0f (XT ) = HDt,0G = H,

where H is a random variable almost surely bounded by 1. Moreover, we obtain

Dt,zf (XT ) = f (XT + zDt,zXT ) − f (XT )

z
1R0(z).

Hence,

σ 2
∫ T

0
|Dt,0F |2dt = σ 2T |H |2 ≤ σ 2T =: α2 < ∞,

zDt,zF = f (XT + z) − f (XT )

≤ |f (XT + z) − f (XT )|
≤ 2 sup

x∈R
|f (x)|

= 2K =: β ∈ (0,∞),

and ∫ T

0

∫
R0

|zDt,zF |2ν(dz)dt

=
∫ T

0

∫
R0

|f (XT + z) − f (XT )|2ν(dz)dt

≤ T

∫
R0

z2ν(dz) = α2

σ 2

∫
R0

z2ν(dz) =: γ 2 < ∞

hold.
Therefore, Example 4.5 shows that

P(f (XT ) − E[f (XT )] > r)

≤ exp
[

− r2

2α2 − σ−2
∫
R0

z2ν(dz)

2β2

(
α2(2 + σ−2

∫
R0

z2ν(dz)) + 2βr
)

+ α2

2β2

(
W(σ−2

∫
R0

z2ν(dz) exp{ β

α2 r + σ−2
∫
R0

z2ν(dz)})
)2

+ α2

β2W(σ−2
∫
R0

z2ν(dz) exp{ β

α2 r + σ−2
∫
R0

z2ν(dz)})
]

= exp
[

− r2

2σ 2T
− σ−2

∫
R0

z2ν(dz)

8K2

(
σ 2T (2 + σ−2

∫
R0

z2ν(dz)) + 4Kr
)



A modified �-Sobolev inequality for canonical Lévy processes 167

+ σ 2T

8K2

(
W(σ−2

∫
R0

z2ν(dz) exp{ 2K

σ 2T
r + σ−2

∫
R0

z2ν(dz)})
)2

+ σ 2T

4K2 W(σ−2
∫
R0

z2ν(dz) exp{ 2K

σ 2T
r + σ−2

∫
R0

z2ν(dz)})
]

for all r > 0, where W is the Lambert W-function. Moreover, from (4.10), (4.13) and
taking m2 = ∫

R0
z2ν(dz), we obtain the following approximation result:

P(f (XT ) − E[f (XT )] > r)

≤ exp
[

− r2

2α2 − σ−2
∫
R0

z2ν(dz)

2β2

(
α2(2 + σ−2

∫
R0

z2ν(dz)) + 2βr
)

+ α2

2β2

(
W(σ−2

∫
R0

z2ν(dz) exp{ β

α2 r + σ−2
∫
R0

z2ν(dz)})
)2

+ α2

β2W(σ−2
∫
R0

z2ν(dz) exp{ β

α2 r + σ−2
∫
R0

z2ν(dz)})
]

= exp
[

−
{ m2

σ 2K
+ 1

2K
log

(m2

σ 2

)}
r + r

2K

+ σ 2T 2

4K2

{m2

σ 2 + log
(m2

σ 2

)
− 2

K

σ 2T
r − 1

}
log

( 2K

σ 2T
r
)

+ σ 2T 2

8K2

(
log

( 2K

σ 2T
r
))2

+ σ 2T 2

4K2

{
log

(m2

σ 2

)
+ 1

2

(m2

σ 2 + log
(m2

σ 2

))2
}

− T m2
2

8σ 2K2 + o(r−1+ε)
]

= C exp
[

− 2K

σ 2T
r log

( 2K

σ 2T
r
)

+ o(r log r)
]
,

where C is a constant, as r → ∞ for some ε > 0.

Example 4.7. As an example of Theorem 4.1, we consider the following:

F = δσWT + (1 − δ)(JT − cT ),

where δ ∈ (0, 1) and JT is the Poisson process at time T with intensity c > 0. The
definition of the Malliavin derivative implies that

Dt,0F = δ, t ∈ [0, T ], q ⊗ P-a.e.,

and
Dt,zF = (1 − δ), (t, z) ∈ [0, T ] × {1}, q ⊗ P-a.e.

Hence, zDt,zF ≤ (1 − δ) =: β for (t, z) ∈ [0, T ] × {1}, q ⊗ P-a.e.,

σ 2
∫ T

0
|Dt,0F |2dt = σ 2δ2T =: α2

and ∫
[0,T ]×R0

|Dt,zF |2z2ν(dz)dt = c(1 − δ)2T =: γ 2

hold.
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Therefore, Theorem 4.1 shows that

P(F − E[F ] > r)

≤ exp
[

− r2

2α2 − γ 2

2α2β2

(
2α2 + 2βr + γ 2

)

+ α2

2β2

(
W(

γ 2

α2 exp{βr + γ 2

α2 })
)2 + α2

β2W(
γ 2

α2 exp{βr + γ 2

α2 })
]

= exp
[

− r2

2σ 2δ2T
− c

2σ 2

(
2σ 2δ2T + 2(1 − δ)r + c(1 − δ)2T

)
+ σ 2δ2T

2(1 − δ)2

(
W(

c(1 − δ)2

σ 2δ2 exp{ (1 − δ)r + c(1 − δ)2T

σ 2δ2T
})

)2

+ σ 2δ2T

(1 − δ)2W(
c(1 − δ)2

σ 2δ2 exp{ (1 − δ)r + c(1 − δ)2T

σ 2δ2T
})

]
(4.10)= exp

[
−

{2c(1 − δ)

σ 2δ2 + 1

1 − δ
log

(c(1 − δ)2

σ 2δ2

)}
r + r

1 − δ

+ σ 2δ2T

(1 − δ)2

{c(1 − δ)2

σ 2δ2 + log
(c(1 − δ)2

σ 2δ2

)
− (1 − δ)

σ 2δ2T
r − 1

}
log

( 1 − δ

σ 2δ2T
r
)

+ σ 2δ2T

2(1 − δ)2

(
log

( 1 − δ

σ 2δ2T
r
))2

+ σ 2δ2T

(1 − δ)2

{
log

(c(1 − δ)2

σ 2δ2

)
+ 1

2

(c(1 − δ)2

σ 2δ2 + log
(c(1 − δ)2

σ 2δ2

))2}

− c2(1 − δ)2T

2σ 2δ2 + o(r−1+ε)
]

= C exp
[

− 1 − δ

σ 2δ2T
r log

( 1 − δ

σ 2δ2T
r
)

+ o(r log r)
]
,

where C is a constant, as r → ∞ for some ε > 0 and r > 0.
Assuming further that σ = T = 1 and c = 1−δ2

(1−δ)2 = 1+δ
1−δ

, we have

E[F ] = 0, Var[F ] = 1

and

P(F − E[F ] > r)

≤ exp
[

− r2

2δ2 − 1 − δ2

2(1 − δ)2

(
δ2 + 2(1 − δ)r + 1

)

+ δ2

2(1 − δ)2

(
W(

1 − δ2

δ2 exp{ (1 − δ)r + 1 − δ2

δ2 })
)2

+ δ2

(1 − δ)2W(
1 − δ2

δ2 exp{ (1 − δ)r + 1 − δ2

δ2 })
]

= exp
[

−
{2(1 + δ)

δ2 + 1

1 − δ
log

(1 − δ2

δ2

)}
r + r

1 − δ



A modified �-Sobolev inequality for canonical Lévy processes 169

+ δ2

(1 − δ)2

{1 − δ2

δ2 + log
(1 − δ2

δ2

)
− (1 − δ)

δ2 r − 1
}

log
(1 − δ

δ2 r
)

+ δ2

2(1 − δ)2

(
log

(1 − δ

δ2 r
))2

+ δ2

(1 − δ)2

{
log

(1 − δ2

δ2

)
+ 1

2

(1 − δ2

δ2 + log
(1 − δ2

δ2

))2}

− (1 + δ)2T

2δ2 + o(r−1+ε)
]

= C exp
[

− 1 − δ

δ2 r log
(1 − δ

δ2 r
)

+ o(r log r)
]
,

where C is a constant, as r → ∞ for some ε > 0 and r > 0.

Example 4.8. As an example of Theorem 4.1, we consider the following:

F = δσWT − (1 − δ)JT ,

where σ > 0, δ ∈ (0, 1) and JT is an L2-canonical pure jump Lévy process at time
T . We also assume that J has only positive jumps.

The definition of the Malliavin derivative implies that

Dt,0F = δ, t ∈ [0, T ], q ⊗ P-a.e.,

and
Dt,zF = −(1 − δ), (t, z) ∈ [0, T ] × (0,∞), q ⊗ P-a.e.

Hence, zDt,zF = −z(1 − δ) ≤ 0 for (t, z) ∈ [0, T ] × (0,∞), q ⊗ P-a.e.,

σ 2
∫ T

0
|Dt,0F |2dt = σ 2δ2T =: α2 < ∞,

and ∫
[0,T ]×R0

|Dt,zF |2z2ν(dz)dt = c(1 − δ)2T =: γ 2 < ∞
hold. Therefore, from (4.4) in Theorem 4.1, we obtain

P(F − E[F ] > r) ≤ exp
[

− r2

2(σ 2δ2 + c(1 − δ2))T

]
for all r > 0.

Example 4.9. We shall give a concentration inequality for the running maximum
over [0, T ] of the following Lévy process: Lt = μt + Xt , t ∈ [0, T ], where X is the
underlying Lévy process defined in (2.2) and μ ∈ R. Note that Lt ∈ D

1,2 for any
t ∈ [0, T ]. We next denote ML = supt∈[0,T ] Lt , and τ = inf{t ∈ [0, T ]|Lt ∨ Lt− =
ML}. Note that ML = supt∈[0,T ](Lt ∨ Lt−) = Lτ ∨ Lτ−; and τ is a unique random
time satisfying ML = Lτ ∨Lτ− by Lemma 49.4 of [23]. In this setting, Theorem 6.4
in [2] implies that ML ∈ D

1,2 and

Dt,zM
L = 1{τ≥t}1{0}(z) + sups∈[0,T ](Ls + z1{t≤s}) − ML

z
1R0(z).

We next consider the following two cases for examples of Theorem 4.1.
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(1) In the case ν = cδ1, we have

zDt,zM
L = sup

s∈[0,T ]
(Ls + z1{t≤s}) − ML

≤ sup
s∈[0,T ]

(z1{t≤s}) ≤ 1 =: β, (t, z) ∈ [0, T ] × {1}, q ⊗ P-a.e.,

σ 2
∫ T

0
|Dt,0M

L|2dt ≤ σ 2T =: α2

and ∫ T

0

∫
R0

z2|Dt,zM
L|2ν(dz)dt ≤ cT =: γ 2.

Therefore, Theorem 4.1 shows that

P(ML − E[ML] > r)

≤ exp
[

− r2

2α2 − γ 2

2α2β2

(
2α2 + 2βr + γ 2

)

+ α2

2β2

(
W(

γ 2

α2 exp{βr + γ 2

α2 })
)2 + α2

β2W(
γ 2

α2 exp{βr + γ 2

α2 })
]

= exp
[

− r2

2σ 2T
− c

2σ 2

(
2σ 2T + 2r + cT

)
+ σ 2T

2

(
W(

c

σ 2 exp{ r + cT

σ 2T
})

)2 + σ 2TW(
c

σ 2 exp{ r + cT

σ 2T
})

]
(4.10)= exp

[
−

{ 2c

σ 2 + log
( c

σ 2

)
− 1

}
r

+ σ 2T
{ c

σ 2 + log
( c

σ 2

)
− 1

σ 2T
r − 1

}
log

( 1

σ 2T
r
)

+ σ 2T

2

(
log

( 1

σ 2T
r
))2

+ σ 2T
{

log
( c

σ 2

)
+ 1

2

( c

σ 2 + log
( c

σ 2

))2} − c2T

2σ 2 + o(r−1+ε)
]

= C exp
[

− 1

σ 2T
r log

( 1

σ 2T
r
)

+ o(r log r)
]
,

where C is a constant, as r → ∞ for some ε > 0 and r > 0. Especially, taking
σ = T = 1, we have

P(ML − E[ML] > r) ≤ exp
[

− r log r + o(r log r)
]
,

where C is a constant, as r → ∞ and r > 0.

(2) We consider the case when {Jt }t∈[0,T ] has no positive jumps. In this case,

zDt,zM
L = sup

s∈[0,T ]
(Ls + z1{t≤s}) − ML



A modified �-Sobolev inequality for canonical Lévy processes 171

≤ sup
s∈[0,T ]

(z1{t≤s}) ≤ 0, (t, z) ∈ [0, T ]×{z ∈ R|z < 0}, q ⊗ P-a.e.,

σ 2
∫ T

0
|Dt,0M

L|2dt ≤ σ 2T =: α2 < ∞

and ∫ T

0

∫
R0

z2|Dt,zM
L|2ν(dz)dt

=
∫ T

0

∫
R0

| sup
s∈[0,T ]

(Ls + z1{t≤s}) − ML|2ν(dz)dt

≤
∫ T

0

∫
R0

sup
s∈[0,T ]

|z1{t≤s}|2ν(dz)dt

≤
∫ T

0

∫
R0

|z|2ν(dz)dt = T

∫
R0

z2ν(dz) =: γ 2 < ∞

are derived. Thus, (4.4) in Theorem 4.1 implies that

P(F − E[F ] > r) ≤ exp

⎡
⎣− r2

2T
(
σ 2 + ∫

R0
z2ν(dz)

)
⎤
⎦ , ∀r > 0.
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