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Abstract Random filtered complexes built over marked point processes on Euclidean spaces
are considered. Examples of these filtered complexes include a filtration of Čech complexes
of a family of sets with various sizes, growths, and shapes. The law of large numbers for
persistence diagrams is established as the size of the convex window observing a marked point
process tends to infinity.
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1 Introduction

Much attention has been paid to topological data analysis (TDA) over the last few
decades and persistent homology has been playing a central role as one of the most
important tools in TDA. Persistent homology measures persistence of topological
feature, in particular, appearance and disapperance of homology generators in each
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dimension and enables us to view data sets in multi-resolutional way. There are sev-
eral aspects to be discussed in the theory of persistent homology, among which we
focus on the random aspect. Data sets to be analyzed are often represented as bino-
mial processes if each data point is regarded as a sample from a certain probability
distribution and as stationary point processes if data points are considered as part of
a huge object. There have been many works on the topology of binomial processes
from the viewpoint of manifold learning [11, 3, 4]. In the setting of stationary point
processes, Yogeshwaran and Adler [19] discussed the topology of random complexes
built over stationary point processes in the Euclidean space and showed the strong law
of large numbers for Betti numbers of such random complexes. In the same setting,
Hiraoka, Shirai and Trinh [12] proved the strong law of large numbers for persistence
diagrams, which comprise all information about persistence Betti numbers, and also
discussed the positivity of its limiting persistence diagram. In the present paper, we
extend the framework to deal with random filtered complexes built over stationary
marked point processes in order to include more natural examples such as weighted
complexes ([2], [5], [13], and references therein).

Given data as a finite point configuration � in R
d , we consider the union of closed

balls ∪x∈�Bt(x) of radius t ≥ 0 centered at each data point x ∈ �, which we denoted
by X(�, t). We are interested in how the q-dimensional homology classes of X(�, t)

behave as t grows. By the so-called Nerve theorem, it is well known that X(�, t) is
homotopy equivalent to the Čech complex C(�, t), which is defined as a simpli-
cial complex over points in � consisting of q-simplices σ = {x0, x1, . . . , xq} for
which ∩q

i=0Bt(xi) �= ∅. We thus obtain a filtration of simplicial complexes C(�) =
{C(�, t)}t≥0 from �. The qth persistent homology of the filtration C(�) gives more
topological information of data than the homologies of snapshots of C(�, t) (cf. [9]
and [21]).

When we look at an atomic configuration, it is natural to consider the influence
of atomic radii. In the usual setting, as explained above, we start from a finite set of
points in � and attach balls of radius t to construct the Čech complex, however, taking
atomic radii into account, it would be natural to start from a finite set of balls with
initial radii rather than a finite set of points. If points are considered to have different
shapes, it would be better to attach a different shape of Vt(xi) to the ith point instead
of a ball Bt(xi) depending on the shape of the ith point. In many applications, each
point often has some extra information and so we would like to incorporate it in
our framework. For this purpose, in the present paper, we introduce a filtration of
simplicial complexes built over finite sets on R

d with marks in a complete separable
metric space M. Here by marks we mean additional information of data and some
information at each point that can be expressed as a mark by taking M appropriately.

Now we introduce some notations to state our main theorems. We say that a
nonempty finite subset � of Rd×M is a simple marked point set if #(�∩π−1{x}) ≤ 1
holds for any x ∈ Rd , where #A is the cardinality of a set A and π : Rd ×M → Rd

is the natural projection. For a simple marked point set �, by forgetting marks by
π , we obtain a simple point set �g = π(�) ⊂ R

d as the ground point set of �.
For a given simple marked point set �, we define a filtration of simplicial complexes
K(�) = {K(�, t)}t≥0 with the vertex sets in �g by assigning the birth time κ(σ )

for each simplex σg = π(σ) ⊂ �g , that is, K(�, t) = {σg ⊂ �g : κ(σ ) ≤ t},
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where κ is a function defined on the nonempty finite subsets of Rd × M with some
appropriate conditions (see Section 2.1). We call K(�) the κ-filtered complex built
over a simple marked point set �. This is a marked version of κ-complex (resp. filtra-
tion) introduced in [12] as a generalization of Čech and Vietoris–Rips complex (resp.
filtration). For example, if we consider the case where M is the closed interval [0, R]
and

κ(σ ) = inf
w∈Rd

max
(x,r)∈σ

(‖x − w‖ − r)+ for finite σ ⊂ R
d × M,

then K(�, t) is the Čech complex of the family of closed balls {Bt+r (x)}(x,r)∈�,
which is the case where we start from balls with various initial radii (Example 2.1).
Thus our framework enables us to consider a filtration of Čech complexes of a fam-
ily of balls with various sizes naturally. Later, we give several examples of κ-filtered
complexes, which include a filtration of Čech complexes of a family of sets with vari-
ous growth speeds (Example 2.2) and various shapes (Example 2.3). These examples
are often called weighted complexes.

For a κ-filtered complex K(�), its qth persistence diagram

Dq(K(�)) = {(bi, di) ∈ � : i = 1, 2, . . . , nq}
is defined by a multiset on � = {(x, y) ∈ [0,∞] × [0,∞] : x < y} determined by
the decomposition of the persistent homology (see Section 2.2), which is an expres-
sion of the qth persistent homology. Each (bi, di) means that a qth homology class
appears at t = bi , persists for bi ≤ t < di , and disappears at t = di in K(�). In this
paper, the persistence diagram Dq(K(�)) is treated as the counting measure

ξq(K(�)) =
∑

(b,d)∈Dq(K(�))

δ(b,d),

where δ(x,y) denotes the Dirac measure at (x, y) ∈ �. Let 	 be a marked point pro-
cess on R

d with marks in M. It is a point process on R
d × M such that the ground

process 	g(·) = 	(· × M) is a simple point process on R
d . We assume that 	g has

all finite moments, that is, E[	g(A)p] < +∞ for any bounded Borel set A in R
d and

p ≥ 1. The restricted marked point process 	 on A×M is denoted by 	A. We discuss
the strong law of large numbers for persistence diagrams of a random κ-filtered com-
plex built over a marked point process, or more precisely, the asymptotic behavior of
ξq(K(	An)) (ξq,An for short) of the κ-filtered complex K(	An) = {K(	An, t)}t≥0
as the size of window An tends to infinity, where {An}n∈N is an increasing net of
bounded convex sets in R

d with sup{r > 0 : An contains a ball of radius r} → ∞
as n → ∞. Such a net is called a convex averaging net in R

d . It is a generalized
version of a convex averaging sequence considered in [8], for example. The main
purpose of this paper is to show the following.

Theorem. Let 	 be a stationary ergodic marked point process and suppose its
ground process 	g has all finite moments. Then for any nonnegative integer q, there
exists a Radon measure νq on � such that for any convex averaging net A = {An}n∈N
in R

d ,
1

|An|ξq,An

v−→ νq a.s. as n → ∞
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where |A| is the d-dimensional Lebesgue measure of A and
v−→ denotes the vague

convergence of measures on �.

New feature of this theorem is two-fold: marks and averaging nets. The same limit
theorem as above is first established in [12, Theorem 1.5] for persistence diagrams in
the case of stationary ergodic point processes (without marks) on R

d and {An}n∈N
being the rectangles {[−L/2, L/2)d}L>0 . Marked point processes are often useful
from the application point of view (cf. [1, 6]) so that this extension greatly expanded
the scope of application in TDA. The limit theorem along convex averaging sequences
can also be found in a recent article [17] when the underlying filtered complexes are
basically Čech complexes. Our theorem is also an extension of [17] to the case of the
class of κ-complexes, which includes Čech complexes as a special example. We also
remark that the papers [19] and [20] discuss the limiting behavior of Betti numbers
of random Čech complexes built over stationary point processes.

The paper is organized as follows. We give the statement of our results after intro-
ducing some notation and fundamental facts in Section 2. Some examples of marked
point processes and κ-filtered complexes are also presented in this section. In Sec-
tion 3, we show the law of large numbers for persistent Betti numbers (Theorem 2.7)
to prove the main theorem (Theorem 2.6).

2 Preliminaries and results

2.1 κ-filtered complexes

For a topological space S, let F(S) be the collection of all finite nonempty subsets in
S. Given a function f on F(S), there exists a permutation invariant function fk on
Sk such that fk(s1, s2, . . . , sk) = f ({s1, s2, . . . , sk}) for any positive integer k. We
say a function f on F(S) is measurable if the permutation invariant functions {fk}
are Borel measurable. In this paper, we extend the κ-filtration for (unmarked) point
processes introduced in [12] to that for marked ones. Let M be a complete separable
metric space, which stands for the set of marks, and κ : F(Rd × M) → [0,∞) a
measurable function satisfying the following:

(K1) κ(A) ≤ κ(B) if A ⊂ B.

(K2) κ is invariant under the translations acting on the first component only, i.e.,

κ(Ta(A)) = κ(A)

for any a ∈ R
d and for any A ∈ F(Rd ×M), where Ta : (x,m) �→ (x +a,m).

(K3) There exists an increasing function ρ : [0,∞) → [0,∞) such that

‖x − y‖ ≤ ρ(κ({(x,m), (y, n)}))
for all (x,m), (y, n) ∈ R

d × M, where ‖ · ‖ is the Euclidean norm on R
d .

Let π : R
d ×M → R

d be the projection with respect to the first component. We say
� ∈ F(Rd × M) is a simple marked point set if for any x ∈ R

d , #(� ∩ π−1{x}) ≤ 1
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holds, where #A is the number of elememts in A. For any simple marked point set �,
we write as �g = π(�). The projection π naturally induces the bijection

F(�) � σ �→ σg ∈ F(�g).

Once a simple marked point set � is fixed, each subset

σ = {(x0,m0), (x1,m1), . . . , (xq,mq)}
of � can be regarded as a finite point configuration σg = {x0, x1, . . . , xq} in Rd with
marks {m0,m1, . . . , mq} in M. By the definition of simple marked point sets we see
that each x ∈ �g has a unique mark m ∈ M with (x,m) ∈ �.

Given a simple marked point set �, we construct a filtration

K(�) = {K(�, t)}t≥0 (1)

of simplicial complexes from the simple marked point set � and the function κ by

K(�, t) = {σg ⊂ �g : κ(σ ) ≤ t},
i.e., κ(σ ) is the birth time of a simplex σg in the filtration K(�). Note that whether
or not a q-simplex σg = {x0, x1, . . . , xq} ⊂ �g belongs to K(�, t) depends not only
on the q-simplex itself but also on the marked set

σ = {(x0,m0), (x1,m1), . . . , (xq,mq)} ⊂ �.

We call K(�) = {K(�, t)}t≥0 the κ-filtered complex built over �. We also note that
the conditions (K1) and (K3) of κ yield the following diameter bound

diam σg ≤ ρ(t)

for any simplex σ ∈ K(�, t). Indeed, for any σ ∈ K(�, t) and any x, y ∈ σg we
take m, n ∈ M with (x,m), (y, n) ∈ σ , then it is easy to see that

‖x − y‖ ≤ ρ(κ({(x,m), (y, n)})) ≤ ρ(κ(σ )) ≤ ρ(t).

Example 2.1 (Čech and Vietoris–Rips filtered complex with various sizes). For a
fixed R > 0, let M be the closed interval [0, R]. Fundamental examples of κ on
F(Rd × M) are

κC(σ ) = inf
w∈Rd

max
(x,r)∈σ

(‖x − w‖ − r)+

and κR(σ ) = max
(x1,r1),(x2,r2)∈σ

(‖x1 − x2‖ − r1 − r2)
+

2
,

where a+ = max{a, 0} for a ∈ R. It is easy to see that they satisfy (K1), (K2), and
(K3) with ρ(t) = 2t + 2R. We denote the corresponding κ-filtered complexes built
over a simple marked point set � by C(�) = {C(�, t)}t≥0 and R(�) = {R(�, t)}t≥0,
respectively. For σ ∈ F(�), we see that

κC(σ ) ≤ t ⇔
⋂

(x,r)∈σ

Bt+r (x) �= ∅,

κR(σ ) ≤ t ⇔ Bt+r1(x1) ∩ Bt+r2(x2) �= ∅ for any (x1, r1), (x2, r2) ∈ σ,
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where Br(x) = {y ∈ R
d : ‖y − x‖ ≤ r} is the closure of the open ball Br(x) of

radius r centered at x. Hence C(�, t) and R(�, t) are the so-called Čech complex
and Vietoris–Rips complex of the family of balls {Bt+r (x)}(x,r)∈�.

Example 2.2 (Čech and Vietoris–Rips filtered complex with various growth speeds).
Let M be a finite family {ri (·)}i∈I of right continuous, strictly increasing functions
on [0,∞). We define functions on F(Rd × M) by

κC(σ ) = inf
w∈Rd

max
(x,r)∈σ

r−1(‖x − w‖)
and κR(σ ) = max

(x1,r1),(x2,r2)∈σ
(r1 + r2)

−1(‖x1 − x2‖),

where r−1(t) = inf{s ≥ 0 : r(s) ≥ t}. One can show that

κC(σ ) ≤ t ⇔
⋂

(x,r)∈σ

Br(t)(x) �= ∅,

κR(σ ) ≤ t ⇔ Br1(t)(x1) ∩ Br2(t)(x2) �= ∅ for any (x1, r1), (x2, r2) ∈ σ

in the same way as in Example 2.1 above. In this case, (K3) is satisfied with ρ(t) =
2 maxi∈I ri (t). The corresponding κ-filtered complexes are the Čech complexes and
Vietoris–Rips complexes of the family of balls {Br(t)(x)}(x,r)∈� for a simple marked
point set � ∈ F(Rd × M).

Example 2.3 (Čech filtered complex with various shapes). Let M be a finite family
{Ci}i∈I of bounded convex sets in R

d satisfying that 0 ∈ int Ci for every i ∈ I , where
int C is the interior of C. We put fC(z) = inf{s ≥ 0 : z ∈ sC} for a convex set C

and z ∈ R
d . Consider the function on F(Rd × M) defined by

κ(σ ) = inf
w∈Rd

max
(x,C)∈σ

fC(w − x).

This satisfies (K3) with ρ(t) = 2t maxi∈I diam Ci . For any simple marked point set
� ∈ F(Rd ×M), it is easy to see that the corresponding K(�, t) is the Čech complex
of the family of sets {tC + x}(x,C)∈�.

2.2 Persistent homologies and persistence diagrams

In what follows, we fix a function κ satisfying the conditions (K1)–(K3) in Sec-
tion 2.1. Now we give a brief introduction of persistent homology, persistence di-
agrams, and persistent Betti numbers for the κ-filtered complex K(�). Let F be a
field. Given a nonnegative integer q and t ≥ 0, we denote by Hq(K(�, t)) the qth
homology group of the simplicial complex K(�, t) with coefficients in F. For r ≤ s,
the inclusion K(�, r) ↪→ K(�, s) induces the linear map ιsr : Hq(K(�, r)) →
Hq(K(�, s)). We put Hq(K(�)) = (Hq({K(�, t)}t≥0, {ιsr}s≥r≥0) and call it the qth
persistent homology (or persistence module) of K(�). It is well known that there exist
a unique nonnegative integer nq and bi, di ∈ [0,∞] with bi < di , i = 1, 2, . . . , nq ,
such that the qth persistent homology Hq(K(�)) has a decomposition property

Hq(K(�)) �
nq⊕
i=1

I (bi, di), (2)
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Fig. 1. β
r,s
q counts the number of birth–death pairs in the gray region

where I (bi, di) = (Ur, f
s
r ) consists of a family of vector spaces

Ur =
{
F bi ≤ r < di,

0 otherwise,

and the identity map f s
r = idF for bi ≤ r ≤ s < di . Each I (bi, di) in (2) describes

that a topological feature (qth homology class) appears at t = bi , persists for bi ≤
t < di , and disappears at t = di in K(�). We call the pair (bi, di) its birth–death pair.
The qth persistence diagram of K(�) is defined by a multiset

Dq(K(�)) = {(bi, di) ∈ � : i = 1, 2, . . . , nq},

where � = {(x, y) ∈ [0,∞] × [0,∞] : x < y}. Let mb,d be the multiplicity of the
point (b, d) ∈ Dq(�) and ξq(K(�)) the counting measure on � given by

ξq(K(�)) =
∑
(b,d)

mb,dδ(b,d),

where δ(x,y) is the Dirac measure at (x, y) ∈ �. We identify the persistence dia-
gram Dq(K(�)) with the counting measure ξq(K(�)). The qth (r, s)-persistent Betti
number is also defined by

βr,s
q (K(�)) = dim

Zq(K(�, r))

Zq(K(�, r)) ∩ Bq(K(�, s))
,

where Zq(K(�, r)) and Bq(K(�, r)) are the qth cycle group and boundary group
of K(�, r), respectively. It is easy to see that this number is equal to the rank of
ιsr : Hq(K(�, r)) → Hq(K(�, s)). By definition of the persistent Betti number, we
have

βr,s
q (K(�)) =

∑
b≤r,s<d

mb,d = ξq(K(�))([0, r] × (s,∞]). (3)

Therefore the persistence Betti number β
r,s
q counts the number of birth–death pairs in

the persistence diagram Dq(K(�)) located in the gray region of Figure 1. Details for
these facts can be found in [9], [12] and [21], for example.
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2.3 Marked point processes

Now we consider marked point processes. Let X be a complete separable metric
space and B(X) the Borel σ -field on X. A Borel measure μ on X is boundedly finite if
μ(A) < ∞ for every bounded Borel set A. We say that a sequence {μn} of boundedly
finite measures on X converges to a boundedly finite measure μ on X in the w#-
topology if ∫

X

f dμn →
∫

X

f dμ as n → ∞ (4)

for all bounded continuous functions f on X vanishing outside a bounded set. We
denote by M#

X the totality of boundedly finite measures on B(X). M#
X is a complete

separable metric space under the w#-topology. The corresponding σ -field B(M#
X)

coincides with the smallest σ -field with respect to which the mappings μ �→ μ(A)

are measurable for all A ∈ B(X). If X is a locally compact Hausdorff space with
countable base, we can take a metric so that X is complete and every bounded subset
of X is relatively compact. Then a Borel measure is boundedly finite if and only if
it is a Radon measure and w#-convergence coincides with vague convergence. We
recall that a Radon measure is a measure on X taking finite values on compact sets
and a sequence {μn} of Radon measures on X converges to a Radon measure μ on
X vaguely (or in the vague topology) if (4) holds for each continuous function f

on X vanishing outside a compact set. In this case, we write μn
v−→ μ. Let N #

X be
the totality of boundedly finite integer-valued measures. We call a measure in N #

X a
counting measure for short. For a counting measure μ on X, there exist sequences
of positive integers {ki} and points {xi} in X with at most finitely many xi in any
bounded Borel set such that

μ =
∑

i

kiδxi
.

Note that N #
X is a closed subset of M#

X.
Let (�,F ,P) be a probability space. An (M#

X,B(M#
X)) (resp., (N #

X,B(N #
X))-

valued random variable ξ on (�,F ,P) is called a random measure (resp., point pro-
cess) on X. A point process ξ is typically identified with the random point configura-
tion of its atoms. The expectation measure (or mean measure) of ξ is defined so that
M(A) = E[ξ(A)] for any A ∈ B(X). It is often denoted by E[ξ ]. We say that a point
process ξ is simple if

P(ξ({x}) = 0 or 1 for any x ∈ X) = 1.

A marked point process on Rd with marks in M is a point process 	 on Rd×M whose
marginal point process 	g(·) = 	(·×M) on R

d is a simple point process on R
d . The

point process 	g is called the ground process of 	. We say that the ground process
	g has all finite moments if E[	g(A)p] < +∞ for every bounded A ∈ B(Rd) and
every p ≥ 1. The translations {Ta}a∈Rd on R

d ×M induce the translations {Ta∗}a∈Rd

on N #
Rd×M

defined by

(Ta∗μ)(A) = μ(T −1
a A)

for a ∈ R
d and A ∈ B(Rd × M). A marked point process is called stationary if its

probability distribution is translation invariant. A stationary marked point process 	
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is called ergodic if every member B of B(N #
Rd×M

) with P ◦ 	−1(Ta∗B�B) = 0 for

all a ∈ R
d satisfies P ◦ 	−1(B) = 0 or 1.

Example 2.4 (point process with i.i.d. marks). Let 	g be a point process on R
d

and {Xi} a measurable enumeration of 	g , that is, {Xi} is a sequence of Rd -valued
random variables so that 	g = ∑

i δXi
a.s. We take an i.i.d. sequence of M-valued

random variables {Mi} such that 	 = {Xi} and {Mi} are independent. A marked
point process on R

d with marks in M is defined by

	 =
∑

i

δ(Xi,Mi).

If the point process 	 is stationary (and ergodic), then so is 	.

Example 2.5. Let 	g be a simple stationary (ergodic) point process on R
d and {Xi}

a measurable enumeration of 	g . For a fixed R > 0 and for each i, we define a
{0, 1}-valued random variable Mi by

Mi =
{

1, if there exists j �= i such that |Xi − Xj | ≤ R,

0, otherwise.
(5)

The point process on R
d × {0, 1} defined by

	 =
∑

i

δ(Xi,Mi)

is a marked point process. In general, for measurable maps Mi : N #
Rd → M (i ≥ 1),

the point process on R
d × M defined by

	 =
∑

i

δ(Xi,Mi(	g))

is a stationary marked point process.
Incidentally, for Mi (i ≥ 1) in (5), the point process

	I =
∑

i:Mi=0

δXi

on R
d is called a Matérn type I construction of 	 (see [14]).

Other examples and basic facts for marked point processes are available in [7]
and [8].

2.4 Main theorems

In order to state the main results we introduce the notion of convex averaging nets in
R

d . Let (N ,≤) be a linearly ordered set. A family A = {An}n∈N of bounded Borel
sets in R

d is a convex averaging net if

(i) An is convex for each n ∈ N ,
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(ii) An ⊂ Am for n ≤ m, and

(iii) sup
n∈N

r(An) = ∞, where r(A) = sup{r > 0 : A contains a ball of radius r}.

Given a marked point process 	 and A ∈ B(Rd), we denote the restricted marked
point process 	 on A × M by 	A, i.e., 	A(·) = 	(· ∩ (A × M)). Note that 	A can
be regarded as a random simple marked point set for any bounded A. For any convex
averaging net A = {An}n∈N , a random κ-filtered complex with parameter n ∈ N is
defined by K(	An) = {K(	An, t)}t≥0. For the sake of simplicity, we often denote
the corresponding qth persistence diagram ξq(K(	An)) and qth (r, s)-persistent Betti
number β

r,s
q (K(	An)) by ξq,An and β

r,s
q,An

, respectively.
Now we are in a position to state the main theorem.

Theorem 2.6. Let 	 be a stationary marked point process and suppose its ground
process 	g has all finite moments. Then for any nonnegative integer q, there exists a
Radon measure νq on � such that for any convex averaging net A = {An}n∈N in R

d ,

1

|An|E[ξq,An ] v−→ νq as n → ∞,

where |A| is the d-dimensional Lebesgue measure of A. Furthermore if 	 is ergodic,
then

1

|An|ξq,An

v−→ νq a.s. as n → ∞

Theorem 2.6 can be proved by a general theory of the vague convergence for
Radon measures and the following law of large numbers for persistent Betti numbers.

Theorem 2.7. Let 	 be a stationary marked point process and suppose its ground
process 	g has all finite moments. Then, for any 0 ≤ r ≤ s < ∞ and nonnegative
integer q, there exists a nonnegative number β̄

r,s
q such that for any convex averaging

net A = {An}n∈N in R
d ,

1

|An|E[βr,s
q,An

] → β̄r,s
q as n → ∞.

Furthermore, if 	 is ergodic, then

1

|An|β
r,s
q,An

→ β̄r,s
q a.s. as n → ∞

The proofs of Theorem 2.6 and Theorem 2.7 will be given in the next section.
They are shown in the same way as [12, Theorem 1.5 and Theorem 1.11], in which
such limit theorems for stationary (unmarked) point processes were proved.

3 Proof of Theorems 2.6 and 2.7

The aim of this section is to prove Theorem 2.6 and Theorem 2.7.
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3.1 Convergence of persistent Betti numbers
Let M,h be positive numbers and A ∈ B(Rd). We put

�M = [−M/2,M/2)d ,

A(M) =
⊔

{�M + z : z ∈ MZ
d and (�M + z) ⊂ A},

A
(M) =

⊔
{�M + z : z ∈ MZ

d and (�M + z) ∩ A �= ∅},
and ∂Ah = {x ∈ R

d : d(x, ∂A) ≤ h},
where MZ

d = {Mz : z ∈ Z
d} and d(x, ∂A) = inf

y∈∂A
|x − y|. Fundamental results

treated in this paper for convex averaging nets are summarized in the next proposition.

Proposition 3.1. Let A = {An}n∈N be a convex averaging net in R
d . Then for any

M > 0 and h > 0, as n → ∞,

|A(M)
n |

|An| → 1,
|A(M)

n ) \ A
(M)
n |

|An| → 0, (6)

and
|∂Ah

n|
|An| → 0. (7)

Proposition 3.1 is a special case of [15, Lemma 3.1]. For (6) and (7), see [10,
Lemma 1] and [18, Lemma 2], respectively.

Next we need a version of the multi-dimensional ergodic theorem for stationary
ergodic marked point processes.

Proposition 3.2. Let 	 be a stationary ergodic marked point process and Z ∈ Lp(P◦
	−1) for 1 ≤ p < +∞. If A = {An}n∈N is a convex averaging net, then for each
M > 0

lim
n∈N

1

|An|
∑

z∈MZd∩An

Z(T−z∗	) = 1

Md
E[Z(	)] a.s.

and lim
n∈N

1

|An|
∑

z∈MZd∩A
(M)
n

Z(T−z∗	) = 1

Md
E[Z(	)] a.s.

Proof. Take any M > 0. Applying [15, Theorem 3.7 and Corollary 3.10] to the
probability space (N #

X,B(N #
X),P ◦ 	−1) and the translations {Tz∗}z∈MZd , we have

lim
n∈N

1

|An|
∑

z∈MZd∩An

Z(T−z∗	) = 1

Md
E[Z(	)|	−1I] a.s.

and lim
n∈N

1

|An|
∑

z∈MZd∩A
(M)
n

Z(T−z∗	) = 1

Md
E[Z(	)|	−1I] a.s.,

where I is the invariant σ -field in N #
Rd×M

under the translations {Tz∗}z∈MZd . Rotat-

ing MZ
d if necessary, we may assume that an element of MZ

d is ergodic (see [16,
Theorem 1]). Therefore I is trivial, that is, for every I ∈ I, P ◦ 	−1(I ) = 0 or 1.
This implies that E[Z(	)|	−1I] = E[Z(	)] a.s.
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Let Sq(�, t) be the number of q-simplices in K(�, t) for a simple marked point
set �. The following limit theorems for Sq(	, t) play important roles in the proof of
Theorem 2.7.

Lemma 3.3. Let 	 be a stationary ergodic marked point process and suppose its
ground process 	g has all finite moments. Then for any nonnegative integer q, t ≥ 0,
M > 0, and convex averaging net A = {An}n∈N ,

lim
n∈N

1

|An|Sq(	
A

(M)
n

, t) = lim
n∈N

1

|An|Sq(	
A

(M)
n

, t) = lim
n∈N

1

|An|Sq(	An, t) a.s.

Proof. The proof is similar to that of [20, Lemma 3.2]. Consider the function defined
by

h
(M)
q,t (	) = 1

q + 1

∑
x∈	g∩�M

#{q-simplices in K(	, t) containing x}.

We recall that the conditions (K1), (K2), and diam σg ≤ρ(t) for every σg ∈ K(	An, t).
Hence we obtain∑
z∈MZd∩(An\∂A

ρ(t)+2
√

dM
n )

h
(M)
q,t (T−z∗	) ≤ Sq(	

A
(M)
n

, t) ≤ Sq(	An, t)

≤ Sq(	
A

(M)
n

, t)≤
∑

z∈MZd∩(An∪∂A

√
dM

n )

h
(M)
q,t (T−z∗	).

Since the ground process 	g of 	 has all finite moments, we have E[h(M)
q,t (	)] ≤

E[	g(�M ∪ ∂�
ρ(t)
M )q+1] < +∞. If we notice the fact that {An \ ∂A

ρ(t)+2
√

dM
n }n∈N

is also a convex averaging net, we see from Proposition 3.1 and Proposition 3.2 that

1

|An|
∑

z∈MZd∩(An\∂A
ρ(t)+2

√
dM

n )

h
(M)
q,t (T−z∗	)

= |An \ ∂A
ρ(t)+2

√
dM

n |
|An| · 1

|An \ ∂A
ρ(t)+2

√
dM

n |
∑

z∈MZd∩(An\∂A
ρ(t)+2

√
dM

n )

h
(M)
q,t (T−z∗	)

→ 1

Md
E[h(M)

q,t (	)] as n → ∞ a.s.

We can similarly show that

1

|An|
∑

z∈MZd∩(An∪∂A

√
dM

n )

h
(M)
q,t (T−z∗	) → 1

Md
E[h(M)

q,t (	)] as n → ∞ a.s.

Therefore we reach the desired result.

Now we state a basic estimate on the persistent Betti numbers for nested filtered
complexes K

(1) ⊂ K
(2). The proof of the following lemma is given in [12, Lemma

2.11].
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Lemma 3.4. Let K(1) = {K(1)
t }t≥0 and K

(2) = {K(2)
t }t≥0 be filtered complexes with

K
(1)
t ⊂ K

(2)
t for t ≥ 0. Then

|βr,s
q (K(1)) − βr,s

q (K(2))| ≤
∑

j=q,q+1

#K
(2)
s,j \ K

(1)
s,j + #{σ ∈ K

(1)
s,j \ K

(1)
r,j : t (2)

σ ≤ r},

where K
(i)
s,j is the set of j -simplices in K

(i)
s , and t

(i)
σ is the birth time of σ in K

(i),

i = 1, 2. In particular, if t
(1)
σ = t

(2)
σ holds for any simplex σ in K

(1), then

|βr,s
q (K(1)) − βr,s

q (K(2))| ≤
∑

j=q,q+1

#K
(2)
s,j \ K

(1)
s,j .

Now we give the proof of Theorem 2.7.
Proof of Theorem 2.7. We first note that it can be proved that there exist Cq,t ≥ 0

and β̄
r,s
q ≥ 0 such that

E[Sq(	A, t)] ≤ Cq,t |A| for bounded A ∈ B(Rd) (8)

and

lim
M→∞

1

Md
E[βr,s

q,�M
] = β̄r,s

q (9)

in the same way as in [12, Theorem 1.11]. Take 0 ≤ r ≤ s < ∞ and a nonnegative
integer q and fix them. The set A

(M)
n is decomposed into rectangles

A(M)
n =

⊔
z∈MZd∩A

(M)
n

(�M + z).

We define a new filtered complex K
◦(	

A
(M)
n

) by

K
◦(	

A
(M)
n

) =
⊔

z∈MZd∩A
(M)
n

K(	�M+z).

From the second assertion in Lemma 3.4, we have

|βr,s
q,An

− βr,s
q (K◦(	

A
(M)
n

))|

≤
∑

j=q,q+1

⎛
⎜⎝ ∑

z∈MZd∩A
(M)
n

Sj (	∂�
2ρ(s)
M +z

, s) + Sj (	An\A(M)
n

, s)

⎞
⎟⎠ . (10)

Since 	 is stationary, κ satisfies the condition (K2), and it is easy to see that |A(M)
n | =

#{MZ
d ∩ A

(M)
n } · Md , we have

E[βr,s
q (K◦(	

A
(M)
n

))] = E

⎡
⎢⎣ ∑

z∈MZd∩A
(M)
n

β
r,s
q,�M+z

⎤
⎥⎦ = #{MZ

d ∩ A(M)
n } · E[βr,s

q,�M
]

= |A(M)
n | · 1

Md
E[βr,s

q,�M
].

(11)
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In addition, we have

E

⎡
⎢⎣ ∑

z∈MZd∩A
(M)
n

Sj (	∂�
2ρ(s)
M +z

, s)

⎤
⎥⎦ = #{MZ

d ∩ A(M)
n } · E[Sj (	∂�

2ρ(s)
M

, s)]

≤ |A(M)
n | · Cj,s |∂�

2ρ(s)
M |

Md

(12)

and
E[Sj (	An\A(M)

n
, s)] ≤ Cj,s |An \ A(M)

n | (13)

from (8). Take ε > 0. We can find M > 0 such that

∣∣∣∣ 1

Md
E[βr,s

q,�M
] − β̄r,s

q

∣∣∣∣ < ε,
∑

j=q,q+1

Cj,s |∂�
2ρ(s)
M |

Md
< ε. (14)

By taking expectation on both sides of the inequality (10), we see that the estimates
(11), (12), and (13) yield that∣∣∣∣ 1

|An|E[βr,s
q,An

] − β̄r,s
q

∣∣∣∣
≤ 1

|An|E
[∣∣∣βr,s

q,An
− βr,s

q (K◦(	
A

(M)
n

))

∣∣∣] + |A(M)
n |

|An|
∣∣∣∣ 1

Md
E[βr,s

q,�M
] − β̄r,s

q

∣∣∣∣
+ β̄r,s

q

∣∣∣∣∣ |A
(M)
n |

|An| − 1

∣∣∣∣∣
≤ |A(M)

n |
|An| ε +

∑
j=q,q+1

Cj,s

|An \ A
(M)
n |

|An| + |A(M)
n |

|An| ε + β̄r,s
q

∣∣∣∣∣ |A
(M)
n |

|An| − 1

∣∣∣∣∣ .
Therefore we conclude that

lim sup
n∈N

∣∣∣∣ 1

|An|E[βr,s
q,An

] − β̄r,s
q

∣∣∣∣ ≤ 2ε.

This implies the first assertion.
In order to prove the second assertion, we assume that 	 is ergodic. By virtue of

the multi-dimensional ergodic theorem mentioned in Proposition 3.2, we see that

1

|An|β
r,s
q (K◦(	

A
(M)
n

)) = 1

|An|
∑

z∈MZd∩A
(M)
n

β
r,s
q,�M+z

= 1

|An|
∑

z∈MZd∩A
(M)
n

βr,s
q (K((T−z∗	))�M

) → 1

Md
E[βr,s

q,�M
],

(15)
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and

1

|An|
∑

z∈MZd∩A
(M)
n

Sj (	∂�
2ρ(s)
M +z

, s) = 1

|An|
∑

z∈MZd∩A
(M)
n

Sj ((T−z∗	)
∂�

2ρ(s)
M

, s)

→ 1

Md
E[Sj (	∂�

2ρ(s)
M

, s)]
(16)

a.s. as n → ∞ for any M > 0. If we notice the fact that Sj (	A, s) + Sj (	B, s) ≤
Sj (	A∪B, s) holds for disjoint bounded A,B ∈ B(Rd), we see from Lemma 3.3 that

1

|An|Sj (	An\A(M)
n

, s) ≤
∣∣∣∣ 1

|An|Sj (	An, s) − 1

|An|Sj (	A
(M)
n

, s)

∣∣∣∣ → 0 (17)

a.s. as n → ∞ for any M > 0. Hence we can find �0 ∈ F with P(�0) = 1 such that
for any ω ∈ �0 and positive integer M , the convergences (15), (16), and (17) hold as
n → ∞. Take any ω ∈ �0 and ε > 0. If we choose a positive integer M so that the
inequalities (14) hold, we have∣∣∣∣ 1

|An|β
r,s
q,An

(ω) − β̄r,s
q

∣∣∣∣
≤ 1

|An|
∣∣∣βr,s

q,An
(ω) − βr,s

q (K◦(	
A

(M)
n

(ω)))

∣∣∣
+

∣∣∣∣ 1

|An|β
r,s
q (K◦(	

A
(M)
n

(ω))) − 1

Md
E[βr,s

q,�M
]
∣∣∣∣ +

∣∣∣∣ 1

Md
E[βr,s

q,�M
] − β̄r,s

q

∣∣∣∣
≤

∑
j=q,q+1

⎛
⎜⎝ 1

|An|
∑

z∈MZd∩A
(M)
n

Sj (	∂�
2ρ(s)
M +z

(ω), s) + 1

|An|Sj (	An\A(M)
n

(ω), s)

⎞
⎟⎠

+
∣∣∣∣ 1

|An|β
r,s
q (K◦(	

A
(M)
n

(ω))) − 1

Md
E[βr,s

q,�M
]
∣∣∣∣ + ε.

Consequently, we obtain

lim sup
n∈N

∣∣∣∣ 1

|An|β
r,s
q,An

(ω) − β̄r,s
q

∣∣∣∣ ≤
∑

j=q,q+1

1

Md
E[Sj (	∂�

2ρ(s)
M

, s)] + ε

≤
∑

j=q,q+1

Cj,s |∂�
2ρ(s)
M |

Md
+ ε

≤ 2ε,

which implies that the second assertion is valid. The proof of Theorem 2.7 is now
complete.

3.2 Convergence of persistence diagrams

In this section we prove Theorem 2.6. To this end, we make use of similar arguments
which can be found in the proof of the same kind of limit theorem for persistence
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diagrams built over stationary point process (Theorem 1.5 in [12]). Let X be a locally
compact Hausdorff space with countable base and C the ring of all relatively com-
pact sets in X. A class C′ ⊂ C is called a convergence-determining class (for vague
convergence) if for any μ ∈ M#

X and any sequence {μn} ⊂ M#
X, the condition

μn(A) → μ(A) as n → ∞ for all A ∈ C′ ∩ Cμ

implies the vague convergence μn
v−→ μ, where Cμ is the class of relatively compact

continuity sets of μ, i.e., Cμ = {B ∈ C : μ(∂B) = 0}. A class C′
μ is called a

convergence-determining class for μ ∈ M#
X if for any sequence {μn} ⊂ M#

X, the
condition

μn(A) → μ(A) as n → ∞ for all A ∈ C′
μ

implies the vague convergence μn
v−→ μ. We note that a class C′ is a convergence-

determining class if and only if for any μ ∈ M#
X, C′∩Cμ is a convergence-determining

class for μ. A convergence-determining class C′ has the finite covering property if for
any B ∈ C, B is covered by a finite union of C′-sets. The next lemma can be proved
in the same way as Proposition 3.4 in [12].

Lemma 3.5. Let X be a locally compact Hausdorff space with countable base and C′
a convergence-determining class with finite covering property. Suppose that for every
μ ∈ M#

X, C′ contains a countable convergence-determining class for μ. Let {ξn} be
a net of random measures on X satisfying the following:

(i) For every n, E[ξn] ∈ M#
X.

(ii) For every A ∈ C′, there exists cA ≥ 0 such that E[ξn(A)] → cA as n → ∞.

Then there exists a unique measure μ ∈ M#
X such that E[ξn] v−→ μ as n → ∞ and

μ(A) = cA. Furthermore, if ξ(A) → cA almost surely as n → ∞ for any A ∈ C′,
then ξn

v−→ μ almost surely as n → ∞.

An example of convergence-determining classes satisfying the conditions in
Lemma 3.5 is the following.

Lemma 3.6 (Corollary A.3 in [12]). The class

C′ = {(r1, r2] × (s1, s2], [0, r2] × (s1, s2] ⊂ � : 0 ≤ r1 ≤ r2 ≤ s1 ≤ s2 ≤ ∞}
is a convergence-determining class which satisfies the conditions in Lemma 3.5.

We finish with the proof of Theorem 2.6.

Proof of Theorem 2.6. Suppose that R is a rectangle of the form (r1, r2] × (s1, s2]
or [0, r1] × (s1, s2] in �. By virtue of Lemma 3.5 and Lemma 3.6, we have only to
show that there exists cR ≥ 0 such that for any convex averaging net A = {An}n∈N ,

1

|An|E[ξq,An(R)] → cR as n → ∞

and if 	 is ergodic, then

1

|An|ξq,An(R) → cR a.s. as n → ∞
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It follows immediately from Theorem 2.7 and the fact that ξq,An(R) is calculated as

ξq,An(R) = ξq,An([0, r2] × (s1,∞]) − ξq,An([0, r2] × (s2,∞])
+ ξq,An([0, r1] × (s2,∞]) − ξq,An([0, r1] × (s1,∞])

= β
r2,s1
q,An

− β
r2,s2
q,An

+ β
r1,s2
q,An

− β
r1,s1
q,An

for R = (r1, r2] × (s1, s2] and

ξq,An(R) = β
r1,s1
q,An

− β
r1,s2
q,An

for R = [0, r1] × (s1, s2]. Thus we arrive at the desired result.
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