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Abstract The need to model a Markov renewal on-off process with multiple off-states arise in
many applications such as economics, physics, and engineering. Characterization of the occu-
pation time of one specific off-state marginally or two off-states jointly is crucial to understand
such processes. The exact marginal and joint distributions of the off-state occupation times are
derived. The theoretical results are confirmed numerically in a simulation study. A special case
when all holding times have Lévy distribution is considered for the possibility of simplification
of the formulas.
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1 Introduction

Markov renewal on-off processes, also known as alternating renewal processes or
telegraph processes, arise in applications in a variety of fields. Classic alternating
renewal processes were first studied in [2, 12] and [11] with applications to animal
ethology, maintenance of electronic equipment, and communication engineering, re-
spectively. Recently, the telegraph process and their variations are employed in vari-
ous fields of applications such as pricing in mathematical finance and insurance (see,
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e.g., [9, 6–8, 16]), modelling the propagation of a damped wave in physics (see, e.g.,
[4, 10]), and inventory and storage models in engineering [18]. In certain applications,
the off-state of an on-off process has multiple types, which raises new questions about
its properties such as the distribution of the occupation time in specific off-state type
marginally or multiple off-state types jointly. Our interest in on-off processes with
multiple off-states is motivated by our recent work in animal movement modeling,
where a predator can have different nonmoving states such as resting or handling a
kill [15, 14]. The occupation time in the handling state is important for ecologists to
understand the behavior of predators.

To fix ideas, consider a server that has two different types of failures, each re-
quiring a different time and cost to repair. One basic question is: if the server is on
at time 0, what is the distribution of the time spent on fixing the type one failures by
time t > 0? We model the server state process with the following Markov renewal
process. The process starts in state 0 (the on-state) and spends there a random holding
time according to a given absolutely continuous distribution. When the first holding
time is over, we flip an asymmetric coin to decide which type of failure (off-state 1 or
off-state 2) comes next. The holding times in the off-states are also absolutely contin-
uous, generally with different distributions. Once the second holding time is over the
process returns to the on-state (state 0) and then we repeat the construction process.

The occupation time of a specific type of the off-state is our focus. For the on-
state, the distribution of the occupation time is known from the results on the telegraph
process [13, 5, 17, 19]. Indeed, if we collapse the two off-states into one, then the re-
sulting process is a regular on-off process (or alternating renewal process) whose
off-state holding time distribution is a mixture of the two original off-state holding
time distributions. If the different types of repair require different resources, how-
ever, we want to know the distribution of the occupation time in a particular type of
off-state. For that task, the results on classical telegraph processes are not directly
applicable. Moreover, assume that the cost for being in an off-state is proportional
to its occupation time and different for different off-states. If one wants to know the
distribution of the total cost for repairs of all kinds by a fixed time, then we need the
joint distribution of the two types of off-state occupation times.

Our problem is related to but different from some recent works. An extension of
the telegraph process to a process with three states is studied in [1], where within a
renewal cycle all three states are visited in a given deterministic order. In our case,
however, we have an on-off process with two off-states; only two states (the on-state
and an off-state) are visited in each renewal cycle, but the off-states is chosen ran-
domly. Another related work is [3], where there are two states, but at each random
epoch, the new state is determined by the outcome of a random trial, and, as a result,
the process can stay in the same state.

The key idea to study the occupation time of a specific off-state is to exploit a cer-
tain periodicity of our Markov renewal process. In fact, when analyzing any Markov
renewal process, it is always convenient to do the conditioning on returning to a cer-
tain state. For the on-off process with two off-states, state 0 has an additional nice
property. The numbers of steps between two consecutive visits of state 0 is not ran-
dom, and it is always equal to 2. We derive the marginal distribution of the occupation
time of a specific off-state first, and then we modify our derivation to obtain the joint
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distribution of the two off-state occupation times. Of course, one can get the marginal
distribution by integrating the joint one. Our approach, however, is easier to follow.

This article is arranged as follows. In Section 2, the formal construction of on-off
process with two off-states and the definition of its occupation time are provided. The
marginal and joint distribution of off-states occupation time are derived in Section 3
and 4. In Section 5, a special case with holding time modeled by Lévy distribution
are discussed alongside with an application of server maintenance cost. Additional
technical discussion is provided in Section 6.

2 Algorithmic construction of on-off process with two off-states

Suppose that we are given the following collection of independent sequences of non-
negative random variables:

1. {Uk}k≥1 are independent identically distributed (iid) positive random variables
with absolutely continuous cumulative distribution function (cdf) FU and prob-
ability density function (pdf) fU (these random variables will be used as the
holding times when the server is up, state 0);

2. {Sk}k≥1 are iid positive random variables with absolutely continuous cdf FS

and pdf fS (holding times when the server is down for short repairs, state 1);

3. {Lk}k≥1 are iid positive random variables with absolutely continuous cdf FL

and pdf fL (holding times when the server is down for long repairs, state 2);

4. {ξk}k≥1 are iid random variables with Pr(ξk = 1) = p1 > 0 and Pr(ξk = 0) =
p2 = 1 − p1.

Now, we present our construction of the on-off process with two off-states, {X(t),

t ≥ 0}, with state-space {0, 1, 2}.
1. Initialize with X(0) = 0 and T0 = 0.

2. For cycles i = 1, 2, . . .:

(a) Let T2i−1 = Ui + T2i−2, and X(t) = 0 for all t ∈ [T2i−2, T2i−1).

(b) If ξi = 1 then T2i = T2i−1 + Si , and X(t) = 1 for all t ∈ [T2i−1, T2i );
otherwise, T2i = T2i−1 + Li , and X(t) = 2 for all t ∈ [T2i−1, T2i ).

That is, the process starts in state 0 and stays in this state U1 time units. Then
it switches to state 1 or 2, which is decided by random variable ξ1. Depending on
the value of ξ1, it stays in state 1 or 2 for S1 or L1 time units, respectively. Then
the process switches back to state 0. The first renewal cycle is finished, and then the
procedure is repeated again. A realization of the on-off process is given in Figure 1.

Note also that Tn → ∞ with probability 1, because it is bounded from below by a
sum of n iid positive random variables. This means that process X(t) is well-defined
for all t > 0.
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Fig. 1. A realization (first three circles) of on-off process with ξ1 = 1, ξ2 = 0, ξ3 = 0

If all the holding times are exponentially distributed (with rates λi , i = 0, 1, 2),
then X(t) is a continuous time Markov chain with the state space {0, 1, 2} and initial
distribution Pr(X(0) = 0) = 1. Its transition rate matrix is given by⎛

⎝−λ0 λ0 p1 λ0 p2
λ1 −λ1 0
λ2 0 −λ2

⎞
⎠

where again p1, p2, λ0, λ1, λ2 > 0 and p1 + p2 = 1.
The occupation times in state 0, state 1, and state 2 are, respectively,

U(t) =
∫ t

0
1{X(s)=0}ds,

S(t) =
∫ t

0
1{X(s)=1}ds,

L(t) =
∫ t

0
1{X(s)=2}ds.

The corresponding defective marginal densities of S(t) and L(t) are denoted as

pSj (s, t) = Pr(S(t) ∈ ds,X(t) = j)/ds,

pLj (s, t) = Pr(L(t) ∈ ds,X(t) = j)/ds,

where t ≥ 0, 0 < s < t , j = 0, 1, 2. The defective joint two-dimensional density of
S(t) and L(t) for u, v > 0, u + v < t is denoted as

pSLj (u, v, t) = 1

dudv
Pr(S(t) ∈ du,L(t) ∈ dv,X(t) = j),

where j = 0, 1, 2. The densities are defective in the following sense: since both
occupation times S(t) and L(t) have an atom at 0, all three sums

2∑
j=0

∫ t

0
pSj (s, t)ds = Pr(S(t) > 0) = 1 − Pr(S(t) = 0),
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2∑
j=0

∫ t

0
pLj (s, t)ds = Pr(L(t) > 0) = 1 − Pr(L(t) = 0),

and

2∑
j=0

∫∫
u,v>0, u+v<t

pSLj (u, v, t)dudv = Pr(S(t) > 0, L(t) > 0)

=1 − Pr(S(t) = 0 or L(t) = 0)

are less than 1.

3 Marginal distribution of occupation time of an off-state

To derive the distribution of occupation time we will need some auxiliary random
variables. Let N(t) be the number of cycles (or returns to the on-state) by time t .
Formally, for n ≥ 0,

N(t) = n iff T2n ≤ t < T2n+2. (1)

Finally, let Dk = ξkSk + (1 − ξk)Lk , k ≥ 1. These random variables are associated
with the off-state holding time of the regular on-off process when two off-states are
combined.

Our formulas include convolutions of different distributions. We will use the fol-
lowing notation. If we are given a cdf G(·) and its pdf g(·), then G(n)(·) denotes
n-fold convolution of G(·), and g(n)(·) denotes the n-fold convolution of g(·). If we
are given two cdfs G(·) and H(·) with pdfs g(·) and h(·), then G ∗ H(·) denotes the
convolution of cdfs G(·) and H(·), and g ∗ h(·) denotes the convolution of pdfs g(·)
and h(·).

We also use the following conventions. Any summation over the empty set is 0.
Zero-fold convolution G(0)(·) is the cdf of a random variable that is equal to 0 with
probability 1. Finally, g(k) ∗ h(0)(·) = g(k)(·) for any k ≥ 1.

Theorem 1. Let t ≥ 0 and 0 < s < t . Then

Pr(S(t) = 0, X(t) = 0)

=
∞∑

n=0

[
F

(n)
U ∗ F

(n)
L (t) − F

(n+1)
U ∗ F

(n)
L (t)

]
pn

2 ,

Pr(S(t) = 0, X(t) = 1) = 0,

Pr(S(t) = 0, X(t) = 2)

=
∞∑

n=0

[
F

(n+1)
U ∗ F

(n)
L (t) − F

(n+1)
U ∗ F

(n+1)
L (t)

]
pn+1

2 ,

and

pS0(s, t) =
∞∑

n=1

n∑
k=1

(
n

k

)
pk

1pn−k
2 f

(k)
S (s)



418 C. Hu et al.

×
[
F

(n)
U ∗ F

(n−k)
L (t − s) − F

(n+1)
U ∗ F

(n−k)
L (t − s)

]
,

pS1(s, t) =
∞∑

n=0

n∑
k=0

(
n

k

)
pk+1

1 pn−k
2 f

(n+1)
U ∗ f

(n−k)
L (t − s)

×
[
F

(k)
S (s) − F

(k+1)
S (s)

]
,

pS2(s, t) =
∞∑

n=1

n∑
k=1

(
n

k

)
pk

1pn−k+1
2 f

(k)
S (s)

×
[
F

(n+1)
U ∗ F

(n−k)
L (t − s) − F

(n+1)
U ∗ F

(n−k+1)
L (t − s)

]
.

Proof. Recall that {ξk}k≥1 are independent as defined in Section 2. First, note the
distribution of S(t) has an atom. Indeed, if U1 > t or all the failures that occur before
t are of the second type, then S(t) = 0. More specifically, by conditioning on the
number of returns to the on-state, N(t), we obtain that

Pr(S(t) = 0, X(t) = 0)

=
∞∑

n=0

Pr (S(t) = 0, X(t) = 0, N(t) = n)

= Pr(U1 > t) +
∞∑

n=1

Pr

⎛
⎝ n∑

j=1

(Uj + Lj ) ≤ t,

n∑
j=1

(Uj + Lj ) + Un+1 > t,

n∑
j=1

ξj = 0

⎞
⎠

= Pr(U1 > t) +
∞∑

n=1

Pr

⎛
⎝ n∑

j=1

(Uj + Lj ) ≤ t,

n∑
j=1

(Uj + Lj ) + Un+1 > t

⎞
⎠ pn

2

= Pr(U1 > t) +
∞∑

n=1

⎡
⎣Pr

⎛
⎝ n∑

j=1

Uj +
n∑

j=1

Lj ≤ t

⎞
⎠

− Pr

⎛
⎝n+1∑

j=1

Uj +
n∑

j=1

Lj ≤ t

⎞
⎠

⎤
⎦ pn

2

= (1 − FU(t))

+
∞∑

n=1

[
F

(n)
U ∗ F

(n)
L (t) − F

(n+1)
U ∗ F

(n)
L (t)

]
pn

2
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=
∞∑

n=0

[
F

(n)
U ∗ F

(n)
L (t) − F

(n+1)
U ∗ F

(n)
L (t)

]
pn

2 .

Next, again by conditioning on N(t), we get that, for 0 < s < t ,

Pr(S(t) ∈ ds,X(t) = 0)

=
∞∑

n=1

Pr (S(t) ∈ ds,X(t) = 0, N(t) = n) .

Note that the summation starts from 1, because X(t) = 0 and N(t) = 0 implies that
U1 > t , and, therefore, S(t) = 0.

The next step is to fix the number of switches to failures of type 1. Since the total
numbers of switches is n and there is at least one failure of type 1, we have

Pr(S(t) ∈ ds,X(t) = 0, N(t) = n)

=
n∑

k=1

Pr

⎛
⎝S(t) ∈ ds,X(t) = 0, N(t) = n,

n∑
j=1

ξj = k

⎞
⎠ .

Because

X(t) = 0,N(t) = n

iff
n∑

j=1

(Uj + Dj) ≤ t,

n∑
j=1

(Uj + Dj) + Un+1 > t,

and it really does not matter during which cycles the switches to failures of type 1
occur, we find that

Pr
(
S(t) ∈ ds,X(t) = 0, N(t) = n,

n∑
j=1

ξj = k
)

= Pr

⎛
⎝S(t) ∈ ds,

n∑
j=1

(Uj + Dj) ≤ t,

n∑
j=1

(Uj + Dj) + Un+1 > t,

n∑
j=1

ξj = k

⎞
⎠

=
(

n

k

)
Pr

⎛
⎝S(t) ∈ ds,

n∑
j=1

(Uj + Dj) ≤ t,

n∑
j=1

(Uj + Dj) + Un+1 > t,

k∑
j=1

ξj = k,

n∑
j=k+1

ξj = 0

⎞
⎠ .
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Next, observe that in this case S(t) = ∑k
j=1 Sj . Using independence between {ξk}k≥1

and the holding time sequences we have

Pr
(
S(t) ∈ ds,X(t) = 0, N(t) = 0,

n∑
j=1

ξj = k
)

=
(

n

k

)
pk

1p
n−k
2

× Pr

⎛
⎝ k∑

j=1

Sj ∈ ds,

n∑
j=1

Uj +
k∑

j=1

Sj +
n∑

j=k+1

Lj ≤ t,

n+1∑
j=1

Uj +
k∑

j=1

Sj +
n∑

j=k+1

Lj > t

⎞
⎠

=
(

n

k

)
pk

1p
n−k
2

× Pr

⎛
⎝ k∑

j=1

Sj ∈ ds,

n∑
j=1

Uj +
n∑

j=k+1

Lj ≤ t − s,

n+1∑
j=1

Uj +
n∑

j=k+1

Lj > t − s

⎞
⎠ .

Finally, independence of holding time sequences gives us that

Pr

⎛
⎝ k∑

j=1

Sj ∈ ds,

n∑
j=1

Uj +
n∑

j=k+1

Lj ≤ t − s,

n+1∑
j=1

Uj +
n∑

j=k+1

Lj > t − s

⎞
⎠

= Pr

⎛
⎝ k∑

j=1

Sj ∈ ds

⎞
⎠

⎡
⎣Pr

⎛
⎝ n∑

j=1

Uj +
n∑

j=k+1

Lj ≤ t − s

⎞
⎠

− Pr

⎛
⎝n+1∑

j=1

Uj +
n∑

j=k+1

Lj ≤ t − s

⎞
⎠

⎤
⎦

= f
(k)
S (s)

×
[
F

(n)
U ∗ F

(n−k)
L (t − s) − F

(n+1)
U ∗ F

(n−k)
L (t − s)

]
ds.

Now let us consider the case when X(t) = 1 (at time t the server is down for
a short repair). One difference is that there is no atom in this case. As before, for
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0 < s < t we have

Pr(S(t) ∈ ds,X(t) = 1)

=
∞∑

n=0

Pr (S(t) ∈ ds,X(t) = 1, N(t) = n)

=
∞∑

n=0

n∑
k=0

Pr

⎛
⎝S(t) ∈ ds,X(t) = 1, N(t) = n,

n∑
j=1

ξj = k, ξn+1 = 1

⎞
⎠

=
∞∑

n=0

n∑
k=0

(
n

k

)
Pr

⎛
⎝S(t) ∈ ds,X(t) = 1, N(t) = n,

k∑
j=1

ξj = k,

n∑
j=k+1

ξj = 0, ξn+1 = 1

⎞
⎠ .

Note that event

{
S(t) ∈ ds,X(t) = 1, N(t) = n,

k∑
j=1

ξj = k,

n∑
j=k+1

ξj = 0, ξn+1 = 1
}

can be rewritten as

{
S(t) ∈ ds,

n+1∑
j=1

Uj +
k∑

j=1

Sj +
n∑

j=k+1

Lj ≤ t,

n+1∑
j=1

Uj +
k∑

j=1

Sj +
n∑

j=k+1

Lj + Sn+1 > t,

k∑
j=1

ξj = k,

n∑
j=k+1

ξj = 0, ξn+1 = 1
}
.

Since S(t) = t − ∑n+1
j=1 Uj − ∑n

j=k+1 Lj , we finally obtain

Pr(S(t) ∈ ds,X(t) = 1)

=
∞∑

n=0

n∑
k=0

(
n

k

)
pk+1

1 pn−k
2 Pr

⎛
⎝n+1∑

j=1

Uj +
n∑

j=k+1

Lj ∈ t − ds,
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k∑
j=1

Sj ≤ s,

k∑
j=1

Sj + Sn+1 > s

⎞
⎠

=
∞∑

n=0

n∑
k=0

(
n

k

)
pk+1

1 pn−k
2 f

(n+1)
U ∗ f

(n−k)
L (t − s)

×
[
F

(k)
S (s) − F

(k+1)
S (s)

]
ds.

The other formulas can be derived in a similar way.

Theorem 1 gives us the distribution of occupation time in state 1. Since both off-
states enter our story in a completely symmetric way, the formulas for the occupation
time in state 2 can be obtained by interchanging state 1 and 2 in Theorem 1.

4 Joint distribution of off-state occupation times

As mentioned in the introduction, if we are interested in the distribution of the total
cost, then we need the joint distribution of off-state occupation times. More specif-
ically, assume that the total cost C(t) is a linear function of occupation times, that
is,

C(t) = α0U(t) + α1S(t) + α2L(t),

where α0, α1, and α2 are positive constants representing the maintenance cost per
unit of time for state 0, 1, and 2, respctively. Then the distribution of C(t) is fully
determined by the joint distribution of S(t) and L(t). Note that we do not need the
joint distribution of all three occupation times, because U(t) = t − S(t) − L(t).

Let us also note here that the cost function process {C(t), t ≥ 0} is similar to
what is know in the literature as integrated telegraph process. Indeed, C(t) is a lin-
early increasing process. It goes up with velocity α0, if X(t) is in state 0. When the
process X(t) switches to one of two off-states, it goes up either with velocity α0 or
α2 (depending on an off-state).

Since both S(t) and L(t) have atoms at 0, for every value of X(t) we have four
cases: (1) both occupation times are 0; (2) S(t) = 0, L(t) > 0; (3) S(t) > 0,
L(t) = 0; and (4) both S(t) and L(t) are strictly greater than 0. In total, we have
12 formulas. Some of them are trivial. For instance, event {S(t) = 0, X(t) = 1} has
probability 0, therefore, the corresponding defective one-dimensional density of L(t)

is also 0. Moreover, since there is a certain symmetry between S(t) and L(t), some
formulas can be found by interchanging state 1 and 2. That is why in the following
theorem we have only 5 formulas.

Theorem 2. Let u, v > 0 and u + v < t . Then

Pr(S(t) = 0, L(t) = 0, X(t) = 0) = 1 − FU(t),

Pr(S(t) = 0, L(t) ∈ dv,X(t) = 0)/dv

=
∞∑

n=1

f n
L(v)

[
F

(n)
U (t − v) − F

(n+1)
U (t − v)

]
pn

2 ,
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Pr(S(t) ∈ du,L(t) = 0, X(t) = 1)/du

=
∞∑

n=0

pn+1
1 f

(n+1)
U (t − u)

[
F

(n)
S (u) − F

(n+1)
S (u)

]
,

and

pSL0(u, v, t) =
∞∑

n=1

n−1∑
k=1

(
n

k

)
pk

1pn−k
2 f

(k)
S (u)f

(n−k)
L (v)

×
[
F

(n)
U (t − u − v) − F

(n+1)
U (t − u − v)

]
,

pSL1(u, v, t) =
∞∑

n=0

n−1∑
k=0

(
n

k

)
pk+1

1 pn−k
2

× f
(n+1)
U (t − u − v)f

(n−k)
L (v)

[
F

(k)
S (u) − F

(k+1)
S (u)

]
.

Proof. We will only derive the formula for pSL1(u, v, t). The remaining formulas
can be obtained by similar modifications of the proof of Theorem 1.

As before, we start with partitioning with respect to events {N(t) = n}. More
specifically, for u, v > 0 and 0 < u + v < t we have

pSL1(u, v, t)dudv

=
∞∑

n=0

Pr (S(t) ∈ du,L(t) ∈ dv,X(t) = 1, N(t) = n)

=
∞∑

n=0

n−1∑
k=0

Pr

⎛
⎝S(t) ∈ du,L(t) ∈ dv,X(t) = 1,

N(t) = n,

n∑
j=1

ξj = k, ξn+1 = 1

⎞
⎠

=
∞∑

n=0

n−1∑
k=0

(
n

k

)
Pr

⎛
⎝S(t) ∈ du,L(t) ∈ dv,X(t) = 1,

N(t) = n,

k∑
j=1

ξj = k,

n∑
j=k+1

ξj = 0, ξn+1 = 1

⎞
⎠ .

Note that now the upper limit of the inner summation is n − 1, because
∑n

j=1 ξj = n

and ξn+1 = 1 implies that L(t) = 0.
Next, observe that event{

S(t) ∈ du,L(t) ∈ dv,X(t) = 1, N(t) = n,

k∑
j=1

ξj = k,

n∑
j=k+1

ξj = 0, ξn+1 = 1
}
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can be rewritten as

{
S(t) ∈ du,L(t) ∈ dv,

n+1∑
j=1

Uj +
k∑

j=1

Sj +
n∑

j=k+1

Lj ≤ t,

n+1∑
j=1

Uj +
k∑

j=1

Sj +
n∑

j=k+1

Lj + Sn+1 > t,

k∑
j=1

ξj = k,

n∑
j=k+1

ξj = 0, ξn+1 = 1
}
.

Finally, taking into account that in the case when {X(t) = 1} occupation time S(t) =
t − ∑n+1

j=1 Uj − ∑n
j=k+1 Lj and occupation time L(t) = ∑n

j=k+1 Lj , we get that

pSL1(u, v, t)dudv =
∞∑

n=0

n−1∑
k=0

(
n

k

)
pk+1

1 pn−k
2

× Pr

⎛
⎝n+1∑

j=1

Uj ∈ t − du − dv,

n∑
j=k+1

Lj ∈ dv,

k∑
j=1

Sj ≤ u,

k∑
j=1

Sj + Sn+1 > u

⎞
⎠

=
∞∑

n=0

n−1∑
k=0

(
n

k

)
pk+1

1 pn−k
2 f

(n+1)
U (t − u − v)f

(n−k)
L (v)

×
[
F

(k)
S (u) − F

(k+1)
S (u)

]
dudv.

One can verify now that, for instance,

pS1(u, t) =
∞∑

n=0

pn+1
1 f

(n+1)
U (t − u)

[
F

(n)
S (u) − F

(n+1)
S (u)

]

+
∫ t−u

0
pSL1(u, v, t)dv.

Using symmetry between S(t) and L(t), we also can get that

pSL2(u, v, t) =
∞∑

n=0

n−1∑
k=0

(
n

k

)
pk+1

2 pn−k
1

× f
(n+1)
U (t − u − v)f

(n−k)
S (u)

[
F

(k)
L (v) − F

(k+1)
L (v)

]
.

Remark 1. Theorem 1 and Theorem 2 can be generalized to the multiple off-states
case. We give an example for three off-states here. Define iid random variables
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{Mk}k≥1 with cumulative distribution FM and probability density function fM , as
the holding times for the 3rd off-state (medium repair). Then, {ξk}k≥1 will change to
iid random variables with Pr(ξk = S) = p1, Pr(ξk = L) = p2, Pr(ξk = M) = p3,
and p1 + p2 + p3 = 1. Accordingly, the occupation time in the 3rd off-state is
M(t) = ∫ t

0 1{X(s) = 3}ds. By the same technique, we can get the marginal and joint
distribution of the occupation times. The only difference is that binomial probabilities
are replaced with multinomial ones. For example,

pS0(s, t) = Pr(S(t) ∈ ds,X(t) = 0)/ds

=
∞∑

n=1

n∑
k=1

n−k∑
k∗=0

(
n

k

)(
n − k

k∗

)
pk

1p
k∗
2 pn−k−k∗

3 f
(k)
S (s)

×
[
F

(n)
U ∗ F

(k∗)
L ∗ F

(n−k−k∗)
M (t − s)

−F
(n+1)
U ∗ F

(k∗)
L ∗ F

(n−k−k∗)
M (t − s)

]
,

and

pSLM1(u, v,w; t)

= Pr(S(t) ∈ du,L(t) ∈ dv,M(t) ∈ dw,X(t) = 1)/dudvdw

=
∞∑

n=0

n−1∑
k=0

n−k−1∑
k∗=1

(
n

k

)(
n − k

k∗

)
pk

1pk∗
2 pn−k−k∗

3

× f
(n+1)
U (t − v − w − u)f

(k∗)
L (v)f

(n−k−k∗)
M (w)

×
[
F

(k)
S (u) − F

(k+1)
S (u)

]
.

All other formulas can be derived similarly.

5 Special case: Lévy distribution

In this section we consider a special case when all the holding times have the Lévy
distribution (with location parameter 0 and possibly different scale parameters). The
Lévy distribution with scale parameter c2 has pdf

gc(x) = c√
2π

e− c2
2x

x3/2
, x > 0,

and cdf

Gc(x) = 2√
π

∫ ∞
c√
2x

e−t2
dt, x > 0.

The Lévy distribution is heavy-tailed with infinite expectation. The median is given

by 0.5c2
(
erfc−1(0.5)

)−2 ≈ 2.198112c2, where erfc is the complementary error
function:

erfc(x) = 2√
π

∫ ∞

x

e−t2
dt.
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The parametrization that we use is a bit unusual, but it allows us to shorten our
notation for convolutions. More specifically, as a member of the family of stable
distributions with mobility parameter 1/2, the Lévy distribution is closed under the
operation of convolution in the following way:

Gc1 ∗ Gc2(x) = Gc1+c2(x).

Let c2
U , c2

S , and c2
L be the scale parameters for states 0, 1 and 2, respectively. Then

the formulas from Theorem 1 and Theorem 2 do not involve any convolutions. For
instance, in this case we have that

pS2(s, t) =
∞∑

n=1

n∑
k=1

(
n

k

)
pk

1p
n−k+1
2 gkcS

(s)

× [
G(n+1)cU +(n−k)cL

(t − s) − G(n+1)cU +(n−k+1)cL
(t − s)

]
.

The expectations and variances of the off-times is given by

E(S(t)) =
2∑

j=0

∫ t

0
spSj (s, t)ds,

Var(S(t)) =
2∑

j=0

∫ t

0
s2pSj (s, t)ds − [E(S(t))]2,

E(L(t)) =
2∑

j=0

∫ t

0
spLj (s, t)ds,

Var(L(t)) =
2∑

j=0

∫ t

0
s2pLj (s, t)ds − [E(L(t))]2.

Note that the discrete component of the occupation times is not used for these calcu-
lations, because the atoms are at 0. The covariance of S(t) and L(t) is given by

Cov(S(t), L(t)) =
2∑

j=0

∫∫
u,v>0, u+v<t

uvpSLj (u, v, t)dudv

− E(S(t))E(L(t)).

As an example we consider a server with median holding time 7 days, 0.5 hour,
and 4 hours for the on-state, the short off-state, and the long off-state, respectively.
Using one day as the time unit, the model parameters are: cU ≈ 1.785, cS ≈ 0.097,
and cL ≈ 0.275. Assume also that the total repair cost is given by

C(t) = S(t) + 2L(t),

that is, long repairs are twice costlier than the short ones.
Figure 2 presents defective marginal densities pSj (s, t) and pLj (s, t) when t = 30

days and p1 = .9 (that is, the less serious breakdowns occur 9 times more often). The
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Fig. 2. Defective densities pSj (s, t) and pLj (s, t), j ∈ {0, 1, 2}, with t = 30, cU ≈ 1.785,
cS ≈ 0.097, cL ≈ 0.275, and p1 = 0.9

Fig. 3. Contour plots of the joint densities pSLj (u, v, t), j ∈ {0, 1, 2}, with t = 30, cU ≈
1.785, cS ≈ 0.097, cL ≈ 0.275, and p1 = 0.9

marginal densities for both occupation times are severely defected when X(30) = 0
(the process is in the on-state). As we mentioned above S(30) and L(30) have atoms
at s = 0:

Pr(S(30) = 0, X(30) = 0) ≈ 0.280;
Pr(L(30) = 0, X(30) = 0) ≈ 0.798;
Pr(S(30) = 0, X(30) = 1) ≈ 0.000;
Pr(L(30) = 0, X(30) = 1) ≈ 0.034;
Pr(S(30) = 0, X(30) = 2) ≈ 0.004;
Pr(L(30) = 0, X(30) = 2) ≈ 0.000.

Figure 3 shows the contour plot of defective joint densities pSLj (u, v, t) with the
same parameter setup, where the negative association of the two occupation times
is obvious. We also ran a simulation study to numerically confirm the correctness of
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Table 1. Summaries of off-state occupation times and total repair cost with cU ≈ 1.785,
cS ≈ 0.097, and cL ≈ 0.275 as p1 increases

t p1 E(S(t)) Var(S(t)) E(L(t)) Var(L(t)) E(C(t)) Var(C(t)) ρ(S(t), L(t))

30 0.70 0.81 10.82 0.95 13.01 2.71 60.99 −0.040
0.75 0.87 11.60 0.79 10.95 2.46 53.71 −0.037
0.80 0.93 12.38 0.64 8.85 2.20 46.32 −0.035
0.85 0.99 13.15 0.48 6.70 1.95 38.80 −0.031
0.90 1.05 13.93 0.32 4.51 1.69 31.16 −0.026
0.95 1.11 14.70 0.16 2.28 1.43 23.38 −0.019
0.99 1.16 15.32 0.03 0.46 1.23 17.07 −0.009

60 0.70 1.75 48.20 2.08 57.96 5.92 271.58 −0.040
0.75 1.88 51.68 1.74 48.81 5.37 239.32 −0.038
0.80 2.02 55.16 1.40 39.46 4.82 206.48 −0.035
0.85 2.15 58.64 1.05 29.91 4.26 173.04 −0.031
0.90 2.29 62.13 0.70 20.16 3.70 139.01 −0.026
0.95 2.42 65.62 0.35 10.19 3.13 104.37 −0.019
0.99 2.53 68.41 0.07 2.05 2.67 76.21 −0.009

Theorem 1 and Theorem 2. A total 1,000,000 realizations of the above on-off process
were generated and the empirical results are consistent with the theoretical densities
(not shown).

Table 1 summarizes the expectation and variance of the two types of off-state
occupation times and the associated repair cost for t ∈ {30, 60} days and p1 ∈
{0.70, 0.75, . . . , 0.95, 0.99}. As p1 increases, the expectation and the variance goes
up for the less serious breakdown time but goes down for the more serious breakdown
time. The total repair cost has lower expectation and variance for smaller values of
p1. The correlation of the two off-state occupation times is negative, with a magni-
tude decreasing as p1 increases. When t is doubled, the expectation of the occupation
times and the total repair cost is slightly more than doubled, which is because the
process always starts from the on-state with a random holding time.

6 Concluding remarks

The marginal distribution of an off-state occupation time could be obtained by col-
lapsing the on-state with the other off-state and using results on the telegraph pro-
cess. Nonetheless, this approach would lead to more complicated formulas because
the holding time of the new collapsed state is distributed as an infinite mixture of con-
volutions. Further, this technique cannot be employed if we need the joint distribution
of the two off-state occupation times.

The total repair cost process C(t) also can be viewed as a telegraph process gov-
erned by the on-off process with multiple off-states. That is, C(t) is the time t position
of a particle that moves with speed αj whenever X(t) = j , j = 0, 1, 2. The formulas
for the joint distribution of X(t) and occupation times can be useful for parameter
estimation when process C(t) is discretely observed. In particular, if X(t) is also
Markov (that is, all the holding times are exponential), then the efficient likelihood
estimation is possible with help of tools for hidden Markov model [14].
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