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Abstract In the article [Theory of Probability & Its Applications 62(2) (2018), 216–235],
a class W of terminal joint distributions of integrable increasing processes and their compen-
sators was introduced. In this paper, it is shown that the discrete distributions lying in W form
a dense subset in the set W for ψ-weak topology with a gauge function ψ of linear growth.
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1 Introduction

A class W of probability measures defined on (R2+, B(R2+)) is introduced in [4]. It
consists of all probability measures satisfying

1)
∫
R

2+(x + y)μ(dx, dy) < ∞,

2)
∫
R

2+ x μ(dx, dy) = ∫
R

2+ y μ(dx, dy),

3) ∀c ≥ 0
∫
{y≤c} x μ(dx, dy) ≤ ∫

R
2+(y ∧ c) μ(dx, dy).
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It is also proved in [4] that a measure μ belongs to W if and only if there is an inte-
grable increasing process (Xt )t∈R+ with a compensator (At )t∈R+ such that
Law(X∞, A∞) = μ. The main idea behind the existence of such process X is as
follows, see [4, Proposition 3.6, Remark 3.4, and Proposition 3.4]. Let a measure
μ ∈ W be given. Then one can find nonnegative random variables V , W , Z on some
probability space (�, F , P) such that

Law(V + Z, W + Z) = μ,

and E[V 1{W ≤ t}] = E[W ∧ t] for all t ∈ R+. This means that Law(V , W) ∈ W

with equality in 3). Now it is easy to introduce a filtration on (�, F , P) (one can
take the single jump filtration introduced in [5]) such that W ∧ t , t ∈ R+, is the
compensator of V 1{W ≤ t}. This is a special case of Theorem 1 below though the
direct proof is much easier [4, Proposition 3.4]. To complete the construction one
needs to incorporate Z into these processes, e.g.,

Xt =
{

V 1{W ≤ t/(1 − t)}, if t < 1,
V + (t ∧ 2 − 1)Z, if t � 1,

At =
{

t
1−t

∧ W, if t < 1,
W + (t ∧ 2 − 1)Z, if t � 1.

The procedure of constructing a triple V , W and Z for a measure μ ∈ W is
available from the proof of Proposition 3.6 [4]. For measures μ ∈ W with finite
support, calculations are explicit. For example, let μ = 1

2δ(1, 3/2) + 1
2δ(3/2, 1). Then

μ ∈ W. Put � := {0, 1} × [0; 1], F := B(�),

P({0} × B) = 1

2
�(B), P({1} × B) = 1

2
�(B),

where B ∈ B([0; 1]) and � is the Lebesgue measure on [0; 1]. Then one can take

V (0, u) : = 1

2 − u
, V (1, u) := 0,

W(0, u) : = u

4 − 2u
, W(1, u) := 1/2,

Z(0, u) : = 1 − u

4 − 2u
, Z(1, u) := 1.

Our aim here is to show that measures with finite support and lying in W are
dense in W in some natural topology of the space of Borel measures μ(dx, dy) on
(R2, B(R2)) with integrable marginal distributions.

We will make a few remarks that are intended to demonstrate that our task is
nontrivial. If E[V 1{W ≤ t}] = E[W ∧ t] for all t ≥ 0, then it is easy to see that
the distribution of W cannot be discrete. Note that in the example above W has a
continuous component, though the distribution μ has a finite support. This means that
the subset of W consisting of measures with equality in 3) does not contain measures
with finite support. In particular, if V = 1, then W has the exponential distribution
with mean 1. Example 2.1 in [4] says that if we consider a two-point mass ν that
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is obtained from the exponential distribution by averaging over the sets [0; a] and
(a; +∞), where a > 0, then the measure δ{1} ⊗ ν does not belong to W.

The problem considered here is an important technical tool in studying some
stochastic orders on the plane. In particular, let μ0(dx, dy) � μ1(dx, dy) if there are
stochastic processes X = (Xt )t∈[0;1] and Y = (Yt )t∈[0;1] such that X is adapted and
Y is predictable on some stochastic basis, Xt and Yt are integrable for all t , Xt − X0
is an increasing process with the compensator Yt − Y0, and Law(X0, Y0) = μ0 and
Law(X1, Y1) = μ1. In these terms μ ∈ W is equivalent to δ(0,0) � μ. Our main
result allows us to find necessary and sufficient conditions for μ0 � μ1 expressed in
appropriate terms [1].

Let us also mention a connection between our problem and the Skorokhod em-
bedding problem. Namely, let B be a standard Brownian motion and T a finite stop-
ping time on some stochastic basis. Put BT := supt≤T Bt . Then, if E|BT | < ∞ and
E[BT ] < ∞, Law(BT − BT , BT ) ∈ W. However, not every distribution μ from
W can be represented in this way. The necessary and sufficient condition on μ is
that R+ 
 t �→ ∫

R
2+[(y ∧ t) − x1{y≤t}]μ(dx, dy) be an increasing function and

μ((0; ∞) × {0}) = 0, see [8] and [6]. A discretisation of the Skorokhod embedding
problem is considered, in particular, in [2].

To state the problem we need a proper topological setting. Consider a gauge func-
tion ψ(x, y) := 1 + |x| + |y|, x, y ∈ R, and define the class Cψ(R2) of continuous
test functions f : R2 → R such that

∀f ∈ Cψ(R2) ∃c ∈ R ∀x, y ∈ R |f (x, y)| ≤ c · ψ(x, y).

Denote also by Mψ
1 (R2) the set of all Borel measures on R

2 such that

∫
R2

ψ(x, y)μ(dx, dy) < ∞.

The coarsest topology on Mψ
1 (R2) for which all mappings

Mψ
1 (R2) 
 μ �→

∫
R2

f (x, y) μ(dx, dy), f ∈ Cψ(R2),

are continuous, is called the ψ-weak topology on Mψ
1 (R2).

We refer to [3, §A.6] for the definition and further properties of ψ-weak topolo-
gies with arbitrary gauge functions ψ . Here we only mention that in our case the
ψ-weak topology is metrizable and separable. Moreover, Mψ

1 (R2) is a Polish space

with this topology. A sequence (μn)
∞
n=1 ⊆ Mψ

1 (R2) converges to a measure μ ∈
Mψ

1 (R2) in the ψ-weak topology if and only if (μn)
∞
n=1 converges to μ in the usual

weak topology and the uniform integrability condition

sup
n∈N

∫
{|x|+|y|>c}

(|x| + |y|) μn(dx, dy) → 0 as c → ∞

is satisfied.



268 D. Borzykh, A. Gushchin

The choice of the ψ-weak topology with the prescribed function ψ is natural in
this problem. On the one hand, the space Mψ

1 (R2) contains the set W. On the other

hand, it is this topology that insures the closedness of the set W in Mψ
1 (R2), while

the usual weak topology does not provide the closedness.
The proof of our main result is based on Theorem 5 in [5]. For the reader’s con-

venience, we present this theorem here with some refinement in the statement. We do
not explain here how a single jump filtration is defined because the only fact concern-
ing these filtrations that we use is that such a filtration exists.

Theorem 1. Let V and γ be random variables on a probability space (�,F ,P)

with values in R and [0; +∞], respectively, such that E(|V |1{γ≤t}) < ∞ for any
t ∈ T := {

t ∈ R+ : P{γ ≥ t} > 0
}
. Define, for t ∈ T ,

K(t) := E[V |γ = t], and F(t) :=
∫

(0;t]
G(s−)−1K(s) dG(s),

where G(s) := P{γ ≤ s} and G(s) := P{γ > s}. Then the process F(t ∧γ ), t ∈ R+,
is the compensator of the process V 1{γ≤t} with respect to the single jump filtration
generated by γ and F .

The only difference between this theorem and Theorem 5 in [5] refers to the case
where γ is bounded by a constant tG < ∞ with probability one and P{γ = tG} > 0.
In this case, in Theorem 5 in [5] F is defined by left-continuity at tG, so the difference
between the definitions is∫

{tG}
G(s−)−1K(s) dG(s) = K(tG).

Now it is easy to see that the formulae for the compensators from both theorems co-
incide. Thus, our definition of F at tG allows us to combine two terms in the formula
for the compensator in Theorem 5 in [5] and to obtain a unified expression.

2 Main result

Let us consider two subsets of the set W, namely, the subset of simple measures Wsimp
and the subset of discrete measures Wdisc. We say that μ ∈ Wsimp (correspondingly,
μ ∈ Wdisc) if μ ∈ W and

μ(dx, dy) =
∑
j∈J

pj · δ[ xj aj ](dx, dy),

where J is a finite set (correspondingly, J is at most countable), pj ≥ 0,
∑

j∈J pj =
1, and δ[ xj aj ](dx, dy) is the Dirac measure at point

[ xj
aj

] ∈ R
2. It is clear that

Wsimp ⊆ Wdisc ⊆ W.
The following theorem is the main result of this paper.

Theorem 2. The set Wsimp is dense in the set W in the ψ-weak topology. In other
words, for any probability measure μ ∈ W, there exists a sequence of simple mea-
sures (νn)

∞
n=1 ⊆ Wsimp converging to μ in the ψ-weak topology, i.e., for any test
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function f ∈ Cψ(R2),

∫
R2

f dνn →
∫
R2

f dμ as n → ∞.

The proof will be performed in two steps:
Step 1: Given μ ∈ W, construct a sequence (μn)

∞
n=1 ⊆ Wdisc that converges to μ

in the ψ-weak topology.
Step 2: Using the sequence (μn)

∞
n=1 from Step 1, construct a sequence (νn)

∞
n=1 ⊆

Wsimp converging to μ in the same topology. Notice that most of the arguments of
the proof are the same as at Step 1.

Proof. Fix a measure μ ∈ W. Due to [4, Proposition 3.6, Remark 3.4, and Proposi-
tion 3.4], one can find a stochastic basis B := (�, F , P, (Gt )t∈R+) and nonnegative
integrable random variables V , W , Z such that

Law(V + Z, W + Z) = μ, (1)

and the process V 1{W ≤ t}, t ∈ R+, is an integrable increasing process with
the compensator W ∧ t , t ∈ R+. Therefore, E[V 1{W ≤ t}] = E[W ∧ t] for all
t ∈ R+, i.e., condition 3) from the definition of W holds as equality. In particular,
Law(V , W) ∈ W.

Step 1. It is enough to construct three sequences of nonnegative random variables
(V̂ (n))∞n=1, (Ŵ (n))∞n=1, and (Ẑ(n))∞n=1 on the probability space (�, F , P) which sat-
isfy the following conditions:

(i) Law(V̂ (n), Ŵ (n)) ∈ Wdisc for all n ∈ N;

(ii) Law(V̂ (n) + Ẑ(n), Ŵ (n) + Ẑ(n)) ∈ Wdisc for all n ∈ N;

(iii) V̂ (n) → V and Ẑ(n) → Z as n → ∞ P-a. s.;

(iv) (V̂ (n))∞n=1 and (Ẑ(n))∞n=1 are uniformly integrable;

(v) Ŵ (n) → W as n → ∞ P-a. s.;

(vi) (Ŵ (n))∞n=1 is uniformly integrable.

Indeed, let f ∈ Cψ(R2), then |f (x, y)| ≤ cψ(x, y) for some c ≥ 0 and

∣∣f (V̂ (n) + Ẑ(n), Ŵ (n) + Ẑ(n))
∣∣ ≤ c

(
1 + ∣∣V̂ (n) + Ẑ(n)

∣∣ + ∣∣Ŵ (n) + Ẑ(n)
∣∣). (2)

Now, the expression in the LHS of (2) under the sign of modulus is uniformly inte-
grable due to (iv) and (vi) and converges P-a. s. to f (V + Z, W + Z) due to (iii), (v)
and continuity of f . Taking expectations, we arrive at the claim of Step 1 in view of
(ii) and (1).

In what follows we will use a result from [5]. Let us introduce some notation from
that paper. Denote

• G(t) := P{W ≤ t}, t ∈ R;
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• G(t) := P{W > t} = 1 − G(t);

• tG := sup{t ∈ R+ : G(t) < 1};
• T := {

t ∈ R+ : P{W ≥ t} > 0
}
.

Introduce the following cases:

• Case A1: tG < ∞ and P{W = tG} = 0;

• Case A2: tG = ∞;

• Case B: P{W = tG < ∞} > 0.

Case A1 + A2 and Case B correspond to Case A and Case B respectively in [5].
It is easy to see that P{W /∈ T } = 0 and T = [0; tG) in Cases A1 and A2, and

T = [0; tG] in Case B.
Let us define auxiliary random variables

V (n) :=
∞∑
i=1

i�
2n 1

{
(i−1)�

2n < V ≤ i�
2n

}
,

W(n) :=
∞∑

j=1

j�
2n 1

{
(j−1)�

2n < W ≤ j�
2n

}
,

Z(n) :=
∞∑

k=1

k�
2n 1

{
(k−1)�

2n < Z ≤ k�
2n

}
,

where � := 1 if tG = ∞, and � := tG if tG < ∞.
Similarly to how we defined G(t), G(t), tG and T for W , let us define G(n)(t),

G
(n)

(t), tG(n) , and T (n) for W(n):

• G(n)(t) := P{W(n) ≤ t}, t ∈ R;

• G
(n)

(t) := P{W(n) > t} = 1 − G(n)(t);

• tG(n) := sup{t ∈ R+ : G(n)(t) < 1};
• T (n) := {

t ∈ R+ : P{W(n) ≥ t} > 0
}
.

It is easy to see that, for any n ∈ N, tG(n) = tG and P{W(n) /∈ T (n)} = 0;
T (n) = [0; tG] in Cases A1 and B; and T (n) = [0; tG) in Case A2.

Finally, let us introduce

• K(n)(t) := E
[
V (n)|W(n) = t

]
, where t ∈ T (n);

• F (n)(t) := ∫
(0; t]

K(n)(s)

G
(n)

(s−)
dG(n)(s), where t ∈ T (n).
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In fact, since W(n) is discrete and takes values j�
2n ∈ T (n), only the values of K(n)(t)

for t = j�
2n ∈ T (n) are essential.

Fix n ∈ N. Introduce the single jump filtration generated by W(n) and F , see
[5]. In accordance with Theorem 1 the process V (n)1{W(n) ≤ t}, t ∈ R+, has the
compensator F (n)(W(n) ∧ t), t ∈ R+, with respect to this filtration.

Denote by V̂ (n) and Ŵ (n) the values of this increasing process and its compensator
at time ∞:

V̂ (n) := lim
t→∞ V (n)1{W(n) ≤ t} = V (n),

Ŵ (n) := lim
t→∞ F (n)(W(n) ∧ t) = F (n)(W(n)).

Put also Ẑ(n) := Z(n). Obviously, V̂ (n), Ŵ (n), and Ẑ(n) are discrete random variables.
By the construction, Law(V̂ (n), Ŵ (n)) ∈ W. Thus, taking into account Lemma 1 in
Section 3, Law(V̂ (n) + Ẑ(n), Ŵ (n) + Ẑ(n)) ∈ W. It follows that our construction
satisfies (i) and (ii). Conditions (iii) and (iv) are clear from the definitions.

The proof of condition (v) is the main point of Step 1. We defer the proof to the
next section, see Lemma 4.

Assuming (v), we complete the proof of Step 1. We have

E[Ŵ (n)] = E[V̂ (n)] → E[V ] = E[W ] as n → ∞,

and (vi) follows because Ŵ (n) are nonnegative and integrable.
Step 2. In contrast to Step 1 we define auxiliary random variables V [n], W [n] and

Z[n] taking finite number of values instead of discrete random variables V (n), W(n)

and Z(n):

V [n] :=
r(n)∑
i=1

i�
2n 1

{
(i−1)�

2n < V ≤ i�
2n

}
,

W [n] :=
r(n)∑
j=1

j�
2n 1

{
(j−1)�

2n < W ≤ j�
2n

}
+ (r(n)+1)�

2n 1
{
W >

r(n)�
2n

}
,

Z[n] :=
r(n)∑
k=1

k�
2n 1

{
(k−1)�

2n < Z ≤ k�
2n

}
,

where � := 1 if tG = ∞, and � := tG if tG < ∞, and r : N → N is a sequence such
that

∀n ∈ N r(n) ≥ 2n and r(n)
2n ↑ ∞ as n → ∞. (3)

The choice of r(n) will be specified in Lemma 5.
Similarly to Step 1, we define

• G[n](t) := P{W [n] ≤ t}, t ∈ R;

• G
[n]

(t) := P{W [n] > t} = 1 − G[n](t);

• tG[n] := sup{t ∈ R+ : G[n](t) < 1};
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• T [n] := {
t ∈ R+ : P{W [n] ≥ t} > 0

}
;

• K [n](t) := E
[
V [n]|W [n] = t

]
, where t ∈ T [n];

• F [n](t) := ∫
(0; t]

K [n](s)
G

[n]
(s−)

dG[n](s), where t ∈ T [n].

Finally, we put V̂ [n] := V [n], Ẑ[n] := Z[n], Ŵ [n] := F [n](W [n]). As in Step 1, Ŵ [n]
is a terminal value of the compensator of the process V [n]1{W [n] ≤ t}, t ∈ R+.

Our aim is to prove the statements (i)–(vi) from Step 1 for V̂ [n], Ŵ [n] and Ẑ[n]
instead of V̂ (n), Ŵ (n) and Ẑ(n). The proof of (i)–(iv), (vi) is similar to Step 1. We
only mention that V̂ [n], Ŵ [n] and Ẑ[n] take values in finite sets and our assumptions
on r(n) imply (iii). The only significant difference between Steps 1 and 2 is in the
proof of (v). In the course of the proof we will replace Lemmas 3 and 4 by Lemmas 5
and 6 respectively.

3 Auxiliary results

Lemma 1. If Law(V , W) ∈ W, then Law(V +Z, W +Z) ∈ W for any nonnegative
integrable random variable Z.

Proof. The first two conditions in the definition of W are evidently satisfied for V +Z

and W + Z. Rewrite the third condition for V and W in the form

E
[
(V − W + c)1{W ≤ c}] ≤ c, c ≥ 0. (4)

The same condition for V + Z and W + Z is written in this form as

E
[
(V − W + c)1{W + Z ≤ c}] ≤ c, c ≥ 0. (5)

It remains to note that {W + Z ≤ c} ⊆ {W ≤ c} and V − W + c is nonnegative on
the set {W ≤ c}. Hence,

(V − W + c)1{W + Z ≤ c} ≤ (V − W + c)1{W ≤ c},
and (5) follows from (4).

Lemma 2. Let Law(V ,W) ∈ W and condition 3) in the definition of W hold as
equality for all c ≥ 0. Then, for all 0 ≤ a < b < ∞,

E
[
V 1{a < W ≤ b}] =

∫
(a; b]

G(s−) ds.

Proof. By Fubini’s theorem,∫
[0; t]

G(s−) ds =
∫

[0; t]
P{W ≥ s} ds =

∫
[0; t]

E
[
1{W ≥ s}] ds =

= E

[∫
[0; t]

1{W ≥ s} ds

]
= E[W ∧ t] = E

[
V 1{W ≤ t}],

where the last equality holds by assumption of the lemma. The claim follows.
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Lemma 3. For all t ∈ T , F (n)(t) → t as n → ∞.

Proof. Let us introduce the set T as follows:

• T :=
{

j�
2n : j ∈ {0, . . . , 2n − 1}, n ∈ N

}
in Case A1,

• T :=
{

j�
2n : j ∈ {0, 1, 2 . . . }, n ∈ N

}
in Case A2,

• T :=
{

j�
2n : j ∈ {0, . . . , 2n}, n ∈ N

}
in Case B.

Fix a point t = l0�
2n0 ∈ T. Let n ≥ n0 and l := t

�
2n. Then l�

2n = t . Consider an

arbitrary point s = j�
2n ∈ T, where j ∈ {1, . . . , l}. Since 0 ≤ V (n) − V ≤ �

2n , we
have

0 ≤ E
[
V (n) − V |W(n) = s

] ≤ �
2n .

Therefore,

E
[
V |W(n) = s

] ≤ K(n)(s) = E
[
V (n)|W(n) = s

] ≤ �
2n + E

[
V |W(n) = s

]
. (6)

By Lemma 2,

E
[
V |W(n) = s

] = E
[
V 1{W(n) = s}]
P{W(n) = s} =

= E
[
V 1{ (j−1)�

2n < W ≤ j�
2n }]

P{ (j−1)�
2n < W ≤ j�

2n } =
∫( (j−1)�

2n ; j�
2n

] G(s−) ds

G
( j�

2n

) − G
( (j−1)�

2n

) .

(7)

It follows from (6) and (7) that∫( (j−1)�
2n ; j�

2n

] G(s−) ds

G
( j�

2n

) − G
( (j−1)�

2n

) ≤ K(n)(s) ≤ �

2n
+

∫( (j−1)�
2n ; j�

2n

] G(s−) ds

G
( j�

2n

) − G
( (j−1)�

2n

) . (8)

Taking into account that G(n)
( j�

2n

) = G
( j�

2n

)
, G(n)

( (j−1)�
2n

) = G
( (j−1)�

2n

)
and

G
(n)( j�

2n −) = G
( (j−1)�

2n

)
, we have

F (n)(t) =
∫

(0; t]
K(n)(s)

G
(n)

(s−)
dG(n)(s) =

=
l∑

j=1

K(n)
( j�

2n

)
G

(n)( j�
2n −)

(
G(n)

( j�
2n

) − G(n)
( (j−1)�

2n

)) =

=
l∑

j=1

K(n)
( j�

2n

)G
( j�

2n

) − G
( (j−1)�

2n

)
G

( (j−1)�
2n

) .

(9)

Denote

S
(n)
1 (t) := �

2n

l∑
j=1

G
( j�

2n

) − G
( (j−1)�

2n

)
G

( (j−1)�
2n

) ,
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S
(n)
2 (t) :=

l∑
j=1

∫( (j−1)�
2n ; j�

2n

] G(s−) ds

G
( (j−1)�

2n

) .

Then it follows from (8) and (9) that

S
(n)
2 (t) ≤ F (n)(t) ≤ S

(n)
1 (t) + S

(n)
2 (t).

We want to prove that S
(n)
1 (t) → 0 and S

(n)
2 (t) → t as n → ∞.

• In Case A1 put t ′ := �
2l0+1
2n0+1 . It is easy to see that point t ′ satisfies t < t ′ <

tG = �. Also note that g := G(t ′) > 0, because t ′ < tG.

• In Case A2 put t ′′ := �
l0+1
2n0 . It is easy to see that point t ′′ satisfies t < t ′′ <

tG = ∞. Also note that g := G(t ′′) > 0, because t ′′ < tG.

• In Case B it is easy to verify that g := G(tG−) > 0.

Let us prove that S
(n)
1 (t) → 0 as n → ∞. Since the function G(s) is decreasing

we have G
( (j−1)�

2n

) ≥ g > 0 for j = 1, . . . , l, and

0 ≤ S
(n)
1 (t) = �

2n

l∑
j=1

G
( j�

2n

) − G
( (j−1)�

2n

)
G

( (j−1)�
2n

) ≤ �

g2n
→ 0, n → ∞.

In order to prove that S
(n)
2 (t) → t as n → ∞ let us rewrite S

(n)
2 (t) in the form

S
(n)
2 (t) =

∫
[0; t)

l∑
j=1

G(s)

G
( (j−1)�

2n

)1[ (j−1)�
2n ; j�

2n

)(s) ds. (10)

Note that the integrand in (10) is bounded and converges to 1 a.e. with respect to
the Lebesgue measure as n → ∞. Thus, by the dominated convergence theorem,
S

(n)
2 (t) → t as n → ∞.

We have proved that, for any t ∈ T,

F (n)(t) → t as n → ∞. (11)

A simple argument shows that this convergence holds for any t ∈ T . Let t ∈ T \ T.
Given ε > 0, there are points t∗, t∗ ∈ T such that

t∗ < t < t∗ and t∗ − t∗ < ε/2. (12)

Then F (n)(t∗) ≤ F (n)(t) ≤ F (n)(t∗). Hence,

t∗ ≤ lim inf
n→∞ F (n)(t) ≤ lim sup

n→∞
F (n)(t) ≤ t∗,

which implies (11).
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Lemma 4. Ŵ (n) = F (n)(W(n)) → W as n → ∞ P-a.s.

Proof. According to Lemma 3, F (n)(t) → t as n → ∞ for all t ∈ T . We will
use a well-known statement that if a sequence of increasing functions on an interval
of the real line converges pointwise to a continuous function, then the convergence
is uniform on compact subintervals (see, e.g., [7, Proposition 2.1]). Thus, F (n)(t)

converges uniformly to t on T in Case B, and on any interval [0; b] ⊆ T , where
b < tG, in Cases A1 and A2.

Recall that W(n) converges to W for all ω ∈ � by the construction. In Case B, for
all n ∈ N, P(W ∈ [0; tG]) = P(W(n) ∈ [0; tG]) = 1. Thus, for all n ∈ N, we have
P-a.s.

∣∣F (n)(W(n)) − W
∣∣ ≤ ∣∣F (n)(W(n)) − W(n)

∣∣ + |W(n) − W | ≤
≤ sup

t∈[0; tG]
|F (n)(t) − t | + |W(n) − W |,

which implies Ŵ (n) = F (n)(W(n)) → W as n → ∞ P-a.s.
In Cases A1 and A2 fix ω such that W(ω) ∈ T = [0; tG). Take b = b(ω)

such that W(ω) < b < tG. Then W(n)(ω) < b for n large enough, and we have
F (n)(W(n)(ω)) → W(ω) as n → ∞ in view of the above inequality with tG replaced
by b. Since P(W ∈ T ) = 1, the requested convergence holds P-a.s.

Lemma 5. There exists an increasing sequence r(n) ∈ N, n ∈ N, satisfying (3) and
such that F [n](t) → t as n → ∞ for all t ∈ T .

Proof. Let T be defined as in the proof of Lemma 3. Fix a point t = l0�
2n0 ∈ T. Note

that n0 = n0(t). Let n ≥ n0(t) and l := t
�

2n. Then l�
2n = t . Let s = j�

2n ∈ T, where
j ∈ {1, . . . , l}. It follows from (9) and from

K(n)(s) =
∞∑
i=1

i�

2n

P

({
(i−1)�

2n < V ≤ i�
2n

}⋂{ (j−1)�
2n < W ≤ j�

2n

})

P
{ (j−1)�

2n < W ≤ j�
2n

}

that

F (n)(t) =
l∑

j=1

∞∑
i=1

a(i, j, n), (13)

where F (n)(t) is the function that was defined in Step 1 and

a(i, j, n) := i�

2n

P

({
(i−1)�

2n < V ≤ i�
2n

}⋂{ (j−1)�
2n < W ≤ j�

2n

})

P
{
W >

(j−1)�
2n

} .

Since, for a fixed n ≥ n0(t), the series (13) with nonnegative terms converges, for
any n ≥ n0(t), one can find r(t, n) such that

l∑
j=1

∞∑
i=1

a(i, j, n) −
l∑

j=1

r(t,n)∑
i=1

a(i, j, n) < 1/n. (14)
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For n < n0(t) put r(t, n) := 2n. Without loss of generality, we may assume that a
sequence r(t, n), n ∈ N, satisfies conditions (3), i.e., r(t, 1) ≤ · · · ≤ r(t, n) ≤ · · ·
for all n ∈ N, 2n ≤ r(t, n) and r(t,n)

2n ↑ ∞ as n → ∞.
In order to construct a sequence r(n), n ∈ N, which guarantees that the state-

ment of this lemma is true, we shall use a version of Cantor’s diagonalization proce-
dure. Enumerate somehow elements of the countable set T, so that T = {tk}∞k=1. Put
r(n) := max{r(t1, n), . . . , r(tn, n)}, n ≥ 1. Then the sequence r(n) has the property

∀k ∈ N ∀n ≥ k r(tk, n) ≤ r(n). (15)

Fix k ∈ N (thus we fix tk ∈ T). Then by (14) and (15), for all n ≥ max(k, n0(tk)),
we have

l∑
j=1

∞∑
i=1

a(i, j, n) −
l∑

j=1

r(n)∑
i=1

a(i, j, n)
(15)≤

(15)≤
l∑

j=1

∞∑
i=1

a(i, j, n) −
l∑

j=1

r(tk,n)∑
i=1

a(i, j, n)
(14)≤ 1

n
.

(16)

Now let us check that the sequence r(n) constructed above meets the requirements
of the lemma. Since r(n)

2n ↑ ∞ as n → ∞, for any t ∈ T, one can find N0(t) ≥ n0(t)

such that t ≤ r(n)�
2n for all n ≥ N0(t). Let n ≥ N0(t). The function F [n](t) has the

representation

F [n](t) =
l∑

j=1

r(n)∑
i=1

a(i, j, n). (17)

Again, let us fix k ∈ N. It follows from (13), (17) and (16) that if n ≥ max(k,N0(tk))

then

F (n)(tk) − F [n](tk)
(13), (17)=

l∑
j=1

∞∑
i=1

a(i, j, n) −
l∑

j=1

r(n)∑
i=1

a(i, j, n)
(16)≤ 1

n
.

Due to Lemma 4, it follows that F [n](tk) → tk as n → ∞. Using the same arguments
as at the end of the proof of Lemma 3, we obtain that the convergence takes place not
only on T but on T as well.

Lemma 6. Ŵ [n] = F [n](W [n]) → W as n → ∞ P-a.s.

The proof of the lemma is based on Lemma 5 and is similar to the proof of
Lemma 4.
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