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Abstract The factorial moments of any Markov branching process describe the behaviour of
its probability generating function F(t, s) in the neighbourhood of the point s = 1. They are
applied to solve the forward Kolmogorov equation for the critical Markov branching process
with geometric reproduction of particles. The solution includes quickly convergent recurrent
iterations of polynomials. The obtained results on factorial moments enable computation of
statistical measures as shape and skewness. They are also applicable to the comparison between
critical geometric branching and linear birth-death processes.
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1 Introduction

A branching process model driven by geometric reproduction of particles was in-
troduced in [12]. By design, it is a time-homogeneous Markov branching process
X(t), t > 0, with probability generating function F(t, s), |s| < 1. The geometric
branching mechanism is defined by the integer-valued random variable η represent-
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Fig. 1. The graph of the Lambert-W function W(x) for −1/e ≤ x ≤ 5. The real principal
branch of solution W0 is shown in red. The second branch of real solution W−1 in the interval
−1/e ≤ x < 0 is drawn in blue. The used software implementation in R is available in [1]

ing the particles offspring number with probability mass function (p.m.f.)

P(η = n) = (1 − �)�n, n = 0, 1, 2, . . . , 0 < � < 1.

The lifetime of particles is an exponentially distributed random variable with a con-
stant parameter K > 0. The initial condition is X(0) = 1. The time interval to the
first splitting is exponentially distributed with density Ke−Kt . We remark that at time
t > 0, when the number of particles in the system is X(t) = n, the time interval to the
next splitting is exponentially distributed with density nKe−nKt as the minimum of n

independent exponentially distributed random variables. The probability generating
function (p.g.f.) h(s) := E[sη], |s| ≤ 1, and the mathematical expectation m = E[η]
are

h(s) = E[sη] = 1 − �

1 − �s
, |s| ≤ 1, m = h′(1) = �

1 − �
> 0.

The reproduction is classified as critical when the mean of progeny m = 1, i.e. the
parameter � = 1/2. Then the p.g.f. h(s) is reduced to

h(s) = 1

2 − s
, h′(s) = 1

(2 − s)2 , h′′(s) = 2

(2 − s)3 . (1)

The p.g.f. F(t, s), |s| < 1, is determined in [12] as the unique solution to the Kol-
mogorov equations [2, 7, 10] after the Lagrange inversion method following the clas-
sical theory [5, 8, 9].

The factorial moments in the subcritical case are computed in [12]. They are used
to obtain the probability mass function, central moments and variance-to-mean ratio
(VMR) for the limiting random variable. In critical case, the p.g.f. F(t, s) is defined
by the composition of the Lambert-W and linear-fractional functions. The probability
mass function of X(t), t > 0, is expressed by the values of the Lambert-W function at
the point x = eKt+1. The agreement between Lagrange inversion method and series
expansion of the Lambert-W function is confirmed by the approximation of extinction
probability. The detailed explanation can be found in [12].

However, the use of the Lambert-W function on its principal branch W0(x) of
x ≥ −1/e is limited to obtaining values of F(t, s) only for s < 1 [12]. Thus,
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Fig. 2. The graphs of F(t, s) computed with the Lambert-W function at the point x = eKtC(s)

(see (5), (6)) for different values of Kt (computation details can be found in [12]). The values
of F(t, s) for s > 1 are computed with the W−1 branch of the Lambert-W function

major statistical moments as variance and skewness remain undefined. The graph
of the Lambert-W function is shown in Figure 1. Very precise approximations for
F(t, s), s ≤ 1, can be computed by any dedicated software packages. But, the real
positive values of the p.g.f. F(t, s) for s > 1 can be derived only from the W−1(x)

branch of −1/e ≤ x < 0, as it is shown in Figure 2. To find analytical solution, the
series expansion of the p.g.f. F(t, s) in the neighbourhood of s = 1 is obtained. The
results follow from the solution to the forward Kolmogorov equation and rely on the
factorial moments of the critical infinitesimal geometric branching reproduction.

In the next Section 2, the description of the proposed model is given through
the solution to the backward Kolmogorov equation. We outline there the problem of
continuity of the p.g.f. F(t, s) at the point s = 1 for s ≥ 1. Section 3 is devoted to
the factorial moments of the number of particles alive to time t > 0. The recurrent
relation is established. The main result, concerning the representation of the p.g.f.
F(t, s) as a convergent series in the domain |s − 1| < 1/Kt , is proved in Section 4.
Finally, the statistical inference is introduced in Section 5.

The series expansion of many special functions is based on the combinatorics
relations, especially for the Lambert-W function. In Appendix we state some useful
formulas for quick orientation on the outcome of the summation by diagonals intro-
duced in Section 4.

2 Backward Kolmogorov equation for critical geometric branching mecha-
nism

Suppose that the lifetime of particles is exponentially distributed with constant rate
K > 0. Then with positive probability, there is a family of particles from all gen-
erations at time t > 0. The number of particles alive at time t > 0 is described by
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a Markov branching process (MBP) X(t), t ≥ 0, X(0) = 1, [2, 7, 10]. Only the
critical case, defined by (1) with parameter � = 1/2, is considered. Then the repro-
duction of particles is of mean m = 1, therefore the ultimate extinction probability
q = limt→∞ F(t, 0) = 1 and the mathematical expectation E[X(t)] = 1 for t > 0,
see [10, Theorem 4, page 53]. For the reproduction p.g.f. introduced in (1) the in-
finitesimal generating function is defined as

f (s) := K(h(s) − s) = K(1 − s)2

2 − s
,

K

f (s)
= 1

(1 − s)2 + 1

1 − s
.

The probability generating function of the process X(t), t > 0, defined by

F(t, s) =
∞∑

k=0

skP (X(t) = k|X(0) = 1) (2)

satisfies the backward Kolmogorov equation

∂

∂t
(F (t, s)) = f (F (t, s)), F (0, s) = s. (3)

Equation (3) is nonlinear with separable differentials due to the property of time-
homogeneity. It can be written as

dF

f (F )
= dt, f (s) = K(1 − s)2

2 − s
, f (0) = K

2
.

It means that the indefinite integral obtains the form∫
Kdx

f (x)
=

∫ (
1

(1 − x)2 + 1

1 − x

)
dx = log

(
1

|1 − x| exp

(
1

1 − x

))
. (4)

Now, for the implicit solution to (3) in the critical case the following equation is valid:

1

1 − F(t, s)
− log(1 − F(t, s)) = 1

1 − s
− log(1 − s) + Kt, |s| < 1.

Once we have (4), we can find the explicit solution to (3). It is defined by the com-
posite function C(s) = V (G(s)), for s �= 1, introduced in the form

C(s) = 1

1 − s
exp

(
1

1 − s

)
,
C′(s)
C(s)

= K

f (s)
, V (x) = xex,G(s) = 1

1 − s
. (5)

Then, from Equation (4), the solution F(t, s) (see (2)) to the backward Kolmogorov
equation in the critical case is C(F (t, s)) = eKtC(s), |s| < 1. The function C(s)

from Equation (5) has a vertical asymptote at the point s = 1 (see Figure 3). Its first
derivative

C′(s) = 2 − s

(1 − s)3 exp

(
1

1 − s

)
, s �= 1, C(0) = e, C′(0) = 2e,
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Fig. 3. The graphs of eKtC(s) = eKtV (G(s)), s �= 1, as a function of s for different Kt .
The horizontal red dashed line marks the min C(s) = C(2) = −1/e. The result lines crossing
dashed line are inflated by eKt , but they preserve the abscissa of minimum min(eKtC(s)) =
eKtC(2) = −eKt /e < −1/e

shows that C(s) is increasing in the intervals −∞ < s < 1 and 2 < s < ∞. It is
negative right to the point s = 1, decreases in the interval 1 < s < 2, and has a
minimum at the point s = 2. Only the interval −∞ < s < 1, where C(s) is positive
and increasing, is convenient for definition of the inverse function, C−1(x) = s, if
and only if, x = C(s).

The composite inverse function of V (G(s)) is obtained in [12] by introduction of
the Lambert-W function. As the Lambert-W function is multivalued with a branching
point at z = −e−1, the solution is limited only to the principal branch W0(x), shown
in Figure 1, where

V (s) = ses, s ≥ −1, W(x) = V −1(x), x ≥ −e−1.

The inversion of the composite function V (G(s)) for s < 1 is defined as

C(s) = V (G(s)), C−1(x) = G−1(V −1(x)) = G−1(W(x)), x > 0.

Then, the solution F(t, s) to the backward Kolmogorov equation is given by

1

1 − F(t, s)
= W

(
eKt

(1 − s)
exp

(
1

1 − s

))
, |s| < 1. (6)

This form of the p.g.f. F(t, s) is very convenient to realise the polynomial rate of in-
crease with time parameter t > 0. It is a result derived from the rising logarithmic rate
of the Lambert-W function [6, formula (28)]. In particular, the extinction probability
P(X(t) = 0) by time t > 0 is directly computed from (6) as

F(t, 0) = 1 − 1

W(eKt+1)
< F(t, s) < 1, 0 < s < 1, t > 0.
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The convergence of the family of functions F(t, s), t > 0, |s| < 1, to the con-
stant function equal to one on the interval 0 ≤ s ≤ 1 is monotone by t > 0 and
uniform by |s| ≤ 1 − ε < 1, ε > 0, [10]. Moreover, the following limit exists:
lims→1− F(t, s) = 1. The conditional mathematical expectation, knowing the nonex-
tinction, is given by

E[X(t)|X(t) > 0] = 1

1 − F(t, 0)
= W(eKt+1).

3 Forward Kolmogorov equation and factorial moments

The inconsistent part of the solution (5), (6) for the p.g.f. F(t, s) is when s > 1. The
asymptotic behaviour of derivatives of the function C(s) in the neighbourhood of the
vertical asymptote, left and right, are

lim
s→1−

C(n)(s) = +∞, lim
s→1+

C(n)(s) = 0, C(n)(1 + 1/k) = 0, k = 2, 3, . . .

(see again Figure 3). This is a serious obstacle for studying the continuity of F(t, s)

at the point s = 1 (left and right).
A possible resolution to this problem is the method of factorial moments. It begins

with the definition of the forward Kolmogorov equation,

∂F (t, s)

∂t
= f (s)

∂F (t, s)

∂s
, F (0, s) = s, f (s) = K(s − 1)2

2 − s
, (7)

with partial derivatives of the p.g.f. F(t, s) denoted as follows:

∂nF (t, s)

∂sn
= F (n)

s (t, s), |s| < 1, F (n)
s (t, 1) = lim

s→1−
F (n)

s (t, s), s < 1.

Next, the required n-th factorial moments can be expressed by E[X(t)]n↓ :=
F

(n)
s (t, 1). For them, it is valid that if f (n)(1) < ∞ then F

(n)
s (t, 1) < ∞, directly

following well-known results from [10, Theorem 2, page 33]. Now, the factorial mo-
ments of a critical geometric branching process are well defined and can be obtained
by recurrence, as it is proved in the following lemma.

Lemma 1. Let X(t) be a critical MBP with geometric branching mechanism. Then
all factorial moments exist,

E[X(t)]n↓ := E[X(t)(X(t) − 1) . . . (X(t) − n + 1)] = F (n)
s (t, 1)

and they satisfy the recurrence relation

F (n+1)
s (t, 1) = (n + 1)F (n)

s (t, 1) + Kn(n + 1)

∫ t

x=0
F (n)

s (x, 1)dx, n = 1, 2, . . . .

Proof. We consider the consecutive derivatives of the forward Kolmogorov equation
(7) for any critical MBP, knowing that F(t, 1) = F ′

s(t, 1) = 1 and F ′′
s (t, 1) = f ′′(1)t ,

see [2, 7, 10]:

∂F
(n)
s (t, s)

∂t
=

n∑
j=0

n!
j !(n − j)!f

(j)(s)F
(n+1−j)
s (t, s), |s| < 1, n = 1, 2, . . . .
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Let s = 1. Then for the Markov process with geometric branching mechanism it is
valid that f (1) = 0, f ′(1) = 0, f (j)(1) = j !K for j = 2, 3, 4, . . . . Thus,

∂F
(n)
s (t, 1)

∂t
=

n∑
j=2

n!Kj !
j !(n − j)!F

(n+1−j)
s (t, 1), n = 2, 3, . . . .

It is equivalent to

∂F
(n)
s (t, 1)

∂t
= Kn!

{
F ′

s

0! + F ′′
s

1! + · · · + F
(n−2)
s

(n − 3)! + F
(n−1)
s

(n − 2)!

}
, n = 2, 3, . . . .

The next derivative for n = 1, 2, . . . becomes

∂F
(n+1)
s (t, 1)

∂t
= K(n + 1)n!

{
F ′

s

0! + F ′′
s

1! + · · · + F
(n−1)
s

(n − 2)!

}
+ K(n + 1)n! F

(n)
s

(n − 1)! .

It leads us to

∂F
(n+1)
s (t, 1)

∂t
= (n + 1)

∂F
(n)
s (t, 1)

∂t
+ K(n + 1)nF (n)

s (t, 1), n = 1, 2, . . . .

Now, the following recurrence relation is yielded after integration:

F (n+1)
s (t, 1) = (n + 1)F (n)

s (t, 1) + Kn(n + 1)

∫ t

x=0
F (n)

s (x, 1)dx, n = 1, 2, . . . .

In particular,

F(t, 1) = 1, F ′
s(t, 1) = 1, F ′′

s (t, 1) = 2Kt, F (3)
s (t, 1) = 3!(Kt + (Kt)2).

Obviously, the obtained recurrent solution for factorial moments enables a form
more convenient for computation polynomial,

F (n)
s (t, 1) = n!Qn−1(x), x = Kt, Q0(x) = 1,

with the following recurrence relation

Q′
n(x) = Q′

n−1(x) + nQn−1(x), Q1(x) = x, n = 1, 2, . . . . (8)

Consequently, we obtain the remarkable property

Q′
n(x) = 1 + 2Q1(x) + · · · + (n − 1)Qn−2(x) + nQn−1(x), n = 1, 2, . . . .

The polynomials Qn with their coefficients are denoted by

Qn(x) = x + an,2x
2 + an,3x

3 + an,4x
4 + · · · + an,n−1x

n−1 + xn. (9)

The coefficients an,k are obtained recurrently as a direct result from (8),

an,k = an−1,k +
(n

k

)
an−1,k−1, n = 1, 2, . . . , k = 1, 2, . . . , (10)

with the following initial and boundary values,

a0,0 = 1, an,0 = an,n+1 = 0, an,1 = an,n = 1, n = 1, 2, . . . .
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4 Summation by diagonals

The application of the Taylor theorem for the p.g.f. F(t, s) in the neighbourhood of
s = 1, where F(t, 1) = 1, yields the series expansion

F(t, s) = 1 +
∞∑

n=1

F (n)
s (t, 1)

(s − 1)n

n! = 1 +
∞∑

n=1

Qn−1(Kt)(s − 1)n. (11)

This series expansion (11) in the neighbourhood of the point s = 1 has a very little
radius of convergence. This prevents the calculation of values of p.g.f. F(t, s) in
the neighbourhood of zero by (11). To overcome this disadvantage we proceed with
solution using summation of diagonal terms. The following convenient diagonal form
for F(t, s) is obtained after placing (9) in (11)

F(t, s) = 1 + (s − 1) +
∞∑

n=2

(s − 1)n
n−1∑
j=1

an−1,j (Kt)j .

When the order of summation is exchanged, the p.g.f. takes the form

F(t, s) = 1 + (s − 1)

∞∑
j=0

(s − 1)j
∞∑

n=j

an,n−j (Kt(s − 1))n−j . (12)

The main diagonal is obtained for j = 0, where a0,0 = 1, an,n = 1, and

(s − 1)

∞∑
n=0

(Kt(s − 1))n = (s − 1)

1 − Kt(s − 1)
.

To avoid a confusion with the boundary values, the formula (12) is rewritten as fol-
lows:

F(t, s) = 1+ (s − 1)

1 − Kt(s − 1)
+(s−1)

∞∑
j=1

(s−1)j
∞∑

n=j+1

an,n−j (Kt(s−1))n−j . (13)

The summation by the second diagonal (the first after the main one) is computed for
j = 1 and it is based on the recurrence relation (10), taking following form,

an,n−1 = an−1,n−1 +
(

n

n − 1

)
an−1,n−2, n = 2, 3, . . . .

It can be easily rewritten by using harmonic numbers Hn [3] as follows,

an,n−1 = n(Hn − 1) = n

(
1

2
+ 1

3
+ · · · + 1

n

)
.

After some technical work, the summation on the second diagonal for |s−1| < 1/Kt

is generalised as

(s − 1)2
∞∑

n=2

an,n−1(Kt(s − 1))n−1 =
(

s − 1

1 − Kt(s − 1)

)2

(− log(1 − Kt(s − 1))).
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Proceeding with the summation by the following diagonals, j ≥ 2, as it is shown
in Appendix, leads us to a generalised solution for coefficients an,n−j and series ex-
pansion (13). Not surprisingly, working with diagonal forms implies the inclusion of
combinatorial recurrent relations. In this case, the generalised solution and its triangu-
lar form involve the usage of the unsigned Stirling numbers of the first kind |s(n, k)|
and equivalently of harmonic numbers [14, 4]. The complete implementation is sum-
marised in the following lemma.

Lemma 2. The coefficients of polynomials (9),

Qn(x) = x + an,2x
2 + an,3x

3 + an,4x
4 + · · · + an,n−1x

n−1 + xn,

are expressed by the unsigned Stirling numbers of the first kind as follows:

an,n−j = 1

(n − j)!
j+1∑
k=1

(−1)j+1−k|s(n + 1, k)|, n = j + 1, j + 2, . . . . (14)

Proof. The representation (14) is valid for the first and second diagonals (j = 0,

j = 1), and for the first vertical column (j = n − 1),

an,n = 1

n! |s(n + 1, n)| = 1, an,1 = 1

1!
n∑

k=1

(−1)n−k|s(n + 1, k)| = 1,

an,n−1 = 1

(n − 1)! {−|s(n + 1, 1)| + |s(n + 1, 2)|} = 1

(n − 1)! {−n! + n!Hn}.

Moreover, for j = n − 2 we have

an,2 = 1

2!
n−1∑
k=1

(−1)n−1−k|s(n + 1, k)| = 1

2! {−1 + |s(n + 1, n)|} = (n + 2)(n − 1)

4
,

where |s(n + 1, n)| = (
n+1

2

)
, see [3].

Now we verify whether the representation (14) yields the main recurrence relation
(10) on the coefficients of the polynomials Qn(x), rewritten as follows,

an,n−j = an−1,n−j +
(

n

n − j

)
an−1,n−1−j , j = 1, 2, . . . , n − j > 0. (15)

The proof is based on the main relation of the unsigned Stirling numbers of the first
kind represented as |s(n + 1, k)| = n|s(n, k)| + |s(n, k − 1)|. Now, it is computed
from (14) and (15) that

an−1,n−j = 1

(n − j)!
j∑

k=1

(−1)j−k|s(n, k)| = 1

(n − j)!
j+1∑
k=1

(−1)j+1−k|s(n, k − 1)|,

where the number of summands j = (n−1)− (n−j)+1. We remark that for k = 1,
and n > 1 the |s(n, k − 1)| = |s(n, 0)| = 0.
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In the same way,

(
n

n − j

)
an−1,n−1−j =

(
n

n − j

) (
1

(n − 1 − j)!
) j+1∑

k=1

(−1)j+1−k|s(n, k)|,

where the number of summands j + 1 = (n − 1) − (n − 1 − j) + 1. Then

an−1,n−j +
(

n

n − j

)
an−1,n−1−j

= 1

(n − j)!
j+1∑
k=1

(−1)j+1−k{|s(n, k − 1)| + n|s(n, k)|}.

4.1 Solution of the Kolmogorov equation by the diagonal summation
The computed coefficients an,n−j (14) allow to obtain the solution to the forward
Kolmogorov equation of F(t, s). This can be done with a composite recurrent proce-
dure of polynomials Qn. The sequence of iterations yields the following functions as
a part of this solution:

L(t, s) := − log(1 − Kt(s − 1)), A(t, s) := (s − 1)

1 − Kt(s − 1)
.

Their consecutive derivatives by s (respectively by t) will be denoted as

∂nF (t, s)

∂sn
= F (n)

s (t, s),
∂nL(t, s)

∂sn
= L(n)

s (t, s),
∂nA(t, s)

∂sn
= A(n)

s (t, s).

Obviously, the following generalised forms are valid:

L′
s(t, s) = Kt

1 − Kt(s − 1)
, L′

t (t, s) = K(s − 1)

1 − Kt(s − 1)
= KA(t, s), (16)

A′
s(t, s) = 1

(1 − Kt(s − 1))2 , A′
t (t, s) = K(s − 1)2

(1 − Kt(s − 1))2 = KA2(t, s). (17)

We remark also the following identities:

A′
t (t, s) = K(s − 1)2A′

s(t, s), L′
t (t, s) = (s − 1)L′

s(t, s)

t
. (18)

Now, the solution to the forward Kolmogorov equation (7) can be defined and proved
by the following theorem.

Theorem 1. The p.g.f. of a Markov process with geometric branching

F(t, s) = 1 +
∞∑

n=0

{
(s − 1)

1 − Kt(s − 1)

}n+1

Qn(− log(1 − Kt(s − 1))) (19)

yields the forward Kolmogorov equation for |s − 1| < 1/Kt ,

∂F (t, s)

∂t
= K(s − 1)2

2 − s

∂F (t, s)

∂s
.



Critical MBP 239

Proof. After denoting L := L(t, s), A := A(t, s), we rewrite (19) as

F(t, s) = 1 +
∞∑

n=1

{A(t, s)}nQn−1(L(t, s)), Q0(L) = 1. (20)

The first derivatives by t and s, respectively, in (20) are

F ′
t (t, s) =

∞∑
n=1

{nAn−1(t, s)Qn−1(L)A′
t (t, s) + An(t, s)Q′

n−1(L)L′
t (t, s)}

and

F ′
s(t, s) =

∞∑
n=1

{nAn−1(t, s)Qn−1(L)A′
s(t, s) + An(t, s)Q′

n−1(L)L′
s(t, s)}.

Then, taking into account the relations (16)–(18) and (8), the first derivatives by t and
s are

F ′
t (t, s) = KA2(t, s)

∞∑
n=1

An−1(t, s)Q′
n(L) = A′

t

∞∑
n=1

An−1(t, s)Q′
n(L)

and

F ′
s(t, s) = A′

s(t, s)

∞∑
n=1

An−1(t, s){nQn−1(L) + Kt(s − 1)Q′
n−1(L)},

or equivalently,

F ′
s(t, s) = A′

s(t, s)

∞∑
n=1

An−1(t, s){Q′
n(L) − Q′

n−1(L) + Kt(s − 1)Q′
n−1(L)}.

The forward Kolmogorov equation can be written as

(1 − (s − 1))F ′
t (t, s) = K(s − 1)2F ′

s(t, s). (21)

The left-hand side of (21) is

KA2(t, s)

{ ∞∑
n=1

An−1(t, s)Q′
n(L) − (s − 1)

∞∑
n=1

An−1(t, s)Q′
n(L)

}
.

The right-hand side of (21) is

KA2

{ ∞∑
n=1

An−1(t, s)Q′
n(L) − (1 − Kt(s − 1))A(t, s)

∞∑
n=1

An−2(t, s)Q′
n−1(L)

}

= KA2

{ ∞∑
n=1

An−1(t, s)Q′
n(L) − (s − 1)

∞∑
n=2

An−2(t, s)Q′
n−1(L)

}
,

because, Q0 = 1 and Q′
0 = 0. Then, the change of the summation index gives

∞∑
n=1

An−1(t, s)Q′
n(L) =

∞∑
n=2

An−2(t, s)Q′
n−1(L).
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Table 1. Q′
n(x) = Q′

n−1(x) + nQn−1(x)

Polynomials Qn Polynomials Q′
n

Q0(x) = 1 Q′
0(x) = 0

Q1(x) = x Q′
1(x) = 1

Q2(x) = x + x2 Q′
2(x) = 1 + 2x

Q3(x) = x + 5x2

2 + x3 Q′
3(x) = 1 + 5x + 3x2

Q4(x) = x + 9x2

2 + 13x3

3 + x4 Q′
4(x) = 1 + 9x + 13x2 + 4x3

Q5(x) = x + 14x2

2 + 71x3

3! + 77x4

12 + x5 Q′
5(x) = 1 + 14x + 71x2

2 + 77x3

3 + 5x4

Fig. 4. The graphs of the recurrent proportion Qn−1/Qn for different Kt

5 Statistical inferences

The polynomial recurrent relation of the form (8), (9) is an important computation
enhancement enabling a tabular representation, as is shown in Table 1. This recur-
rent relation converges quickly due to minimising of the fraction Qn/Qn−1 (see Fig-
ure 4). For practical implementations, only about n = 15 recurrent computations are
required to obtain values for the p.g.f. F(t, s) as close as about 10−4 to the solution
obtained through the Lambert-W function (see Figure 2).

The probabilities P(X(t) = n) of the critical geometric branching process can
be computed directly by the usage of any available software tool for the Lambert-W
function, as it is shown in [12]. However, the statistical measures as variance, skew-
ness, and kurtosis remain undefined relying on the solution based on the Lambert-W
function. Their expressions follow directly from the representation of the n-th mo-
ments. It is given by the Stirling numbers of the second kind S(n, k) [14, 4] and
factorial moments as

E[X(t)]n =
n∑

k=1

S(n, k)E[X(t)]k↓, n = 1, 2, . . . .
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Thus, the variance of particles X(t) when E[X(t)] = 1 is

V ar[X(t)] = E[X(t)−1]2 = EX(t)(X(t)−1)−E[X(t)−1] = F (2)
s (t, 1), t > 0.

The shape and skewness are also defined by the factorial moments:

E[(X − 1)3] = E[X(X − 1)(X − 2)] + E[X − 1] = F (3)
s (t, 1),

and

Skew[X] = E[(X − 1)3]
(E[(X − 1)2])3/2 = F

(3)
s (t, 1)

(F
(2)
s (t, 1))3/2

.

Finally, the function A(t, s) in the series expansion (19), (20) for geometric branch-
ing reproduction is of exactly twice greater intensity β = 2K than the p.g.f. of
the critical birth-death process, see [13]. In this case the lifetime parameter K > 0
(called killing rate) controls the intensity of reproduction and the size of population
X(t), t > 0.

This connection conveniently enables comparison between different models for
statistical inferences. For instance, it is not difficult to observe in parallel the models
of critical geometric branching (GB), critical linear birth-death processes (BD) and
the models with the number of progeny particles concentrated in (0, 2, 3, 4). The
reproduction p.g.f. for the new proposed models are

hBD(s) = E[sη] = 1 + s2

2
, h3(s) = 7

12
+ s2

4
+ s3

6
, h4(s) = 2

3
+ s2

8
+ s3

12
+ s4

8
.

The intensities of reproduction are respectively K , β, α, γ . The corresponding in-
finitesimal generating functions and derivatives at s = 1 are, respectively,

fGB(s) = K(s − 1)2

2 − s
, f ′′

GB(s) = 2!K, . . . , f
(n)
GB(s) = n!K,

fBD(s) = β(s − 1)2

2
, f ′′

BD(s) = β, f
(3)
BD(s) = 0,

f3(s) = α

12
(1 − s)2(2s + 7), f ′′

3 (1) = 3α

2
, f

(3)
3 (1) = α, f

(4)
3 (1) = 0.

f4(s) = γ

24
(1 − s)2(3s2 + 8s + 16), f ′′

4 (1) = 9γ

4
,

f
(3)
4 (1) = 7γ

2
, f

(4)
4 (1) = 3γ.

In order to keep equal variances for all models, we take

β = 2K, α = 4K/3, γ = 8K/9.

Under this condition, the measures of asymmetry are ordered as follows:

Skew(BD) < Skew(h3) < Skew(h4) < Skew(GB).
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The series expansion for reproduction defined by f3 is approximated as

F(t, s) = 1 + (s − 1)

1 − 3αt
4 (s − 1)

+ 2

9

{
(s − 1)

1 − 3αt
4 (s − 1)

}2 (
− log

(
1 − 3αt

4
(s − 1)

))
+ · · · .

The explicit solution to the Kolmogorov equation for f3 is

F(t, s) = C−1(e3αt/4C(s)), C(x) =
(

2x + 7

x − 1

)2/9

e1/(1−x), |1 − x| <
4

3αt
.

Furthermore, the intensities for similar branching processes could be computed
using a higher order approximation of the p.g.f. F(t, s).

6 Conclusion

The continuity of the p.g.f. F(t, s) in the neighbourhood of the point s = 1 for
critical branching process with geometric reproduction is proved analytically by the
representations (19), (20) based on the factorial moments. This is an important exten-
sion to the already available solution based on the Lambert-W function and provides
a computational tool for MBP with geometric reproduction.

A Appendix

In this Appendix, we formally state and prove some formulas mentioned in the main
text. This additional part is useful to give technical details for the computations of
summation by diagonals introduced in Section 4.

The general combinatorics formulas are derived from the generating and expo-
nential generating functions of the corresponding sequences [3, 14]. For example,

− log(1 − z) =
∞∑

n=1

zn

n
=

∞∑
n=1

|s(n, 1)|zn

n! ,
− log(1 − z)

1 − z
=

∞∑
n=1

Hnz
n.

The formula (28) in [6] for the series expansion of the Lambert-W function is based
on the iterated logarithmic function L2 := log(log(x)) and the unsigned Stirling
numbers of the first kind |s(n, k)|. It is natural that the same notions take place in the
representations (19), (20).

The representation of the composite logarithmic and linear-fractional functions is
given by the exponential partial Bell polynomials Bn,k(x•) over the sequence x• =
(x1, x2, xn, . . .) as

(− log(1 − z))r

(1 − z)m+1 =
∞∑

n=m

r∑
j=1

Br,j (x•)
(

n

m

)
zn−m. (22)
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The sequence x• is expressed by the powers of the harmonic numbers Hm
n and the

generalised harmonic numbers H
(m)
n , H

(m)
0 = 0, m = 1, 2, . . . , [11], defined as

follows:

Hm
n =

(
1 + 1

2
+ · · · + 1

n

)m

, H(m)
n = 1 + 1

2m
+ · · · + 1

nm
.

The elements of the sequence x• are

x• = ({Hn − Hm}, (−1)2−1{H(2)
n − H(2)

m }, . . . , (−1)r−1(r − 1)!{H(r)
n − H(r)

m }).
The relation between the Stirling and harmonic numbers reads [3, 4]:

|s(n + 1, r + 1)| = n!
r!

r∑
k=1

Br,k(Hn,−1!H(2)
n , . . . , (−1)r−1(r − 1)!H(r)

n ). (23)

The summation by the several first diagonals is obvious. To prove that the fourth diag-
onal is given by A4(t, s)Q3(L(t, s)), we calculate, applying (22), the series expansion
of

(− log(1 − z))3 + 5
2 (− log(1 − z))2 + (− log(1 − z))

(1 − z)4 .

The coefficient an,n−3 calculated from (23) and (14) is

an,n−3 = 1

(n − 3)! {|s(n + 1, 4)| − |s(n + 1, 3)| + |s(n + 1, 2)| − |s(n + 1, 1)|}

= n(n − 1)(n − 2){Hn − 1 − 1

2
(H 2

n − H(2)
n ) + 1

3! ((Hn)
3 − 3HnH

(2)
n−1 + 2H(3)

n )}.

The comparison of the terms at zn−3 leads to the equality

(Hn − H3)
3 − 3(Hn − H3)(H

(2)
n − H

(2)
3 ) + 2(H (3)

n − H
(3)
3 )

+5

2
{(Hn − H3)

2 − (H (2)
n − H

(2)
3 )} + (Hn − H3)

= 3!(Hn − 1) − 3!
2

(H 2
n − H(2)

n ) + {(Hn)
3 − 3HnH

(2)
n + 2H(3)

n }.

The coefficients at H 3
n and H

(3)
n are evident. The coefficient at H 2

n is calculated as

−3H3 + 5/2 = −3. The coefficient at H
(2)
n is calculated as −3(Hn − H3) − 5/2 =

3 − 3Hn.
At the end of combinatoric remarks, we cite the formula (28) of [6]. When we

denote
W = W(x), L1 = log(x), L2 = log(log(x)),

the following expansion takes place:

W = L1 − L2 +
∞∑

k=0

∞∑
m=1

(−1)k|s(k + m, k + 1)|
m!

(
L2

L1

)m (
1

L1

)k

.

We remark that the software programme for numerical evaluating of the Lambert-W
function is created basically on this formula.



244 A. Tchorbadjieff, P. Mayster

Funding

This research has been partially supported by the Bulgarian National Science Fund,
grant No. KP-06-H22/3.

References

[1] Adler, A.: lamW: Lambert-W Function (2015). https://CRAN.R-project.org/package=
lamW

[2] Athreya, K.B., Ney, P.E.: Branching Processes. Springer, New York (1972) MR0373040

[3] Choi, J., Srivastava, H.M.: Some summation formulas involving harmonic numbers
and generalized harmonic numbers. Math. Comput. Model. 54, 2220–2234 (2011)
MR2834625. https://doi.org/10.1016/j.mcm.2011.05.032

[4] Connon, D.: Various applications of the (exponential) complete Bell polynomials. arXiv
2010, arXiv:1001.2835.

[5] Consul, P.C., Famoye, F.: Lagrangian Probability Distributions. Birkhäuser, Boston
(2006) MR2209108

[6] Corless, R.M., Jeffrey, D.J., Knuth, D.E.: A sequence of series for the Lambert-W
function. In: Proceedings of the 1997 International Symposium on Symbolic and Al-
gebraic Computation. ISSAC ’97, pp. 197–204. ACM, New York (1997) MR1809988.
https://doi.org/10.1145/258726.258783

[7] Harris, T.E.: The Theory of Branching Processes. Springer, Berlin (1963) MR0163361

[8] Johnson, N.L., Kemp, A.W., Kotz, S.: Univariate Discrete Distributions. John Wiley &
Sons, Hoboken (2005) MR2163227. https://doi.org/10.1002/0471715816

[9] Merlini, D., Sprugnoli, R., Verri, M.C.: Lagrange inversion: when and how. Acta Appl.
Math. 94, 233–249 (2006) MR2290868. https://doi.org/10.1007/s10440-006-9077-7

[10] Sevastyanov, B.A.: Branching Processes. Nauka, Moscow (1971) MR0345229

[11] Spies, J.: Some identities involving harmonic numbers. Math. Comput. 55, 839–863
(1990) MR1023769. https://doi.org/10.2307/2008451

[12] Tchorbadjieff, A., Mayster, P.: Geometric branching reproduction Markov processes.
Mod. Stoch. Theory Appl. 7(4), 357–378 (2020) MR4195641. https://doi.org/10.15559/
20-vmsta163

[13] Tchorbadjieff, A., Mayster, P.: Models induced from critical birth death process with
random initial conditions. J. Appl. Stat. 47(13-15), 2862–2878 (2020) MR4149585.
https://doi.org/10.1080/02664763.2020.1732309

[14] Wang, W., Wang, T.: General identities on Bell polynomials. Comput. Math. Appl. 58,
104–118 (2009) MR2535972. https://doi.org/10.1016/j.camwa.2009.03.093

https://CRAN.R-project.org/package=lamW
https://CRAN.R-project.org/package=lamW
http://www.ams.org/mathscinet-getitem?mr=0373040
http://www.ams.org/mathscinet-getitem?mr=2834625
https://doi.org/10.1016/j.mcm.2011.05.032
http://arxiv.org/abs/1001.2835
http://www.ams.org/mathscinet-getitem?mr=2209108
http://www.ams.org/mathscinet-getitem?mr=1809988
https://doi.org/10.1145/258726.258783
http://www.ams.org/mathscinet-getitem?mr=0163361
http://www.ams.org/mathscinet-getitem?mr=2163227
https://doi.org/10.1002/0471715816
http://www.ams.org/mathscinet-getitem?mr=2290868
https://doi.org/10.1007/s10440-006-9077-7
http://www.ams.org/mathscinet-getitem?mr=0345229
http://www.ams.org/mathscinet-getitem?mr=1023769
https://doi.org/10.2307/2008451
http://www.ams.org/mathscinet-getitem?mr=4195641
https://doi.org/10.15559/20-vmsta163
https://doi.org/10.15559/20-vmsta163
http://www.ams.org/mathscinet-getitem?mr=4149585
https://doi.org/10.1080/02664763.2020.1732309
http://www.ams.org/mathscinet-getitem?mr=2535972
https://doi.org/10.1016/j.camwa.2009.03.093

	Introduction
	Backward Kolmogorov equation for critical geometric branching mechanism
	Forward Kolmogorov equation and factorial moments
	Summation by diagonals
	Solution of the Kolmogorov equation by the diagonal summation

	Statistical inferences
	Conclusion
	Appendix

