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1 Introduction

In this paper we establish the averaging principle for the stochastic parabolic equation

Lug(t, x)dt + f(t/e,x,us(t,x))dt +o(t/e, x)du(x) =0, M
ug (0, x) = up(x),

where ¢ is a small positive parameter, (¢, x) € [0, T] x R, u is a general stochastic
measure on Borel o-algebra on R (see Section 2), f, o are measurable functions, L is
the operator of the form

2
Lu(t, x) —a(t)M +b(t )8”0 X 4 eyt x) - % )
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Here a, b, ¢ are defined on [0, T]. We consider convergence u.(t,x) — u(t,x),
& — 0T, where u is the solution of the averaged equation

Lii(t, x)dt + f(x,i(t,x))dt +6(x)du(x) =0, 3)
u(0,x) =upx).

Functions f, & are defined below. Note that we consider solutions to the formal equa-
tions (1) and (3) in the mild form.

Averaging is widely used to describe the asymptotic behaviour of both stochastic
and deterministic systems. Stochastic parabolic equation with the random noise repre-
sented by a general stochastic measure was introduced in [1]. The averaging principle
for two-time-scales system driven by two independent Wiener processes was studied,
for example, in [7]. Some other equations driven by Wiener process are considered
in [4, 6] and [20]. Different types of equations with general stochastic measures are
investigated in [2, 3, 14, 19] and [16].

The rest of the paper is organized as follows. Section 2 contains the basic facts
concerning stochastic measures and integrals with respect to them. Section 3 contains
precise formulation of the problem, assumptions, auxiliary statements while the main
result is proved in Section 4. Some examples are given in Section 5.

2 Preliminaries

Let (2, F, P) be a complete probability space and B be a Borel o-algebra on R.
Denote the set of all real-valued random variables defined on (2, F,P) as Ly =
Lo($2, F, P), convergence in Ly means the convergence in probability.

Definition 1. A o-additive mapping u : B — Ly is called stochastic measure (SM).

In other words, w is a vector measure with values in Ly. We do not assume any
martingale properties or moment existence for SM.

Consider some examples of SMs. If M, is a square integrable martingale then
w(A) = fOT 14(¢t) dM; is an SM. a-stable random measure on B for « € (0, 1) U
(1, 2], as it is defined in [18, Sections 3.2-3.3], is an SM by Definition 1. For a frac-
tional Brownian motion W/ with Hurst index H > 1/2 and a bounded measurable
function f : [0, T] — R we can define an SM (A) = fOT f(140) dW,H, see [11,
Theorem 1.1]. Some other examples can be found in [14].

In [10, Chapter 7] the definition of the integral [ 41 8du, where g : R — Risa
deterministic measurable function, A € B and pu is an SM, is given and its properties
are studied. In particular, every bounded measurable g is integrable with respect to
(w.r.t.) any p. This integral was constructed and studied in [10] for p defined on an
arbitrary o -algebra, but in our paper, we consider SM on Borel subsets of R.

In the sequel, i denotes a SM, C and C(w) denote positive constant and pos-
itive random constant, respectively, whose exact values are not important (C < oo,
C(w) < oo a.s.).

We will use the following statement.
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Lemma 1~(Lemma 3.1in[12]). Let ¢y : R — R, [ > 1, be measurable functions
such that ¢(x) = Zfil |1 (x)| is integrable w.r.t. ;1 on R. Then

2
Z(/ ) d,u) <00 a.s.
— \JR
We consider the Besov spaces BY,([c, d]),0 < a < 1, with a standard norm

e 2 —2a—1 172
gl B (e.an = N8NLy(te.an + ( A (w2(g,r))r dr) ,
where

d—h 1/2
wagr) = sup (7 lgtr+ ) - g dy)

O<h<r

For any j € Z and all n > 0, put

The following lemma is a key tool for estimates of the stochastic integral.

Lemma 2 (Lemma 3 in [13]). Let Z be an arbitrary set, and the function q(z, s) :
Z x[j, j+ 11 = Ris such that all paths q(z, -) are continuous on [ j, j + 1]. Denote

Gn(z.s)= Y Q(Z,d((,f),l)n)lA](c.m(S)~

1<k<2n

Then the random function

n(z) =/ q(z,s)du(s), z € Z,
(,Jj+1]
has a version

() = / g0z, ) du(s)
(j.j+1]

+Z(/(

l‘l>1 ] j+1]

qn(z,8)du(s) — f

19 dp) @)
(Jj,j+1]

such that forall B >0, w € Q,z€ Z

~ . . n 1/2
@I < lat Hu(Gs j+ D1+ {327 3 g dd) - di )P

n>1 1<k<2n
—nB ) 172
< [>27 3 maghr) )
n>1 1<k=<2n

Theorem 1.1 [9] implies that for @ = (8 + 1)/2,
. 1/2
[>2% 3 la(zaf)) —a(zd )P} = Cla@ sz ©
n>1 1<k<2n
From Lemma 1 it follows that foreach 8§ > 0, j € Z

Y2 N juAgHP < +oo as.

n>1 1<k<2n
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3 Formulation of the problem and auxiliary lemmas

‘We consider the mild solutions to (1), i.e. the measurable random functions u. (z, x) =
ug(t,x, ) : [0, T] x R x € — R such that the equations

t
ua(t,X)Z/Rp(t,x—y;o)uo(y)dyﬂL/O dS/Rp(t,x—y;S)f(S/&yyus(s,y))dy

t
+fRdM(y)/0 p(t,x —y;s)o(s/e, y)ds @)

hold a.s. for each (¢, x) € [0, T] x R. Here p is the fundamental solution of operator
L from (2).
We will refer to the following assumptions on f, o, ug.

Assumption E1. ug : R x @ — R is measurable and for all y, y1, y € R

luo(y, w)| < C(w), |uo(y1, @) — uo(y2, )| < Lyg(@)]yr — y2 [P0,

where C(w), L,,(w) are random constants, B(ug) > 1/2.

Assumption E2. f: R, x R x R — R is measurable, bounded, and

|f (s, v, v1) — f(s, y2,v2)] < Ly(ly1 — y2l + [v1 — v2l)

for some constant L ¢ and all s € Ry, y1, y2, v1, v2 € R.

Assumption E3. ¢ : R; x R — R is measurable, bounded, and

o (s, y1) — 0 (s, y2)| < Lo |y1 — y2|F©@

for some constants Ly, 1/2 < (o) < l,and alls € Ry, y;, y» € R.
Assumption E4. There exist the limits
t

_ 1 [! 1
f(y,v) = lim —/ f(s,y,v)ds, o(y)= lim — | o(s,y)ds.
t—oo t Jy 0

t—oo t

Note that if f, o satisfy the conditions E2 and E3, respectively, f and & satisfy
them as well. We will show that for f; the proof for & is analogous. f is measurable as
a limit of measurable functions, its boundedness is obvious while Lipschitz condition
follows from the inequalities

For o = Fozw| = lim |2 [ (6000 = 1662w

1
< limsup — f | f(sy1,v1) = f(s. y2,v2)|ds < Ly(ly1 — y2l + [v1 — v2).
11— 00
Therefore, functions
Hy(r,y,v) = f(r,y,v) = f(y,0),
Ho'(r’y)ZO'(rvy)_a—(y)a FERJ’" y,UGR

are bounded.
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Assumption ES. Functions
-
Gf(r,y,v)=/0 (f(s,y,v) = f(y,v)) ds,

Gy(r,y) = fr(cr(s, y)—o(y)ds, reRi, y,velR
0

are bounded.

Assertion E5 holds, for example, if f(s, y, v) and o (s, y) are periodic in s for
each y, v, and the set of values of minimal period is bounded.

Assumption L. Functions a(t), b(t), c(t) are continuous in [0, T'], and for some
positive constants 8, L, § the following inequalities hold in [0, T']

la(t)) —a(t)| < Lt —nl?, a() > 6.

[8, section 4, Theorem 1] shows that under assumption L the fundamental solution
exists and

_1 eyl

lp(t,x —y; )| < M@t —s)"2e T, 3

ap(t,x —y; _eoy?

‘—p( YY) gy S ©)
dy

3?p(t,x — y; oy |2

PPUX =V oy — 5y 2530 (10)
dy

op(t, x — y; _ _ha—y?

’w <M —s) 3/2 0= , (11)

where A and M are positive constants. Moreover, p(t, x — y; s) satisfies the equation

32 d
a() =L —b(s)=L + c(s)p +
ay ay

(see [8, (4.17)]). Using boundedness of a, b, ¢ and estimates (8)—(10), we obtain that

0
»_,
as

op(t,x —y; s) op(t,x —y;s)
——————| < [e@®llpt, x = y; )| + [b(s)|| —————
as ay
Zpt,x — y; ey
+|a(s)|‘% < M(t — 5) 323 (12)
y

(without loss of generality we can say that constant M in (12) is the same as in (8)—
(11)). Let the stochastic measure u satisfy the following condition.

Assumption M. |y|? is integrable w.r.t. £ on R for some p > 1/2.

Consider the mild solution of (3):
t
0 = [ =y dy+ [ as [ pex =y fovito, dy

1t
+/Rdu(y)/0 plt,x —y;s)o(y)ds. (13)
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According to [1, Theorem], fulfillment of the conditions E1-E3, L and M imply
that solutions of (7), (13) exist, are unique and have Holder continuous versions on
[t,T] x [—K, K] for each 7, K > 0. Therefore, u, and i have continuous versions
on (0, T] x R.

Following auxiliary lemmas are the analogues of [16, Lemma 4.1.-4.3.].

Lemma 3. Let E3, L and M hold. Then for version (4) of

t
ﬁ(x,t)=/du(y)/ p(t,x —y;s)o(s,y)ds, tel0,T],
R 0

for any y < 1/4 there exists a random constant C(w) < 00 a.s. (that depends on y,
is independent of x) such that

[0 (x, t1) — D (x, )| < C(w)|t1 — 1] (14)
forallt;,t, € [0,T], x € R.
Lemma 4. Let Assumptions EI-E3, L, M hold, and u be a solution of equation
u(t, x) = / p(t, x — y: 0uo(y) dy
R

t
+/0 ds/Rp(t,x =y f(s,y,uls,y)dy

t
+/ du(y)/ pt,x —y;s)o(s,y)ds.
R 0

Then for the continuous version of u, each 0 < y < 1/4, some C(w), and all
O0<t) <th <T,xeR,itholds
lu(t, x) —u(n, x)| < C(w)(Inn —Inz
+hinty —tfiInt; — (2 — 1) In(ta — t1) + (12 — t)).
These lemmas are proved similarly to corresponding lemmas in [16]. We refer

to (9), (11) instead of [16, (3.2)] and use (8) to prove the analogues of [16, (4.2),
4.3)].

Lemmas. Leth(r,y,z) : Ry xRx Z - R, i_z(y, z) : R x Z — R be measurable
for each fixed z, the functions

H(r,y,2) =h(r,y,2) —h(y,2),G(r, y,2) = /O (h(v,y,2) = h(y, 2))dv

be bounded on Ry x R x Z, the functions ¢1, 92 be measurable on [0, T] and the
inequality 0 < ¢1(¢) < @2(t) <t hold on [0, T]. Then

©2(1)
’/ dy/ pt,x —y;s)H(s/e, y,z)ds‘ < Ce¢llnegl, (15)
R @1(t)

forallx e R, t € [0, T], € > 0, where the constant C does not depend on @1, ¢;.
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Proof. Assume that ¢ (f) — ¢1(#) > €. In this case we can rewrite the inner integral

et - )
as following: [ gﬁ 2(([)) =/ ;ﬁ 2((0) f f(zz((t)_ .- We have that

(1)
‘/ dy/ pt,x —y,s)H(s/e, y, 2)ds
R @

o (1) —¢

@2(1)
SC/ dS/ Ip(t, x — y;s)|ldy < Ce. (16)
1% R

o (1) —¢

On the other hand,

o (t)—¢
‘/ dy/ pt,x — y;s)H(s/s,y,z)ds‘
R o1(1)

p(t)—¢
=Ce

/R (Pt x = y:9)G(s/e.v.2)

/“’2(’)_5 ap(t. x = y; 5)
1(0) ds

+/| (t ) 8)|d +/<ﬂ2(t)—8d / dy W)
pt,x —y;p(t) —€)|dy o[ W=
N P1(0) R (t —5)3/2

p—e g

@1(1)

G(s/e, y, z)ds)dy

< Cs(/Rlp(t, x—yig1(0)|dy

<Ce+ Cs/ = Cs(l —In(e +1t —@2(t)) +In(t — ¢1 (t)))

o LS
<Ce(l+|InT|V|Ing]) < Cellnel,

and we get (15). If ¢ () — @1 (t) < &, we obtain (15) similarly to (16). |
The following lemma is an analogue of [15, Lemma 3].
Lemma 6. Leth(r,y) : Ry xR — R, h(y) : R — R be measurable, the functions
r
H(r,y) =h(r,y) —h(y), G(r,y) = fo (h(v, y) — h(y))dv

be bounded on R x R. Then

t
| / pli.x — i His/e, y)ds| < CVE. (17)
0

forallx e R, t €[0,T], ¢ > 0.

Proof. If r > ¢, we can use the decomposition fot = (;_8 + f,’_g.
For the first summand,

[ vt = vt e, vias| = el piv. = yi 9605/
0

/’8 ap(t, x —y; )
0

8S
t—e¢
/
0

ap(t,x —y; (8), (12) 1=
M)ds) < C\/E-FCS/ ds(t—s)fz'/2 < C+/e.
N 0

(18)

G(s/e, y)ds

G(0,y)=0
< Cellpt,x—y;t—¢)l
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For the second summand,

t t
/ pt, x — v 5)H(s /e, y)ds‘ < c/ (=) ds =Cye. (19
1—& r—e

From (18), (19) we obtain (17). If t < ¢, (17) is a corollary of (19). |

4 The main result

We are ready to formulate the main result of the paper.
Theorem 1. Let Assumptions EI-E5, L, M hold. Then for continuous versions of u.
and u, forany 0 < y1 < min{%, %(1 - %)} we have

sup e M ug(t, x) —i(t, x)| < +00 a.s. (20)
e>0,t€[0,T],xeR

Proof. For each (r,x) € [0,T] x R we take versions of stochastic integrals

Jedn) fo p(t.x — yis)a(s/e, y)ds and [pdu(y) [y p(t,x — y;$)5(y)ds that
are defined by Lemma 2. We obtain

lue(t, x) —u(t, x)|

t
< /0 ds/Rp(z,x — VS (/8 v e, 1)) = [(s/e, v s, ¥)) dy|
t -
+ \/O ds /R Pt = ¥i9)(f (s/e, v, s, ¥)) = v, s, ) dy| + I&]
=11 + L+ |&], 21
where

t
& =/Rdu(y)/0 p(t,x —y;s)o(s/e, y)ds

t
—/ du(y)/ p(t,x —y;s)o(y)ds.
R 0

To estimate the second term, we divide [0, 7] into n segments of length A = T'/n
and rewrite I, as

n—1

Izz‘Z/

k=0 (kAN (k+1) ANnt]

ds/ pt,x —y;s)
R

X (£(s/e v, (5. ) = F 0. s, ¥)) dy .

Thus,

-1

L < Z(‘/ ds/ p(t,x =y 9)(f(s/e, y, uls, y))
(kANE, (k+1)ANt] R

k=0
— f(s/e,y kA, ) dy]
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+ ‘/ dS/ pt,x — y;:9)(f(s/e, y, u(kA, y))
(kANE, (k+1)ANAt] R

— Ok, y) dy|

+ [ ds [ pe.x = yio)(Fo itk )
kAAL (k+1)AAL] R

~ F(yits, y)))dyD
n—1

=Y U + 1Y + 1§).
k=0

Applying Lemma 5 for h(r, y, 2) = f(r, y, i(z, ), h(y,2) = f(y, it (z, y)), o1 (t) =
kANt o2(t) =(k+1)A AL kef0,...,n— 1}, we obtain
12(];) < Ce|lneg|.

We estimate Z;} Iz(lf) and 12((1)) separately. For > } 1201() we use Lemma 4:

n—1

n—1
M|
k=1

dS/ Ip(, x —y; Hluls,y) —ukA, y)|dy
kAAL, (k1) AAL] R

k=1
n—1
§LfC(a))Z/dy/ Ip(t, x — y; 5)|(ns — InkA
o /R kAL, (k+1)AAT]
+slns —kAInkA — (s — kA)In(s — kA) + (s — kA)Y)ds. (22)
(recall that 0 < y < 1/4). Note that for each k € {1, ..., n — 1} the function

fi(s) =Ins —InkA +slns —kAInkA — (s — kA) In(s — kA) + (s — kA)

is increasing on [kA, (k + 1)A]. Therefore, we can estimate the sum in (22) in the
following way:

n—1
Z/ dy/ lp(t, x — y; )| fi(s)ds
k=1 R (KAt (k+1)AAt]

n—1
<> fk+ o) | s [ 1ptx = yildy
k=1 ( 1 R

kANt (k+1) ANt

n—1 n—1
< CY fille+ DA)A =CA Y ((nk + DA —Inka)
k=1 k=1

F((k+ DAk + 1)A —kAInkA) — Aln A + A”)

- CA(lnnA —InA+nAlnnA —AlnA - —DAINA + (n — 1)AV)

= 1 —1 T\v
=T e gL ! T(—) <cn’.
n n n
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Now we need to estimate
lu(t, x) —u(0, x)| = |u(t, x) — uo(x)|
<| [ = 35000 dy = oo
t
+ /0 ds/Rp(t,x =y 8) f(y,uls,y)) d)"

t
_ 0 0 0
+ /R du(y) /0 Pl x = ying 0 ds| = 1) + 1) + 1),

Note that

0) i _Ga=y?
1) < cr e T up(y)dy — uo(x) 23)

1
21 = + ‘/R VAt a(0)

where A1 > 0 (see (4.4) and the proof of (4.64) in [8]). Using that

/ dy _a-y?
¢ O =],
R /4t a(0)

we obtain
1 _a=»? luo(y) — uo(x)| _a=—02
— ¢ () y dy — up(x ‘ < Tl a0 {4
‘/R«/47tta(0) 0y —uo| = | A Y
x—y)2
< C,—l/Z/ 1 — y [P0 o~ S0y gy
R
V=32V By [ a2
= CrPo / e VWP gy = P, 24)
0
On the other hand,
t
L) < c/ ds/ Ip(t,x — y; $)|dy < Ct, (25)
0 R
(14)
1Y < Cly’. (26)

Denote y» = y A A1. From (23), (24), (25), (26) it follows that |u (¢, x) — u(0, x)| <
Ct”2. Therefore,

0 — _
Ly SLff dsf (. x — i 9)|)ii(s. y) — @0, y)| dy
(0,ANt] R

< C/ s”ds < Cn~ 1772,
(0,ANt]

and we can see that ZZ;(I) Iz(lf) < C(w)n~Y,where y < 1/4. Using similar arguments
we can prove that Zz;(]) 12(13‘) < C(w)n"7. Thus we obtain

L < C(w)(nlelng|+n7).
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Function g(x) = x|elng| +x~7, x > 0, has the minimum value

g(r) = e/ Dy + 1y /0Dy — (/e lng)) /YD,

We have £ i,x(i)l) < C, therefore there exists a positive integer n, = [x,] + 1 such that

g(ny) < Clelneg|?/@+D,

Recall that y; < 1/5. Therefore, we can take y < 1/4 such that y/(y 4+ 1) > y; and
obtain
L < C(w)e". (27

Now we estimate &.. Denote

t
q(z,y) = /() plt,x —y;s)(o(s/e, y) —a(y))ds.
We will estimate ||g(z, M BL (G, j+11)- Consider
qz,y+h)—qz,y) =1+ )=

t
=/O p(t,x —y;s)(o(s/e,y +h) —o(s/e,y) =&y +h) +(y))ds

t
+/0 (pt,x —y—h;s) = p(t.x —y;s5))(o(s/e.y +h) —o(s/e, y))ds

Using E3, we obtain
t
/1] < 2L hP©) / Ip(t, x — y; 9)lds < ChP@.
0

For J, we use boundedness of ¢:

t
) < c/ Pt x =y — i $) = plt.x — yi 9)lds

:c/ /” ap vis) 1O f / ey <
x—y—h dv 0o =S Je_yon
c[Var [ LB [ [T
h/2 l—S h/2 w2t 2

h/2 1 s h/2
<c| dr(/ Saze [Ceaz)=c [ g imiar
—h/2 a2/t 2 1 —h/2

h2
=Ch+2C(r —rlnr) o

< ChP@ (28)

(see formula 4.10 from [17]). Here we used the inequality

x—y _M h/2 _ﬁ
e =dv < e =sdr.
x—y—h —h/2
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On the other hand, Lemma 6 implies that
4z y +h) =gyl <14y + )l +1g y)| < Ce'/%, (29)
From (28) and (29) it follows that for all 6 € [0, 1]
lg(z, y +h) —q(z, )| < CRFOU=0 02,
(2(g,r)* < ChPOU=00,
gz, MLaj,j+1) < C/e < Ce

0/2

and

llg(z, B ((j,j+11) < g2,

if integral
1
/ P2 (1=0)=2a—1
0

is finite. That holds true if and only if

a<ﬂ(a)(1—0)<:>0<1—% (30)

For y1 < %(1 TG )> we can choose 6 = 2y, | > « > 1/2 such that (30) holds.
Using Lemma 2, we get

e =| [ acnduc| < Z\/

q(z,y) du(y)‘

(.Jj+11
O S gt i+ 1)
JEZ
Y g Manaen {220 Y ]
JEZ n>1 I<k=<2n
Y1 P n(1—-2a) ()2 172
= Cen [ Y InG i+ 11+ Y[ D2 > P}
JEZL JEZ n>1 1<k=<2"
<C5yl[(2(|]|+1)2p(ﬂ(0 i) (i v)”
/EZ
+(22"“—2“>Z<|j|+1>2p > mahr) (i o),
n>1 JjEZ 1<k=<2n JEZ

where p > 1/2 is taken from Assumption M, the sums with SMs have the form

i (fR o] dﬂ)z, where

(o), 1= 13 ={jl+ D" 1 j+1u(), j € Z},
(i), 1= 1} ={(jl+ D", G, jeZ, n=1, 1<k <2"}.
kn
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From the inequalities
)
. -2
Dl = Ca+yIP). Y (il+ D7 < o,
=1 jez

and Lemma 1 it follows that
|| < Ce”'  as. 31

From (21), (27) and (31) it follows that
|u€(ta 'x) - Iz(ta -x)| S Csyl

t
+/0 ds/ﬂélp(t,x—y;S)IIf(S/e,y,ue(s,y))—f(S/&y,ﬁ(s,y))dyl as.

From boundedness of f it follows that sup |u. (¢, x) —u (¢, x)| < oo a.s. On the other
xeR
hand, using (8) and the Lipschitz condition on f, we get

t
sup |ug (¢, x) —u(t, x)| < Ce" + C/ sup |ug(t, x) —u(t, x)|ds.
xeR 0 xeR

From the Gronwall inequality we obtain

sup |ug(t, x) — i(t, x)| < C(w)e™,
xeR

where C(w) is independent of ¢ and ¢. Thus, we obtain (20). O

S Examples
Example 1. Leta(r) = a? > 0,b(t) = c(r) =0 foreach t € [0, T]. Then

5 92u(t, x) B ou(t, x)

Lu(t,x)=a o2 ”

3

and (1), (3) are the heat equations. Note that the averaging principle for the heat equa-
tion was considered in [16], and the same order of strong convergence was obtained.

Example 2. Leta(t) = 1, b(t) = 0, c(t) = —1, ¢ € [0, T]. Then

02u(r, x) %) du(t, x)
Y x) —
92x ot

Lu(t,x) = ,
and (1), (3) are the so-called cable equations. The cable equation describes potential
changes along the branch of the dendritic tree (see [5]). The averaging principle for
the cable equation on [0, L] with f = 0 was established in [2] with the better order
of strong convergence (y; < %(1 — %)).
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