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Abstract Recurrence times and the number of renewals in (0, t] are fundamental quantities
in renewal theory. Firstly, it is proved that the upper orthant order for the pair of the forward and
backward recurrence times may result in NWUC (NBUC) interarrivals. It is also demonstrated
that, under DFR interarrival times, the backward recurrence time is smaller than the forward
recurrence time in the hazard rate order. Lastly, the sign of the covariance between the forward
recurrence time and the number of renewals in (0, t] at a fixed time point t and when t → ∞
is studied assuming that the interarrival distribution belongs to certain ageing classes.

Keywords Renewal process, remaining term, forward recurrence time, number of renewals,
covariance
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1 Introduction

A renewal process considers the sequence of partial sums {Sn : n = 0, 1, 2, . . .} of
some independent, nonnegative random variables Xi , so that S0 = 0 and, for n ≥ 1,
Sn = X1 + X2 + · · · + Xn. We also assume that Xi (i = 1, 2, . . .) has a distribution
function (d.f.) F . We assume throughout the paper that F is absolutely continuous and
has density f . We write μk = ∫ ∞

0 xkdF (x) for the k-th moment of F around zero;
for simplicity, we write μ rather than μ1 for the first moment. Also we assume that
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F has a finite variance σ 2. Further, the equilibrium distribution associated with F ,
denoted by Fe, is defined as Fe(t) = μ−1

∫ t

0 F(y)dy, where F = 1 − F .
A renewal process is the counting process {N(t) : t ≥ 0} whereby N(t) = sup{n :

Sn ≤ t}. N(t) is the number of renewals that occurred in (0, t] as defined above.
However, the distribution of N(t) is not always easy to calculate, which makes

the renewal function U(t) = E[N(t)] = ∑∞
n=1 P(Sn ≤ t), for t ≥ 0, a quantity of

interest. Assuming that F is absolutely continuous, the renewal function U is also
absolutely continuous with a density u, the renewal density. We mention for future
reference that a version of u satisfies the renewal equation

u(t) = f (t) +
∫ t

0
u(t − y)f (y) dy,

see, for example, Feller (1971, Ch. XI) [7].
In literature, there are several sources which study the forward recurrence time,

see, for example, Brown (1980) [2] and (1981) [3], Shaked and Zhu (1992) [17],
Gakis and Sivazlian (1992) [8] and (1994) [9] and most recently Losidis and Politis
(2020) [14].

We define by γt = SN(t)+1 − t the forward recurrence time and by δt = t − SN(t)

the backward recurrence time.
Gakis and Sivazlian (1992) [8] compute the joint distribution of the backward

and forward recurrence times using the joint distribution P(γt ≤ y, δt ≤ x,N(t) =
n > 0), namely

P(γt ≤ y, δt ≤ x) =
∞∑

n=0

P(N(t) = n, γt ≤ y, δt ≤ x).

The above relation triggered this paper’s main topic: to investigate the relationship
that governs recurrence times and N(t). In literature, it seems that so far little attention
has been given to this topic. Exceptions are Coleman (1982) [5] and Losidis and
Politis (2020) [14]. More specifically, Coleman (1982) [5] proves that the covariance
of the forward recurrence time and the number of renewals is given by

Cov(γt , N(t)) = tU(t) −
∫ t

0
U(z)dz − μ (U(t))2 + μ

∫ t

0
U(t − z)u(z)dz. (1)

He also proves that when t → ∞

Cov(γt , N(t)) = − μ3

6μ2 + μ2
2

4μ3 . (2)

Losidis and Politis (2020) [14], using the remaining term Q(t) defined as

Q(t) = μ2

2μ2 − 1 −
(

U(t) − t

μ

)
, (3)

prove that the asymptotic covariance between the forward recurrence time and the
number of renewals on (0, t) is given by

lim
t→∞ Cov(γt , N(t)) = −

∫ ∞

0
Q(z)dz. (4)
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Assuming that U(t) is absolutely continuous, Q(t) is also continuous with Q′(t) =
q(t).

We define the failure rate by

r(z) = f (z)

F (z)
= − d

dz
ln F(z), (5)

and we say that the distribution F has decreasing (increasing) failure rate (denoted
by DFR (IFR)) if the quantity F(t − x)/F (t) is decreasing (increasing) in t (t > 0)
for all x ≥ 0.

A wider class compared to DFR (IFR) is the IMRL (DMRL). We define by
m(t) = μFe(t)/F (t) the mean residual life. We say that F has increasing (decreas-
ing) mean residual life (we denote IMRL (DMRL) respectively), if m(t) is increasing
(decreasing) function. For more details, see Willmot and Lin (2001) [18]. Another
class is the new worse (better) than used in convex ordering, named as the NWUC
(NBUC) class. We say F is NWUC (NBUC) if

∫ ∞

y

F (x + t)dx ≥ (≤)F (t)

∫ ∞

y

F (x)dx, for all t, y ≥ 0.

In this paper, we tackle the sign of the covariance between the forward recurrence
time and the number of renewals in (0, t], a topic that escaped attention so far.

The main novelty of this paper is that under the assumption of IMRL interarrival
times, we prove that the covariance between the forward recurrence time and the
number of renewals in (0, t] is less or equal to zero.

We organise the remaining of this paper as follows.
In Section 2, initially, we discuss the upper orthant stochastic order for the family

of random pairs (γt , δt ) and the hazard rate order between the backward and the
forward recurrence times in a renewal process. Next, we focus on the covariance
between the forward recurrence time and the number of renewals in (0, t] for t < ∞.

In Section 3, we study the covariance between γt and N(t) for t → ∞. In contrast
to Losidis and Politis (2020) [14], we focus on the distribution function F of the
interarrival times instead of the equilibrium distribution function Fe. The last section
has some concluding remarks.

2 The covariance of the forward recurrence time and the number of renewals
in (0, t]

Recurrence times find numerous real-life applications. In addition to traditional appli-
cation areas, such as reliability or actuarial risk theory, renewal processes have been
used for several decades in biostatistics, in models for the early detection of disease
(see, e.g., Zelen and Lee (2002) [19]).

To give a more specific example, from medicine, we can define the forward recur-
rence time as the time until a person leaves the disease state after detection at time t

(in other words, the forward recurrence time represents the time that a patient knows
he has a condition until recovery). The backward recurrence time would be the time
from when the person has had the disease until the diagnosis.
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We use this example to illustrate the critical question: given the time passed since
the person was ill (this could be considered as the latest renewal), how long until they
get infected again from the same decease (this shall be the next renewal)? Mathemat-
ically, this is best formulated by considering the joint distribution of the (backward
and forward) recurrence times associated with a renewal process.

It is known (see, for example, Daley and Vere-Jones (2003) [6]) that for any 0 ≤
x ≤ t and y ≥ 0 it holds that

P(γt > y, δt > x) = F(t + y) +
∫ t−x

0
F(t + y − s)u(s)ds. (6)

In a multivariate setting, there are various ways to generalise the concept of the usual,
univariate stochastic ordering. One of them is the upper orthant ordering, as dis-
cussed, for example, in Shaked and Shanthikumar (2007, Ch. 6) [16]. More explicitly,
let X = (X1, X2, . . . , Xn) and Y = (Y1, Y2, . . . , Yn) be two n-dimensional random
vectors. Then we say that X is smaller that Y in the upper orthant stochastic order,
and we denote this by X ≤uo Y if for any t1, t2, . . . , tn,

P (X1 > t1, X2 > t2, . . . , Xn > tn) ≤ P (Y1 > t1, Y2 > t2, . . . , Yn > tn) .

Li et al. (2000) [11] showed that if γt is increasing in t ≥ 0 in convex ordering then
F is NWUC. Next we present a result similar to that of Li et al. (2000) [11], for the
family of random pairs (γt , δt ).

Proposition 1. If for all 0 ≤ t ≤ s it holds that (γt , δt ) ≤uo (≥uo)(γs, δs), then the
distribution function of the interarrival times is NWUC (NBUC).

Proof. It is known (Karlin and Taylor (1975), p. 193) [10] that

P(γt > y) = F(t + y) +
∫ t

0
P(γt−z > y)dF (z). (7)

It is easy to prove that the event {γt > y + x} is equivalent to {γt+x > y, δt+x > x},
and then from the last equation we get

P(γt+x > y, δt+x > x) = F(t+x+y)+
∫ t

0
P(γt+x−z > y, δt+x−z > x)dF (z). (8)

Integrating the above with respect to y on (k,∞) (for k > 0) we have

∫ ∞

k

P(γt+x > y, δt+x > x)dy =
∫ ∞

k

F (t + x + y)dy

+
∫ ∞

k

∫ t

0
P(γt+x−z > y, δt+x−z > x)dF (z)dy.

(9)

Under the assumption that (γt , δt ) ≤uo (γs, δs), the double integral of Eq. (9) could
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be written as
∫ ∞

k

∫ t−x

0
P(γt+x−z > y, δt+x−z > x)dF (z)dy

≤
∫ ∞

k

∫ t

0
P(γt+x > y, δt+x > x)dF (z)dy

= F(t)

∫ ∞

k

P(γt+x > y, δt+x > x)dy.

Inserting the above into Eq. (9) yields

∫ ∞

k

P(γt+x > y, δt+x > x)dyF (t) ≤
∫ ∞

k

F (t + x + y)dy. (10)

By assuming (γt , δt ) ≤uo (γs, δs) it holds that

P(γx > y, δx > x) = F(x + y) ≤ P(γt+x > y, δt+x > x).

Inserting the above into Eq. (10) and setting x = 0 completes the proof.
When (γt , δt ) ≥uo (γs, δs), we can prove that F is NBUC by reversing the in-

equalities above.

Losidis et al. (2020) [15] proved that, under the assumption of DFR interarrival
times, it holds that

P(γt > x) ≥ P(δt > x), (11)

for 0 ≤ x ≤ t .
Recall that for two random variables X and Y supported on [0,∞) with survival

functions P(X > x) and P(Y > y), we say that X is less than or equal to Y in the
usual stochastic order (X ≤st Y ) if P(X > x) ≤ P(Y > y) for all t ≥ 0 (see Shaked
and Shanthikumar (2007, Ch. 1)) [16]. In the terminology of stochastic orders, (11)
means that δt is smaller than γt in the usual stochastic order. The next result, which
in view of the last equation is an improvment of this, shows that δt is smaller that γt

in the hazard rate order (for details on those, see Shaked and Shanthikumar (2007)
[16]).

Proposition 2. If the distribution F of the interarrival times is DFR, then

rγt (x) ≤ rδt (x), for all 0 ≤ x ≤ t.

Proof. Losidis et al. (2020) [15] prove that the survival function of the forward and
backward recurrence time is given by

P(γt > x) = Fe(x) −
∫ x

0
F(t + x − z)l(z)dz (12)

and

P(δt > x) = Fe(x) −
∫ x

0
F(t − z)l(z)dz (13)
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with l(t) defined as

l(t) = u(t) − 1

μ
.

For simplicity we denote

φ(0, x; t) =
∫ x

0
F(z)l(t + x − z)dz. (14)

The first derivative of φ(0, x; t) is equal to

d

dx
φ(0, x; t) = F(x)l(t) +

∫ x

0
F(z)

d

dx
l(t + x − z)dz. (15)

We also define (for simplicity) with

φ(x, 0; t) =
∫ x

0
F(z)l(t − z)dz, (16)

with derivative
d

dx
φ(x, 0; t) = F(x)l(t − x). (17)

Combining Eq. (5), Eq. (17) and Eq. (13), the failure rate of the backward recurrence
time is given by

rδt (x) =
F(x)

μ
+ d

dx
φ(x, 0; t)

P(δt > x)
=

F(x)
μ

+ F(x)l(t − x)

F e(x) + φ(0, x; t)
. (18)

Brown (1980) [2] proves that if the distribution F of the interarrival times is DFR,
then the renewal density u(t) is decreasing function of t . In view of Eq. (2), the same
holds for l(t), thus for 0 ≤ z ≤ t we have

l(0) ≥ l(t − z) ≥ l(t).

Then, Eq. (15) yields

d

dx
φ(0, x; t) ≤ F(x)l(t) ≤ F(x)l(t − x) = d

dx
φ(x, 0; t).

Next, using Eq. (12) and Eq. (5) we calculate the failure rate of the forward recurrence
time as follows

rγt (x) = F(x)

μP(γt > x)
+

d
dx

φ(0, x; t)

P(γt > x)
≤ F(x)

μP(γt > x)
+

d
dx

φ(x, 0; t)

P(γt > x)
. (19)

Inserting (11) into (19) we have

rγt (x) ≤ F(x)

μP(γt > x)
+

d
dx

φ(x, 0; t)

P(γt > x)
≤ F(x)

μP(δt > x)
+

d
dx

φ(x, 0; t)

P(δt > x)
= rδt (x),

(20)

which completes the proof.
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Next, we present a relation for the conditional tail functions of the forward and
backward recurrence times.

Corollary 1. If the distribution F of the interarrival times is DFR, then

P(γt > x + t |γt > x) ≥ P(δt > x + t |δt > x), for all 0 ≤ x ≤ t.

Proof. Integrating both sides of Eq. (5) over z from 0 to t gives

F(t) = exp

(
−

∫ t

0
r(z)dz

)
, t ≥ 0. (21)

From Eq. (21) it follows that

P(γt > x + y|γt > x) = exp

(
−

∫ x+y

x

rγt (z)dz

)
,

and using (20) it yields

P(γt > x + y|γt > x) ≥ exp

(
−

∫ x+y

x

rδt (z)dz

)
= P(δt > x + y|δt > x),

which completes the proof.

Continuing the example we began in this section, one could enquire the following:
is there a connection between the number of occasions we may get sick from a virus
and the period it takes to recover since we tested positive to it? Mathematically this
could be approached by the covariance between the forward recurrence time and the
number of renewals.

In the following result, initially, we provide an alternative formula for the
Cov(γt , N(t)) in terms of the remaining term Q(t), which enables us to show that,
assuming IMRL interarrival times, Cov(γt , N(t)) ≤ 0.

Theorem 2.1. If the distribution F of the interarrival times is IMRL, then

Cov(γt , N(t)) ≤ 0, for all t ≥ 0.

Proof. We start our proof by inserting Eq. (3) into Eq. (1). The first part of Eq. (1) is
equal to

tU(t) = Q(0)t + t2

μ
− tQ(t). (22)

The second component of Eq. (1) is written as

−
∫ t

0
U(x)dx = −

(
Q(0)t + t2

2μ
−

∫ t

0
Q(x)dx

)
= −Q(0)t − t2

2μ
+

∫ t

0
Q(x)dx.

(23)
The third part of Eq. (1) is equal to

−μU(t)2 = −μ

(
Q(0)2 + (

t

μ
− Q(t))2 + 2Q(0)(

t

μ
− Q(t))

)

= −μQ(0)2 − t2

μ
− μQ(t)2 + 2tQ(t) − 2Q(0)t + 2μQ(0)Q(t) (24)
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Lastly, the forth part of Eq. (1) could be written as

μ

∫ t

0
(U(t − x)u(x)) dx

= μ

∫ t

0

(
Q(0) + t − x

μ
− Q(t − x)

) (
1

μ
− q(x)

)
dx

= Q(0)t − μQ(0)(Q(t) − Q(0)) + t2

μ
−

∫ t

0

x

μ
dx − t (Q(t) − Q(0))

+
∫ t

0
xq(x)dz −

∫ t

0
Q(t − x)dx + μ

∫ t

0
Q(t − x)q(x)dx. (25)

By substituting Eqs. (22)–(25) into Eq. (1) and after some algebra, it follows that

Cov(γt , N(t))

=
∫ t

0
zq(z)dz +

(
−μQ(t)2 + μQ(0)Q(t) + μ

∫ t

0
Q(t − x)q(x)dx

)
. (26)

By setting

b(t) = −μQ(t)2 + μQ(0)Q(t) + μ

∫ t

0
Q(t − x)q(x)dx, (27)

and inserting the above into Eq. (26) we have

Cov(γt , N(t)) =
∫ t

0
zq(z)dz + b(t). (28)

Brown (1980) [2] proved that under the assumption of IMRL interarrival times the
quantity U(t) − tμ−1 is bounded as follows

U(t) − t

μ
≤ μ2

2μ2 − 1,

and it is an increasing function of t . In view of Eq. (3) and provided that F is IMRL,
Q(t) is more than or equal to zero and is also a decreasing function of t (q(t) ≤ 0).
In this case

Q(t − x)q(x) ≤ Q(t)q(x),

following which Eq. (27) gives

b(t) = −μQ(t)2 + μQ(0)Q(t) + μ

∫ t

0
Q(t − x)q(x)dx

≤ −μQ(t)2 + μQ(0)Q(t) + μQ(t)(Q(t) − Q(0)) = 0.

By inserting the inequality above into Eq. (28), it holds that

Cov(γt , N(t)) ≤
∫ t

0
zq(z)dz ≤ 0,

which completes the proof.
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In the next result we study the difference Cov(γt , N(t)− limt→∞ Cov(γt , N(t)).
More specifically, we define

S(t) = Cov(γt , N(t)) − lim
t→∞ Cov(γt , N(t)). (29)

If S(t) ≥ (≤)0, then the limit of Cov(γt , N(t)) as t → ∞ serves as a bound for
the Cov(γt , N(t)). In the sequel we present conditions under which the asymptotic
covariance between the forward recurrence time and the number of renewals can be
used as an upper bound for Cov(γt , N(t)). We begin with a formula which calculates
the difference Cov(γt , N(t)) − limt→∞ Cov(γt , N(t)).

Corollary 2. The quantity S(t) can be calculated by

S(t) = tQ(t)+
∫ ∞

t

Q(z)dz−μQ(t)2 +μQ(0)Q(t)+μ

∫ t

0
Q(t −x)q(x)dx. (30)

Proof. The first integral of Eq. (26) can be expressed as
∫ t

0
zq(z)dz = tQ(t) −

∫ t

0
Q(z)dz = tQ(t) −

∫ ∞

0
Q(z)dz +

∫ ∞

t

Q(z)dz.

Inserting the above into Eq. (26) we have

Cov(γt , N(t)) = −
∫ ∞

0
Q(z)dz + tQ(t) +

∫ ∞

t

Q(z)dz − μQ(t)2 + μQ(0)Q(t)

+ μ

∫ t

0
Q(t − x)q(x)dx. (31)

In view of Eq. (4) we obtain

Cov(γt , N(t)) − lim
t→∞ Cov(γt , N(t))

= tQ(t) +
∫ ∞

t

Q(z)dz − μQ(t)2 + μQ(0)Q(t)

+ μ

∫ t

0
Q(t − x)q(x)dx, (32)

which is the desired result.

Conversely to the IMRL assumption of interarrival times (Q(t) ≥ 0 and
q(t) ≤ 0), we next study the case when Q(t) is less than or equal to zero and also is
an increasing function. In this case we prove that the asymptotic covariance between
the forward recurrence time and the number of renewals can be used as an upper
bound for the Cov(γt , N(t)).

Lemma 1. If Q(t) ≤ 0 and q(t) ≥ 0, then S(t) ≤ 0, for all t ≥ 0.

Proof. We begin with the assumption that Q(t) is less than or equal to zero for every
t ≥ 0 and is also an increasing function. In this case

Q(0) ≤ Q(t − x) ≤ Q(t).
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Multiplying the above inequality by q(x) and integrating with respect to x on (0, t)

we have

Q(0)

∫ t

0
q(x)dx ≤

∫ t

0
Q(t − x)q(x)dx ≤ Q(t)

∫ t

0
q(x)dx.

Substituting ∫ t

0
q(x)dx = Q(t) − Q(0),

yields that

Q(0) (Q(t) − Q(0)) ≤
∫ t

0
Q(t − x)q(x)dx ≤ Q(t) (Q(t) − Q(0)) .

Inserting the upper bound given by the above inequality into (26) yields

Cov(γt , N(t)) ≤
∫ t

0
zq(z)dz.

Under the assumption that q(t) ≥ 0 one may derive that

Cov(γt , N(t)) ≤
∫ t

0
zq(z)dz ≤

∫ ∞

0
zq(z)dz = −

∫ ∞

0
Q(z)dz,

and in view of Eq. (4) the proof is completed.

Remark 1. Brown (1987) [4] proves that under the assumption of IFR interarrival
times it holds that

U(t) ≥ t

μ
+ σ 2

μ2 − 1.

Now we define with QI(t) the difference,

QI (t) = σ 2

μ2 − 1 −
(

U(t) − t

μ

)
≤ 0,

with d
dt

QI (t) = μ−1 − u(t) = q(t).
It can be proved that Eq. (26) is still valid for the case of IFR interarrival times.

More specifically,

Cov(γt , N(t))

=
∫ t

0
zq(z)dz +

(
−μQI (t)

2 + μQI (0)QI (t) + μ

∫ t

0
QI(t − x)q(x)dx

)
,

and using, as an additional assumption, that QI(t) is increasing, it follows that

Cov(γt , N(t)) ≤ lim
t→∞ Cov(γt , N(t)).
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3 The asymptotic covariance of the forward recurrence time and the number
of renewals

Losidis and Politis (2020) [14] study the covariance between the forward recurrence
time and the number of renewals up to time t in an ordinary renewal process when
t → ∞, and link the sign of the asymptotic covariance with the equilibrium distri-
bution Fe. However, it would be preferable to link the sign with the distribution F of
the interarrival times instead of the Fe.

Next, we use stochastic order results between γt and γ∞ in order to determinate
the sign of limt→∞ Cov(γt , N(t)).

More precisely, as t → ∞, the random variable γt converges in distribution to
the variable γ∞, with limt→∞ E(γt ) = E(γ∞) = μ2/(2μ). The next result presents
a formula for limt→∞ Cov(γt , N(t)) in terms of the variables γt and γ∞.

Proposition 3. The asymptotic covariance between the forward recurrence time γt

and the number of renewals N(t) is given by the formula

lim
t→∞ Cov(γt , N(t)) = 1

μ

∫ ∞

0
(E(γx) − E(γ∞)) dx. (33)

Proof. By Wald’s identity, the mean forward recurrence time is given by

E(γx) = μ

(
1 + U(x) − x

μ

)
.

Inserting Eq. (3) in the above one we have

−Q(x) = 1

μ

(
E(γx) − μ2

2μ

)
= 1

μ
(E(γx) − E(γ∞)) .

The proof is completed by integrating the last equation over (0,∞) with respect to x.

Shaked and Zhu (1992) [17] proved that the renewal function is convex (concave)
if, and only if, the excess lifetime γt is stochastically decreasing (increasing). They
also proved that if the renewal function is convex (concave), then the distribution F

of the interarrival time is NBUE (NWUE). Combining this with Eq. (33) and under
the assumption that renewal function U(t) is convex (concave), then we get that the
distribution F of the interarrival times is NBUE (NWUE) and the asymptotic covari-
ance between the forward recurrence time and the number of renewals is more (less)
or equal to zero.

Corollary 3. If the distribution F of the interarrival times is IMRL, then

lim
t→∞ Cov(γt , N(t)) ≤ 0.

Proof. Brown (1980) [2] proves that if the distribution function F of the interarrival
times is IMRL, then the expected forward recurrence time at t , E(γt ), is increasing in
t ≥ 0, which means E(γt ) ≤ E(γ∞). Proof is completed in view of Eq. (33).
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By Proposition 3 it is clear that, if E(γ∞) ≥ (≤)(E(γt ) then

lim
t→∞ Cov(γt , N(t)) ≤ (≥)0.

However, it is known (see, e.g., Brown (1980) [2] or Shaked and Zhu (1992) [17])
that, in contrast to the IMRL case, the condition that m(t) is a decreasing function
does not guarantee that E(γt ) is decreasing, and Corollary 3 does not hold for the
reverse inequality, i.e. assuming DMRL interarrival times. However, it can be proven
considering IFR interarrival times. More specifically, the following theorem holds.

Theorem 3.1. If the distribution F of the interarrival times is IFR, then

lim
t→∞ Cov(γt , N(t)) ≥ 0.

Proof. Barlow et al. (1963) [1] prove that
(

μi+r�(i + 1)

μi�(i + r + 1)

)s

≤
(

μi+s�(i + 1)

μi�(i + s + 1)

)r

.

Setting s = i = 1 and r = 2 we have μ3/(6μ) ≤ μ2
2/(4μ2), and in view of Eq. (2)

we derive the desired result.

Corollary 4. If the distribution F of the interarrival times is DFR, then

lim
t→∞ Cov(γt , N(t)) ≥ lim

t→∞ Cov(δt , N(t)).

Proof. Losidis et al. (2020) [15] proved that under the assumption of DFR interarrival
times E(γt ) ≥ E(δt ). Gakis and Sivazlian (1994) [9] proved that limt→∞ E(γt ) =
E(γ∞) = μ2/(2μ) = E(δ∞). Combining the above, Eq. (33) gives

lim
t→∞ Cov(γt , N(t)) = 1

μ

∫ ∞

0
(E(γx) − E(γ∞)) dx ≥ 1

μ

∫ ∞

0
(E(δx) − E(δ∞)) dx.

In view of Eq. (33) the proof is completed.

Proposition 4. If the variance of the forward recurrence time is increasing (decreas-
ing) function of t , then

lim
t→∞ Cov(γt , N(t)) ≤ (≥)0.

Proof. Coleman (1982) [5] proves that the variance of the forward recurrence time
can be calculated as

V ar(γt ) = μ2(1 + U(t)) − μ2(1 + U(t))2 + 2μ

(
tU(t) −

∫ t

0
U(x)dx

)

The first derivative of V ar(γt ) gives

d

dt
V ar(γt ) = μ2u(t) − 2μ2 (1 + U(t)) u(t) + 2μtu(t)

= 2μ2u(t)

(
μ2

2μ2 − 1 − U(t) + t

μ

)
.
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Inserting Eq. (3) into the above gives

d

dt
V ar(γt ) = 2μ2u(t)Q(t),

from which it yields that if the variance of the forward recurrence time is increasing
(decreasing), then Q(t) ≥ (≤)0, and in view of (4) the proof is completed.

For the remaining of this section, we focus on the asymptotic covariance between
the variables γ r

t (for r = 1, 2, . . .) and N(t), namely limt→∞ Cov(γ r
t , N(t)).

Gakis and Sivazlian (1994) [9] study the asymptotic covariance between the for-
ward and backward recurrence times, denoted as

lim
t→∞ Cov(γt , δt ) = μ3

6μ
− μ2

2

4μ2 . (34)

Combining (2) and (34) yields that

lim
t→∞ Cov(γt , N(t)) = − 1

μ
lim

t→∞ Cov(γt , δt ). (35)

Substituting γt with γ r
t in Eq. (35) gives

lim
t→∞ Cov(γ r

t , N(t)) = − 1

μ
lim

t→∞ Cov(γ r
t , δt ). (36)

Next, we show that this quantity plays a key role for known bounds for the renewal
function U(t) under the assumption of IMRL interarrival times.

Brown (1980) [2], assuming that the distribution function F of the interarrival
times is IMRL, gives the following lower bound for the renewal function:

U(t) ≥ t

μ
+ μ2

2μ2 − 1 − min
0≤r≤k

cr t
−r ,

for r = 1, 2, . . . , k, with

cr = qr − μ−1r!
r−1∑
s−1

cs

s!
μr+1−s

(r + 1 − s)! ,

where
qr = μr+2

(r + 1)(r + 2)μ2 − μ2μr+1

2(r + 1)μ3 .

Lemma 2. It holds that

lim
t→∞ Cov(γ r

t , N(t)) = −qr .

Proof. Losidis and Politis (2019) [13] prove that for any r, s = 1, 2, . . . it holds that

lim
t→∞ Cov(γ r

t , δs
t ) = r!μr+s+1

μ(r + s + 1)! − μr+1μs+1

μ2(r + 1)(s + 1)
.



14 S. Losidis

Inserting the above equation (for s = 1) into Eq. (36) yields that

lim
t→∞ Cov(γ r

t , N(t)) = − 1

μ

(
r!μr+2

μ(r + 2)! − μr+1μ2

2μ2(r + 1)

)
= −qr, (37)

which completes the proof.

Next, we present an alternative formula for the limt→∞ Cov(γ r
t , N(t)). More

specifically, the following proposition holds.

Proposition 5. Let r be any positive integer such that μr+2 < ∞. As t → ∞, the
covariance of the forward recurrence time and the number of renewals in (0, t] is
given by

lim
t→∞ Cov(γ r

t , N(t)) = 1

(r + 1)

μ2μr+1

2μ3(r + 1)
(r − Cr) ,

with

Cr =
μr+2

μ(r+2)
− μr+1μ2

2μ2(r+1)
μr+1μ2

2μ2(r+1)

(38)

Proof. From Eq. (38) we have

μr+2

μ(r + 2)
= μ2μr+1

2μ2(r + 1)
(1 + Cr) .

Inserting the above equation into Eq. (37) and after some algebra we derive the de-
sired result.

The following corollary is immediate.

Corollary 5. In an ordinary renewal process, it holds that limt→∞ Cov(γ r
t , N(t)) ≥

(≤)0 if an only if Cr ≤ (≥)r .

4 Concluding remarks

1. In Section 2, we provide an alternative formula (see Eq. (26)) for the covariance
Cov(γt , N(t)) in terms of the remaining term Q(t). This alternative formula
has some advantages. First, it gives a direct connection with the asymptotic
covariance in Eq. (2). Second, it enables us to show that, assuming IMRL in-
terarrival times, Cov(γt , N(t)) ≤ 0.

2. The exact computation of Cov(γt , N(t)) requires the knowledge of the under-
lying renewal function, which may not be available. For this reason, we con-
struct bounds for Cov(γt , N(t)). An additional benefit of Eq. (26) compared to
the already known Eq. (1) by Coleman (1982) [5] is its structure. More specifi-
cally, a refurbishment of Eq. (26) gives Eq. (32) which includes the covariance
and its limit to infinity. By employing the bounds of Losidis and Politis (2017)
[12] for the renewal function U(t) and the renewal density u(t), respectively,
we are able to propose bounds for the covariance with the correct asymptotic
behaviour, e.g., the covariance Cov(γt , N(t)) tends to its limit as t → ∞.
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