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Abstract A class of Cannings models is studied, with population size N having a mixed
multinomial offspring distribution with random success probabilities W1, . . . , WN induced
by independent and identically distributed positive random variables X1, X2, . . . via Wi :=
Xi/SN , i ∈ {1, . . . , N}, where SN := X1 + · · · + XN . The ancestral lineages are hence
based on a sampling with replacement strategy from a random partition of the unit interval
into N subintervals of lengths W1, . . . , WN . Convergence results for the genealogy of these
Cannings models are provided under assumptions that the tail distribution of X1 is regularly
varying. In the limit several coalescent processes with multiple and simultaneous multiple col-
lisions occur. The results extend those obtained by Huillet [J. Math. Biol. 68 (2014), 727–761]
for the case when X1 is Pareto distributed and complement those obtained by Schweinsberg
[Stoch. Process. Appl. 106 (2003), 107–139] for models where sampling is performed without
replacement from a supercritical branching process.
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1 Introduction

Let X1, X2, . . . be independent copies of a random variable X taking values in (0,∞).
For N ∈ N := {1, 2, . . .} define SN := X1 + · · · + XN and Wi := Xi/SN ,
i ∈ {1, . . . , N}. The weights W1, . . . ,WN are exchangeable random variables with
W1 + · · · + WN = 1. In particular, E(Wi) = 1/N , i ∈ {1, . . . , N}. Consider the
Cannings model [6, 7] with population size N and nonoverlapping generations such
that, conditional on W1, . . . ,WN , the offspring sizes ν1, . . . , νN have a multinomial
distribution with parameters N and W1, . . . , WN . Thus, the offspring distribution is

P(ν1 = i1, . . . , νN = iN ) = N !
i1! · · · iN !E(W

i1
1 · · ·WiN

N ), (1)

i1, . . . , iN ∈ N0 := {0, 1, 2, . . .} with i1 + · · · + iN = N . For degenerate X, i.e.
P(X = c) = 1 for some real constant c > 0, this model reduces to the classical
Wright–Fisher model with deterministic weights Wi = 1/N , i ∈ {1, . . . , N}. It is
straightforward to check that the offspring sizes have joint descending factorial mo-
ments

E((ν1)k1 · · · (νN)kN
) = (N)k1+···+kN

E(W
k1
1 · · ·WkN

N ), k1, . . . , kN ∈ N0, (2)

where (x)0 := 1 and (x)k := x(x−1) · · · (x−k+1) for x ∈ R and k ∈ N. In [15] this
model is studied for the case when X is Pareto distributed. If X is gamma distributed
with density x �→ xr−1e−x/�(r), x > 0, for some r > 0, then (W1, . . . ,WN)

is symmetric Dirichlet distributed with parameter r , leading to the Cannings model
with the offspring distribution

P(ν1 = i1, . . . , νN = iN ) = N !
i1! · · · iN !

[r]i1 · · · [r]iN
[rN]N ,

i1, . . . , iN ∈ N0 with i1 + · · · + iN = N , where [x]0 := 1 and [x]i := x(x + 1) · · ·
(x + i − 1) for x ∈ R and i ∈ N. This Dirichlet multinomial model has been studied
extensively in the literature (see, for example, Griffiths and Spanò [13]). In a series
of papers [16, 17, 19] a subclass of Cannings models, called conditional branch-
ing process models in the spirit of Karlin and McGregor [23, 24], has been inves-
tigated, whose offspring distributions are (by definition) obtained by assuming that
P(X1 + · · ·+XN = N) > 0 and conditioning on the event that X1 + · · ·+XN = N .
This construction based on conditioning is rather different from the construction
based on sampling from a random partition of the unit interval we are dealing with
in this article. Note however that several concrete examples (such as the classical
Wright–Fisher model and the above mentioned Dirichlet multinomial model) can be
constructed in both ways, either by sampling or by conditioning. For example, the
Dirichlet multinomial model is obtained by taking N independent and identically
distributed negative binomial random variables X1, . . . , XN with parameter r > 0
and p ∈ (0, 1), so with distribution P(X1 = k) = (

r+k−1
k

)
pr(1 − p)k , k ∈ N0, and

conditioning on the event that X1 + · · · + XN = N .
The closely related model studied by Schweinsberg [37] differs from ours, since

sampling is performed without replacement from a discrete super-critical Galton–
Watson branching process, as explained in [37, Section 1.3]. In that model, X is
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integer valued and satisfies E(X) > 1. In our model, X does not need to be integer
valued and its mean is allowed to be less than 1. Moreover, the sampling in our multi-
nomial model is with replacement, whereas in Schweinsberg’s model it is without
replacement.

The same multinomial scheme with an additional dormancy mechanism is con-
sidered in the recent work by Cordero et al. [8]. A class of Dirichlet models in the
domain of attraction of the Kingman coalescent is also studied in two recent works
by Boenkost et al. [4, 5] with an emphasis on Haldane’s formula [14]. We refer the
reader to Athreya [1] for some more information on Haldane’s formula.

Fix n ∈ {1, . . . , N} and sample n individuals from the current generation. For
r ∈ N0 define a random partition �

(N,n)
r of {1, . . . , n} such that i, j ∈ {1, . . . , n}

belong to the same block of �
(N,n)
r if and only if the individual i and j share a com-

mon parent r generations backward in time. The process �(N,n) := (�
(N,n)
r )r∈N0 ,

called the discrete-time n-coalescent, takes values in the space Pn of partitions of
{1, . . . , n}. As in [15] we are interested in the limiting behavior of the discrete-time
n-coalescent as the total population size N tends to infinity. It is easily seen (and well
known) that the discrete-time n-coalescent is a time-homogeneous Markovian pro-
cess. The transition probabilities pππ ′ := P(�

(N,n)
r+1 = π ′ |�(N,n)

r = π) are given
by

pππ ′ = (N)jE(W
k1
1 · · · Wkj

j ) =: �
(N)
j (k1, . . . , kj ), π, π ′ ∈ Pn, (3)

if each block of π ′ is a union of some blocks of π , where j := |π ′| denotes the
number of blocks of π ′ and k1, . . . , kj are the group sizes of merging blocks of π .

Note that �
(N)
j (k1, . . . , kj ) is defined for all N, j, k1, . . . , kj ∈ N. Since the random

variables W1, . . . ,WN are exchangeable and satisfy W1 + · · · + WN = 1, it follows
for all N, j, k1, . . . , kj ∈ N with j ≤ N that

(N − j)E(W
k1
1 · · ·Wkj

j Wj+1) = E
(
W

k1
1 · · · Wkj

j (Wj+1 + · · · + WN)
)

= E
(
W

k1
1 · · · Wkj

j (1 − (W1 + · · · + Wj))
)

= E(W
k1
1 · · ·Wkj

j ) −
j∑

i=1

E(W
k1
1 · · ·Wki−1

i−1 W
ki+1
i W

ki+1
i+1 · · ·Wkj

j ).

Multiplication by (N)j (= 0 for j > N) shows that the consistency relation

�
(N)
j (k1, . . . , kj )

= �
(N)
j+1(k1, . . . , kj , 1) +

j∑
i=1

�
(N)
j (k1, . . . , ki−1, ki + 1, ki+1, . . . , kj ) (4)

holds for all N, j, k1, . . . , kj ∈ N. Moreover, for all j, l ∈ N with j ≥ l and all
k1, . . . , kj ,m1, . . . , ml ∈ N with k1 ≥ m1, . . . , kl ≥ ml , the monotonicity relation

�
(N)
j (k1, . . . , kj ) ≤ �

(N)
l (m1, . . . , ml) (5)
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holds. Note that (5) follows from (4) by induction on the difference d := j − l ∈ N0.
We refer the reader to [30, Definition 2.2] and the remark thereafter for similar state-
ments and proofs for the full class of Cannings models. Choosing j = 1 and k1 = 2
in (3) shows that two individuals share a common ancestor one generation back-
ward in time with probability cN := �

(N)
1 (2) = NE(W 2

1 ), the so-called coalescence
probability. We also introduce the effective population size Ne := 1/cN . Note that
cN = NE(W 2

1 ) ≥ N(E(W1))
2 = 1/N or, equivalently, Ne ≤ N . All Cannings

models having an effective population size strictly larger than N (such as the Moran
model having effective population size Ne = N(N − 1)/2 > N for N ≥ 4 and most
of the extended Moran models studied by Eldon and Wakeley [11] and Huillet and
Möhle [18]) therefore do not belong to the class of models we are dealing with in this
article.

General results for Cannings models concerning the convergence of their ge-
nealogical tree to an exchangeable coalescent process as the total population size
tends to infinity are provided in [32]. For information on the theory of exchangeable
coalescent processes we refer the reader to Pitman [33], Sagitov [34] and Schweins-
berg [35, 36]. Coalescents with multiple collisions (�-coalescents) are Markovian
stochastic processes taking values in the set of partitions of N. They are characterized
by a finite measure � on the unit interval. Important examples are Dirac-coalescents,
where � = δa is the Dirac measure at a given point a ∈ [0, 1], including the promi-
nent Kingman coalescent (Kingman [26, 25, 27]), where � = δ0 is the Dirac mea-
sure at 0, and the star-shaped coalescent, where � = δ1. Other important examples
are beta coalescents, where � = β(a, b) is the beta distribution with parameters
a, b > 0, including the Bolthausen–Sznitman coalescent, where � is the uniform
distribution on the unit interval (a = b = 1).

The full class of exchangeable coalescent processes (
-coalescents) allowing for
simultaneous multiple collisions of ancestral lineages is characterized by a finite mea-
sure 
 on the infinite simplex � := {x = (x1, x2, . . .) : x1 ≥ x2 ≥ · · · ≥ 0,∑∞

i=1 xi ≤ 1}. An example is the two-parameter Poisson–Dirichlet coalescent with
parameters α > 0 and θ > −α, where the characterizing measure ν(dx) := 
(dx)/∑∞

i=1 x2
i on � is (by definition) the Poisson–Dirichlet distribution ν = PD(α, θ) with

parameters α > 0 and θ > −α. For more information on the Poisson–Dirichlet co-
alescent we refer the reader to Section 6 of [31]. In most studies, continuous-time
coalescent processes (�t )t∈T with index set T = [0,∞) are considered. Note how-
ever that all 
-coalescents can as well be introduced with discrete time T = N0.
In this case one speaks about a discrete-time 
-coalescent (�r)r∈N0 . The following
terminology is taken from [16, Definition 2.1].

Definition 1. (i) A Cannings model is said to be in the domain of attraction of a
continuous-time coalescent � = (�t )t≥0 if for each sample size n ∈ N the time-
scaled ancestral process (�

(N,n)

t/cN �)t≥0 converges in DPn

([0,∞)) to �(n) as N → ∞,

where �(n) = (�
(n)
t )t≥0 denotes the restriction of � to a sample of size n.

(ii) Analogously, a Cannings model is said to be in the domain of attraction of a
discrete-time coalescent � = (�r)r∈N0 if for each sample size n ∈ N the ancestral

process (�
(N,n)
r )r∈N0 converges in DPn

(N0) to �(n) as N → ∞, where �(n) =
(�

(n)
r )r∈N0 denotes the restriction of � to a sample of size n.
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Conditions on the tails of the distribution of X are provided which ensure that
the population model with the offspring distribution (1) is in the domain of attraction
of some exchangeable coalescent process. The tail condition is of the standard form
P(X > x) ∼ x−α�(x) as x → ∞, where α ≥ 0 and � is a function slowly vary-
ing at ∞. The results are collected in Theorem 1 in Section 2. It turns out that the
three parameter values α ∈ {0, 1, 2} are boundary cases. Consequently, six different
regimes (α > 2, α = 2, α ∈ (1, 2), α = 1, α ∈ (0, 1) and α = 0) are considered lead-
ing to different limiting behaviors of the ancestral process. Theorem 1 also provides
the asymptotics of the coalescence probability cN as N → ∞ for all six cases. In
Section 3 some illustrating examples are provided including the case studied in [15]
when X is Pareto distributed. The proofs are provided in the main Section 4. They
are based on general convergence-to-the-coalescent theorems for Cannings models
provided in [32] and combine (Abelian and Tauberian) arguments from the theory of
regularly varying functions in the spirit of Karamata [20–22] with techniques used
by Huillet [15] for the Pareto case and by Schweinsberg [37] for the related model
where the sampling is performed without replacement.

2 Results

For most of the results it is assumed that there exist a constant α ≥ 0 and a function
� : (0,∞) → (0,∞) slowly varying at ∞ such that

P(X > x) ∼ x−α�(x), x → ∞. (6)

Our main result (Theorem 1) clarifies the limiting behavior of the ancestral structure
of the Cannings model with the offspring distribution (1) as the total population size
N tends to infinity under the assumption (6). It turns out that the parameter values
α ∈ {0, 1, 2} are boundary cases. It is hence natural to distinguish six regimes cor-
responding to the parameter ranges α > 2, α = 2, α ∈ (1, 2), α = 1, α ∈ (0, 1)

and α = 0. In order to state the result it is convenient to introduce the function
�∗ : (1,∞) → (0,∞) via

�∗(x) :=
∫ x

1

�(t)

t
dt. (7)

Note that �∗ is nondecreasing, slowly varying at ∞ and satisfies �(x)/�∗(x) → 0 as
x → ∞, see, for example, Bingham and Doney [3, p. 717 and 718] or Eq. (1.5.8) on
p. 26 of Bingham, Goldie and Teugels [2] and the remarks thereafter. More precisely,
for every λ > 0, as x → ∞,

�∗(λx) − �∗(x)

�(x)
= 1

�(x)

∫ λx

x

�(t)

t
dt =

∫ λ

1

�(xu)

�(x)

1

u
du →

∫ λ

1

1

u
du = log λ,

where the convergence holds by the uniform convergence theorem for slowly varying
functions. Thus, �∗ is a de Haan function (with �-index 1) and hence slowly varying.
For general information on de Haan theory we refer the reader to Chapter 3 of [2].

The main (and only) result of this article is the following.
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Theorem 1. For the Cannings model with the offspring distribution (1) the following
assertions hold.

(i) If E(X2) < ∞ (in particular if (6) holds with α > 2) then the model is in
the domain of attraction of the continuous-time Kingman coalescent and the
coalescence probability cN satisfies cN ∼ ρ/(μ2N) as N → ∞, where μ :=
E(X) and ρ := E(X2).

(ii) If (6) holds with α = 2 then the model is in the domain of attraction of the
continuous-time Kingman coalescent and the coalescence probability cN sat-
isfies cN ∼ 2�∗(N)/(μ2N) as N → ∞, where μ := E(X) and �∗ is defined
via (7).

(iii) If (6) holds with α ∈ (1, 2) then the model is in the domain of attraction of the
continuous-time �-coalescent with � := β(2 − α, α) being the beta distribu-
tion with parameters 2−α and α. Moreover, the coalescence probability cN sat-
isfies cN ∼ αB(2−α, α)μ−α�(N)/Nα−1 = �(2−α)�(α+1)μ−α�(N)/Nα−1

as N → ∞, where μ := E(X).

(iv) If (6) holds with α = 1, then the model is in the domain of attraction of the
continuous-time Bolthausen–Sznitman coalescent. If (aN)N∈N is a sequence
of positive real numbers satisfying �∗(aN) ∼ aN/N as N → ∞, where �∗
is defined via (7), then the coalescence probability cN satisfies cN ∼ �(aN)/

�∗(aN) ∼ N�(aN)/aN as N → ∞.

(v) If (6) holds with α ∈ (0, 1), then the model is in the domain of attraction of
the discrete-time 
-coalescent, where the characterizing measure ν(dx) :=

(dx)/

∑∞
i=1 x2

i is the Poisson–Dirichlet distribution ν = PD(α, 0) with pa-
rameters α and θ := 0. The coalescence probability satisfies cN → 1 − α as
N → ∞.

(vi) If (6) holds with α = 0, then the model is in the domain of attraction of the
discrete-time star-shaped coalescent and the coalescence probability satisfies
cN → 1 as N → ∞.

In particular, for the first four cases (i)–(iv), cN → 0 as N → ∞.

The six cases of Theorem 1 are summarized in Table 1. In the table, μ := E(X),
ρ := E(X2), �∗(x) := ∫ x

1 �(t)/t dt , x > 1, and (aN)N∈N is a sequence such that
�∗(aN) ∼ aN/N as N → ∞.

Remark 1. If �(x) ≡ C for some constant C > 0, then �∗(x) = C
∫ x

1 t−1 dt =
C log x as x → ∞. Assume now in addition that α = 1. In this case, in part (iv)
of Theorem 1 one can choose a1 := 1 and aN := CN log N , N ∈ N \ {1}. The
coalescence probability thus satisfies cN ∼ CN/aN ∼ 1/ log N , in agreement with
Proposition 6 of Huillet [15] for the Pareto example P(X > x) = 1/x, x > 1. The
same asymptotics for the coalescence probability holds for the related model consid-
ered by Schweinsberg (see [37, Lemma 16]) and, for example, when X is discrete
taking the value k ∈ N with probability P(X = k) = 1/(k(k + 1)).
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Table 1. Asymptotics of the ancestry of mixed multinomial Cannings models of the form (1)
under the tail condition P(X > x) ∼ x−α�(x) as x → ∞

Condition Limiting coalescent Coalescence probability

E(X2) < ∞ Kingman ∼ ρ

μ2N

α = 2 Kingman ∼ 2�∗(N)

μ2N

1 < α < 2 β(2 − α, α) ∼ �(2 − α)�(α + 1)�(N)

μαNα−1

α = 1 Bolthausen–Sznitman ∼ �(aN )

�∗(aN )
∼ N�(aN )

aN
α ∈ (0, 1) discrete time PD(α, 0) ∼ 1 − α

α = 0 discrete time star-shaped ∼ 1

Remark 2. One may doubt that Theorem 1 is valid when X takes values close to
0 with high probability such that E(1/SN) = ∞ for all N ∈ N. Typical examples
of this form arise when the Laplace transform ψ of X satisfies ψ(u) ∼ L(u) as
u → ∞ for some function L slowly varying at ∞, or, equivalently (see Feller [12],
p. 445, Theorem 2 and p. 446, Theorem 3), if P(X ≤ x) ∼ L(1/x) as x → 0.
A concrete example is P(X ≤ x) = 1/(1 − log x), 0 < x ≤ 1. In this case, L(x) =
1/ log x, x > 0, and, hence, E(1/SN) = ∫ ∞

0 (ψ(u))N du = ∞ for all N ∈ N. By
Theorem 1 this model is in the domain of attraction of the Kingman coalescent, since
E(X2) < ∞.

The finiteness or infiniteness of E(1/SN) turns out to be irrelevant for the state-
ments in Theorem 1, since the convergence results of Theorem 1 solely depend on
the limiting behavior of the joint moments of the weights W1, . . . ,Wj as N → ∞.
For example (see Lemma 3), the asymptotics of E(W

p

1 ), p > 0, as N → ∞ is deter-
mined by the values ψ(u) of the Laplace transform ψ for values of u close to 0. For
any fixed δ > 0 the values u > δ do not play any role.

Conjectures and open problems.
Theorem 1 should also hold for Schweinsberg’s model [37], since sampling with-
out replacement (instead of sampling with replacement) should neither influence the
asymptotics of the coalescence probability nor the limiting processes arising in Theo-
rem 1. Note that in [37] the subclass of models without replacement is studied where
the function � in (6) is constant. We leave the analysis of Schweinsberg’s model under
the more general assumption (6) for the interested reader.

In contrast, conditional branching process models [16, 17, 19] seem to be harder
to analyse and behave quite differently in general. Even for the subclass of so-called
compound Poisson models, only partial results are available. Theorems 2.2 and 2.3
of [19] clarify that many unbiased compound Poisson models are in the domain of at-
traction of the Kingman coalescent, and [19, Theorem 2.5] (subcritical case) demon-
strates that the limiting behavior of compound Poisson models can differ substantially
from all scenarios arising in Theorem 1. To the best of the authors knowledge, the
limiting behavior of the ancestral structure of unbiased conditional branching process
models as N → ∞ under assumptions of the form (6) has not been fully addressed
in the literature. We leave this analysis for future research.
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3 Examples

Example 1 (Pareto distribution). Let X be Pareto distributed with parameter α > 0
having tail probabilities P(X > x) = x−α , x > 1. Clearly, (6) holds with � ≡ 1, so
Theorem 1 is applicable. Note that E(Xp) < ∞ if and only if p < α and in this case
E(Xp) = α

∫ ∞
1 xp−α−1 dx = α/(α−p). In particular μ := E(X) = α/(α−1) < ∞

for α > 1 and ρ := E(X2) = α/(α−2) < ∞ for α > 2. By Theorem 1, for α ≥ 2 the
model is in the domain of attraction of the Kingman coalescent, for α ∈ [1, 2) in the
domain of attraction of the β(2 − α, α)-coalescent, and for α ∈ (0, 1) in the domain
of attraction of the discrete-time Poisson–Dirichlet coalescent with parameter α.

Note that �∗(x) = ∫ x

1 1/t dt = log x, x > 1. In part (iv) of Theorem 1, we can
therefore choose aN := N log N and obtain cN ∼ �(aN)/�∗(aN) = 1/�∗(aN) ∼
1/ log N as N → ∞. Thus, by Theorem 1, the coalescence probability cN satisfies

cN ∼

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρ

μ2N
= (α−1)2

α(α−2)N
if α > 2,

2�∗(N)

μ2N
= log N

2N
if α = 2,

�(2−α)�(α+1)

μαNα−1 if α ∈ (1, 2),

1
log N

if α = 1,
1 − α if α ∈ (0, 1).

For α > 2 these results coincide with Proposition 7 of [15] with β = 0, for α = 2
with Proposition 9 of [15], for α ∈ (1, 2) with Lemma 4 and Proposition 5 of [15]
with β = 0, for α = 1 with Proposition 6 of [15] with β = 0, and for α ∈ (0, 1) with
Theorem 3 of [15] with β = 0.

The Pareto example is easily generalized in various ways by replacing � ≡ 1 by
some other slowly varying function. For example, choosing for � (a power of) the
logarithm leads to the following example.

Example 2. Fix α ≥ 0 and assume that X has tail behavior P(X > x) ∼ x−α�(x) as
x → ∞ with �(x) := c(log x)β−1, x > 1, for some constants c > 0 and β > 0. This
example includes the Pareto model (c = β = 1). Clearly, (6) holds, since � slowly
varies at ∞. By Theorem 1, for α ≥ 2 the model is in the domain of attraction of the
Kingman coalescent, for α ∈ [1, 2) in the domain of attraction of the β(2 − α, α)-
coalescent, for α ∈ (0, 1) in the domain of attraction of the discrete-time Poisson–
Dirichlet coalescent with parameter α, and for α = 0 in the domain of attraction of
the discrete-time star-shaped coalescent. Note that

�∗(x) =
∫ x

1

�(t)

t
dt = c

∫ x

1

(log t)β−1

t
dt = c

β
(log x)β, x → ∞.

The asymptotics of the coalescence probability cN as N → ∞ can hence be ob-
tained from the formulas provided in Theorem 1. In particular, for α > 1 the asymp-
totics of cN depends on the concrete value of μ := E(X). For α = 1 the asymp-
totics of cN is obtained as follows. The sequence (aN)N∈N, defined via a1 := 1 and
aN := (c/β)N(log N)β for N ∈ N \ {1}, satisfies �∗(aN) ∼ (c/β)(log aN)β ∼
(c/β)(log N)β = aN/N as N → ∞. By Theorem 1 (iv), the coalescence probability
cN satisfies cN ∼ �(aN)/�∗(aN) ∼ β/ log N as N → ∞.
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For illustration three examples with discrete X are provided.

Example 3 (Yule–Simon distribution). Let X be Yule–Simon distributed [28, 38]
with parameter α > 0 having distribution P(X = k) = αB(α + 1, k) = α�(α +
1)�(k)/�(α + 1 + k), k ∈ N, where B(., .) and �(.) denote the beta and the gamma
function respectively. It is easily checked that P(X > k) = �(α + 1)�(k + 1)/�(k +
α + 1), k ∈ N0. In particular, P(X > x) ∼ �(α + 1)x−α as x → ∞. Thus, (6)
holds with � ≡ �(α + 1). Note that E((X)k) < ∞ if and only if k < α and in
this case E((X)k) = αk!B(α − k, k). In particular, μ = E(X) = α/(α − 1) for
α > 1 and E((X)2) = 2α/((α − 1)(α − 2)) for α > 2, which yields ρ = E(X2) =
α2/((α − 1)(α − 2)) for α > 2. By Theorem 1, for α ≥ 2 the model is in the domain
of attraction of the Kingman coalescent, for α ∈ [1, 2) in the domain of attraction
of the β(2 − α, α)-coalescent, and for α ∈ (0, 1) in the domain of attraction of
the discrete-time Poisson–Dirichlet coalescent with parameter α. Note that �∗(x) =
�(α + 1)

∫ x

1 1/t dt = �(α + 1) log x, x > 1. In part (iv) of Theorem 1 we can thus
choose aN := �(α + 1)N log N and obtain cN ∼ �(aN)/�∗(aN) = 1/ log aN ∼
1/ log N as N → ∞. Thus, by Theorem 1, the coalescence probability cN satisfies

cN ∼

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρ

μ2N
= α−1

(α−2)N
if α > 2,

2�∗(N)

μ2N
= log N

N
if α = 2,

�(2−α)(�(α+1))2

μαNα−1 if α ∈ (1, 2),

1
log N

if α = 1,
1 − α if α ∈ (0, 1).

The Yule–Simon model is a discrete analog of the Pareto model discussed in Ex-
ample 1. We refer the reader to Kozubowski and Podgórski [28] for some further
information on Sibuya and Yule–Simon distributions.

Example 4 (Sibuya distribution). Let X be Sibuya distributed with parameter α ∈
(0, 1) having probability generating function f (s) = 1 − (1 − s)α , s ∈ [0, 1].
Note that f (s) = ∑∞

k=1(−1)k−1
(
α
k

)
sk , so X takes the value k ∈ N with proba-

bility P(X = k) = (−1)k−1
(
α
k

) = α�(k − α)/(�(1 − α)k!). The Laplace trans-
form ψ of X satisfies 1 − ψ(u) = 1 − f (e−u) = (1 − e−u)α ∼ uα as u → 0,
i.e. relation (2.1) of Bingham and Doney [3] holds with n = 0, β = α ∈ (0, 1)

and L ≡ 1. By Theorem A of [3] this relation is equivalent (see Eq. (2.3b) of [3])
to P(X > x) ∼ (�(1 − α))−1x−α as x → ∞, which shows that (6) holds with
� ≡ 1/�(1 − α). Part (v) of Theorem 1 ensures that the model is in the domain of
attraction of the Poisson–Dirichlet coalescent with parameter α and the coalescence
probability cN satisfies cN → 1 − α as N → ∞. The same results are valid when
X is α-stable, α ∈ (0, 1), with Laplace transform ψ(u) := e−uα

, u ≥ 0, since in this
case the same asymptotics 1 − ψ(u) ∼ uα as u → 0 holds. In this sense the Sibuya
example is a discrete version of the α-stable case with α ∈ (0, 1).

Example 5. Let α ∈ (1, 2) and b ∈ (0, 1/(α − 1)]. Assume that X has probability
generating function f (s) = (b + 1)s + b((1 − s)α − 1), s ∈ [0, 1]. Note that X

is discrete taking values in N with probabilities pk := P(X = k), k ∈ N, given by
p1 = b + 1 − bα and pk = b(−1)k

(
α
k

) = b�(k − α)/(�(−α)k!) for k ∈ {2, 3, . . .}.
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From f ′(s) = b + 1 − bα(1 − s)α−1 it follows that μ := E(X) = f ′(1) = b + 1.
The Laplace transform ψ of X satisfies ψ(u) − 1 + (b + 1)u ∼ buα as u → 0, i.e.
relation (2.1) of Bingham and Doney [3] holds with n = 1, β = α − 1 ∈ (0, 1),
and L ≡ b. By Theorem A of [3] this relation is equivalent (see Eq. (2.3b) of [3])
to P(X > x) ∼ b(−�(1 − α))−1x−α as x → ∞, which shows that (6) holds with
�(x) ≡ b/(−�(1 − α)). By Theorem 1 (iii) the model is in the domain of attraction
of the β(2 − α, α)-coalescent and cN ∼ (α − 1)�(α + 1)b/(μαNα−1) as N → ∞.

We close this section with a concrete example belonging to the boundary case (vi)
(α = 0).

Example 6. Let β > 0. If P(X > x) = 1/(1+log x)β , x ≥ 1, then P(X > x) ∼ �(x)

as x → ∞ with �(x) := 1/(log x)β . By Theorem 1 (vi), the model is in the domain
of attraction of the discrete-time star-shaped coalescent and cN → 1 as N → ∞.

4 Proofs

The following auxiliary result (Lemma 1) is a modified version of Lemma 5 of
Schweinsberg [37], adapted to our model. The result may be also viewed as a weak
version of Cramér’s large deviation theorem (see, for example, [10, Theorem 2.2.3]).
Recall that μ := E(X) ∈ (0,∞].
Lemma 1. For every a ∈ (0, μ) there exists q ∈ (0, 1) such that P(SN ≤ aN) ≤ qN

for all N ∈ N.

Proof. Let f denote the moment generating function of Y := X/a, i.e. f (x) :=
E(xY ), x ∈ [0, 1]. From E(xSN/a) ≥ ∫

{SN≤aN} xSN/a dP ≥ xN
P(SN ≤ aN) it fol-

lows that P(SN ≤ aN) ≤ x−N
E(xSN/a) = (x−1f (x))N for all x ∈ (0, 1]. Since

f (1) = 1 and f ′(1) = E(Y ) = μ/a > 1, there exists x0 ∈ (0, 1) such that
f (x0) < x0. The result follows with q := x−1

0 f (x0).

We now prove part (i) of Theorem 1.

Proof of Theorem 1 (i). We first verify that NcN → ρ/μ2 as N → ∞. We have

NcN = N2
E(W 2

1 ) = N2
∫

(0,∞)

E

((
x

x + SN−1

)2)
PX(dx)

=
∫

(0,∞)

fN(x)PX(dx),

where fN(x) := E((x/(x/N+SN−1/N))2). By the law of large numbers, (x/(x/N+
SN−1/N))2 → (x/μ)2 almost surely and, hence, also in distribution as N → ∞. For
any r > 0 the map x �→ x ∧ r is bounded and continuous on [0,∞). Thus,

lim inf
N→∞ fN(x) ≥ lim inf

N→∞ E

((
x

x
N

+ SN−1
N

)2

∧ r

)
= (x/μ)2 ∧ r.

Letting r → ∞ yields lim infN→∞ fN(x) ≥ (x/μ)2. Therefore, by Fatou’s lemma,

lim inf
N→∞ NcN = lim inf

N→∞

∫
(0,∞)

fN(x)PX(dx) ≥
∫

(0,∞)

(x/μ)2
PX(dx) = ρ

μ2 .
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In order to see that lim supN→∞ NcN ≤ ρ/μ2 fix a ∈ (0, μ). By Lemma 1 there
exists q ∈ (0, 1) such that P(SN ≤ aN) ≤ qN for all N ∈ N. Therefore,

NcN = N2
E(W 2

1 ) = N2
E(W 2

1 1{SN≤aN}) + N2
E((X1/SN)21{SN>aN})

≤ N2
P(SN ≤ aN) + N2

E(((X1/(aN))2) ≤ N2qN + ρ

a2 → ρ

a2

as N → ∞. Thus, lim supN→∞ NcN ≤ ρ/a2. Letting a ↑ μ shows that
lim supN→∞ NcN ≤ ρ/μ2 and NcN → ρ/μ2 is established.

It is well known (see [29, Section 4]) that any sequence of Cannings models
with population sizes N is in the domain of attraction of the Kingman coalescent
if and only if �

(N)
1 (3)/cN → 0 as N → ∞. Thus, we have to verify that E(W 3

1 )/

E(W 2
1 ) → 0 as N → ∞. Since E(W 2

1 ) ≥ (E(W1))
2 = 1/N2 it suffices to verify that

N2
E(W 3

1 ) → 0 as N → ∞. Fix again a ∈ (0, μ) and choose q ∈ (0, 1) as above.
We have

N2
E(W 3

1 ) = N2
E(W 3

1 1{SN≤aN}) + N2
E(W 3

1 1{SN>aN}).

Since N2
E(W 3

1 1{SN≤aN}) ≤ N2
P(SN ≤ aN) ≤ N2qN → 0 as N → ∞ it remains

to verify that N2
E(W 3

1 1{SN>aN}) → 0 as N → ∞. We have

N2
E(W 3

1 1{SN>aN}) = N2
E(X3

1S
−3
N 1{SN>aN,X1≤aN})

+N2
E(W 3

1 1{Sn>aN,X1>aN})

≤ 1

a3N
E(X31{X≤aN}) + N2

P(X > aN).

Clearly, N2
P(X > aN) ≤ a−2

E(X21{X>aN}) → 0 as N → ∞, since ρ :=
E(X2) < ∞. It hence remains to verify that N−1

E(X31{X≤aN}) → 0 as N → ∞.
Let ε > 0. Choose L sufficiently large such that E(X21{X>L}) ≤ ε/(2a). Then, for
all N ∈ N with N ≥ 2ρL/ε,

N−1
E(X31{X≤aN}) = N−1

E(X31{X≤aN,X≤L}) + N−1
E(X31{L<X≤aN})

≤ N−1Lρ + aE(X21{X>L}) ≤ ε

2
+ ε

2
= ε,

which shows that N−1
E(X31{X≤aN}) → 0 as N → ∞.

We now prepare the proofs of the parts (ii) and (iii) of Theorem 1. We need the
following two auxiliary results.

Lemma 2. If (6) holds for some α ≥ 0 then for all p > α,

E

((
X

X + x

)p)
∼ �(α + 1)�(p − α)

�(p)
x−α�(x), x → ∞,

and

E

((
X

X ∨ x

)p)
∼ p

p − α
x−α�(x), x → ∞.
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Proof. Let T be a nonnegative random variable and f : [0,∞) → R be a continuous
and piecewise continuously differentiable function such that f (T ) is integrable. Then,

E(f (T )) − f (0)

=
∫

[0,∞)

(
f (x) − f (0)

)
PT (dx) =

∫
[0,∞)

∫
[0,x)

f ′(t) λ(dt)PT (dx)

=
∫

[0,∞)

f ′(t)
∫

(t,∞)

PT (dx) λ(dt) =
∫ ∞

0
f ′(t)P(T > t) dt. (8)

Let x > 0. Applying (8) to T := X/x and f (t) := (t/(t + 1))p shows that

E

((
X

X + x

)p)
=

∫ ∞

0

ptp−1

(t + 1)p+1P(X > xt) dt.

By Theorem 3 of Karamata [22], applied to the function ϕ(x) := P(X > x), which
is regularly varying at ∞ with index γ := −α, it follows that, as x → ∞,

E

((
X

X + x

)p)
∼ P(X > x)

∫ ∞

0

ptp−1

(t + 1)p+1 t−α dt

= P(X > x)
�(α + 1)�(p − α)

�(p)
.

The same steps, but applied to f (t) := (t/(t ∨ 1))p, show that

E

((
X

X ∨ x

)p)
=

∫ ∞

0
f ′(t)P(X > xt) dt ∼ P(X > x)

∫ ∞

0
f ′(t)t−α dt

= P(X > x)

∫ 1

0
ptp−α−1 dt = P(X > x)

p

p − α
.

Lemma 3. For all j ∈ {1, . . . , N} and p1, . . . , pj > 0,

E(W
p1
1 · · ·Wpj

j ) = 1

�(p)

∫ ∞

0
up−1

E(e−uSN−j )

j∏
i=1

E(Xpi e−uX) du, (9)

where p := p1 +· · ·+pj and S0 := 0. Moreover, for any fixed j ∈ N the asymptotics
of the latter integral as N → ∞ is determined by the values of u close to 0, i.e. for
any fixed j ∈ N and δ > 0, as N → ∞,

E(W
p1
1 · · · Wpj

j ) ∼ 1

�(p)

∫ δ

0
up−1

E(e−uSN−j )

j∏
i=1

E(Xpi e−uX) du. (10)

In particular, for any fixed δ > 0,

1

N
= E(W1) ∼

∫ δ

0
E(Xe−uX)E(e−uSN−1) du, N → ∞. (11)
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Remark 3. The fundamental relation (9) is well known from several references (see,
for example, Cortines [9, Proposition 4.4] or Huillet [15]).

Proof. Let j ∈ {1, . . . , N} and p1, . . . , pj > 0. From the representation S
−p
N =

(�(p))−1
∫ ∞

0 up−1e−uSN du it follows that

E(W
p1
1 · · ·Wpj

j ) = E(X
p1
1 · · ·Xpj

j S
−p
N )

= 1

�(p)

∫ ∞

0
up−1

E(X
p1
1 · · ·Xpj

j e−uSN ) du

= 1

�(p)

∫ ∞

0
up−1

E(e−uSN−j )

j∏
i=1

E(Xpi e−uX) du,

which is (9). To check (10) fix j ∈ N and δ > 0 and let ψ denote the Laplace
transform of X. Decompose E(W

p1
1 · · ·Wpj

j ) = AN + BN with

AN := 1

�(p)

∫ δ

0
up−1

E(e−uSN−j )

j∏
i=1

E(Xpi e−uX) du

and

BN := 1

�(p)

∫ ∞

δ

up−1
E(e−uSN−j )

j∏
i=1

E(Xpi e−uX) du.

The map u �→ E(e−uSN−1) is nonincreasing on [0,∞). Thus,

BN ≤ E(e−δSN−j )
1

�(p)

∫ ∞

δ

up−1
j∏

i=1

E(Xpi e−uX) du = c1(ψ(δ))N−j

and

AN ≥ 1

�(p)

∫ δ/2

0
up−1

E(e−uSN−j )

j∏
i=1

E(Xpi e−uX) du ≥ c2(ψ(δ/2))N−j

with constants

c1 := c1(p1, . . . , pj , δ) := 1

�(p)

∫ ∞

δ

up−1
j∏

i=1

E(Xpi e−uX) du

and

c2 := c2(p1, . . . , pj , δ) := 1

�(p)

∫ δ/2

0
up−1

j∏
i=1

E(Xpi e−uX) du.

Note that 0 < c1, c2 < ∞ and that c1 and c2 do not depend on N . Thus,

1 ≤ E(W
p1
1 · · ·Wpj

j )

AN

= 1 + BN

AN

≤ 1 + c1(ψ(δ))N−j

c2(ψ(δ/2))N−j

= 1 + c1

c2

(
ψ(δ)

ψ(δ/2)

)N−j

→ 1
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as N → ∞, since ψ(δ/2) > ψ(δ). Eq. (11) follows by choosing j := 1 and p1 := 1
in (10).

We now turn to the proofs of the parts (ii) and (iii) of Theorem 1. We first consider
part (iii) (1 < α < 2). The boundary case α = 2 (part (ii) of Theorem 1) will be
studied afterwards.

Proof of Theorem 1 (iii). The idea of the proof is to apply the general convergence
result [32, Theorem 2.1]. Having (3) in mind the main task is to derive the asymptotics
of the moments of W1 or, more generally, the asymptotics of the joint moments of
the random variables W1, . . . ,Wj as N → ∞. The following proof is based on
Schweinsberg’s [37] method. We first verify that

lim
N→∞

(μN)α

�(N)
E(Wk

1 ) = αB(k − α, α), k ∈ N \ {1}. (12)

For all λ > μ := E(X), by the law of large numbers, P(SN−1 ≤ λN) → 1 as
N → ∞. Thus,

E(Wk
1 ) ≥ E(Wk

1 1{X2+···+XN≤λN})

≥ E

((
X1

X1 + λN

)k)
P(X2 + · · · + XN ≤ λN)

∼ E

((
X

X + λN

)k)
∼ αB(k − α, α)

�(N)

(λN)α
, N → ∞,

where the last asymptotics holds by Lemma 2, since � is slowly varying at ∞. Multi-
plication with Nα/�(N) and taking lim inf shows that

lim inf
N→∞

Nα

�(N)
E(Wk

1 ) ≥ αB(k − α, α)/λα.

Letting λ ↓ μ it follows that lim infN→∞ Nα/�(N)E(Wk
1 ) ≥ αB(k − α, α)/μα .

To handle the lim sup, fix a ∈ (0, μ) and decompose

E(Wk
1 ) = E(Wk

1 1{X2+···+XN≤aN}) + E(Wk
1 1{X2+···+XN>aN}).

From Lemma 1 it follows that there exists N0 ∈ N and q ∈ (0, 1) such that P(SN−1 ≤
aN) ≤ qN for all N > N0. Thus, E(Wk

1 1{X2+···+XN≤aN}) ≤ P(X2 + · · · + XN ≤
aN) = P(SN−1 ≤ aN) ≤ qN for all N ∈ N with N > N0. It hence suffices to verify
that

lim sup
N→∞

(μN)α

�(N)
E(Wk

1 1{X2+···+XN>aN}) = αB(k − α, α). (13)

In order to see this, let λ ∈ (a, μ) and decompose

E(Wk
1 1{X2+···+XN>aN})
= E(Wk

1 1{aN<X2+···+XN≤λN}) + E(Wk
1 1{X2+···+XN>λN})

≤ E

((
X1

X1 + aN

)k)
P(SN−1 ≤ λN)
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+E

((
X1

X1 + λN

)k)
P(SN−1 > λN).

The two expectations on the right hand side are both O(�(N)/Nα) by Lemma 2.
Moreover, P(SN−1 ≤ λN) → 0 and P(SN−1 > λN) → 1 as N → ∞. Therefore,
only the last term contributes to the lim sup, and we obtain

lim sup
N→∞

Nα

�(N)
E(Wk

1 1{X2+···+XN>aN})

≤ lim sup
N→∞

Nα

�(N)
E

((
X1

X1 + λN

)k)
P(SN−1 > λN)

∼ Nα

�(N)
αB(k − α, α)

�(λN)

(λN)α
= αB(k − α, α)/λα.

Letting λ ↑ μ shows that (13) holds. Thus, (12) is established.
Choosing k = 2 in (12) yields the asymptotic formula for the coalescence proba-

bility cN = NE(W 2
1 ) stated in Theorem 1 (iii). In particular, cN = O(�(N)/Nα−1).

In summary we conclude that

�
(N)
1 (k)

cN

= E(Wk
1 )

E(W 2
1 )

→ �(k − α)

�(k)�(2 − α)
=

∫
(0,1)

xk−2�(dx), N → ∞,

where � := β(2 − α, α) denotes the beta distribution with parameters 2 − α and α.
Moreover,

E(W 2
1 W 2

2 1{SN>aN}) ≤ E

(
X2

1X
2
2

(X1 ∨ aN)2(X2 ∨ aN)2

)

=
(
E

(
X2

(X ∨ aN)2

))2

∼
(

2

2 − α

�(aN)

(aN)α

)2

= O

(
(�(N))2

N2α

)
.

Since cN ≥ K�(N)/Nα−1 for some K > 0 it follows that �
(N)
2 (2, 2)/cN =

O(�(N)/Nα−1) = O(cN) → 0 as N → ∞. Thus, for all j, k1, . . . , kj ∈ N \ {1},
�

(N)
j (k1, . . . , kj )/cN ≤ �

(N)
2 (2, 2)/cN → 0 as N → ∞. By [32, Theorem 2.1], the

model is in the domain of attraction of the β(2 − α, α)-coalescent.

We now turn to the boundary case α = 2, so we prove part (ii) of Theorem 1.

Proof of Theorem 1 (ii). For all x > 0,

E(X21{X≤x}) =
∫ ∞

0
P(X21{X≤x} > y) dy

=
∫ ∞

0
2tP(X21{X≤x} > t2) dt =

∫ x

0
2tP(t < X ≤ x) dt

=
∫ x

0
2t

(
P(X > t) − P(X > x)

)
dt =

∫ x

0
2tP(X > t) dt − x2

P(X > x).
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Since
∫ x

0 tP(X > t) dt ∼ ∫ x

1 �(t)/t dt = �∗(x), x2
P(X > x) ∼ �(x), and

�(x)/�∗(x) → 0 as x → ∞, it follows that E(X21{X≤x}) ∼ 2�∗(x) as x → ∞.
Thus, relation (2.3c) of Bingham and Doney [3] holds with n = 1 and L := �∗. This
relation is equivalent (see (2.4) in Theorem A of [3]) to ψ ′′(u) ∼ 2�∗(1/u) as u → 0.

Recall that cN = NE(W 2
1 ). We now verify the asymptotic relation cN ∼

2μ−2�∗(N)/N as N → ∞ or, equivalently, that

lim
N→∞

N2

�∗(N)
E(W 2

1 ) = 2

μ2 . (14)

We have

E(W 2
1 ) =

∫ ∞

0
uψ ′′(u)E(e−uSN−1) du = 1

N2

∫ ∞

0
tψ ′′(t/N)E(e−tSN−1/N ) dt.

Multiplication by N2/�∗(N) and Fatou’s lemma yield

lim inf
N→∞

N2

�∗(N)
E(W 2

1 ) ≥
∫ ∞

0
t lim inf

N→∞
ψ ′′(t/N)

�∗(N)
E(e−tSN−1/N) dt

=
∫ ∞

0
2te−μt dt = 2

μ2 ,

since ψ ′′(t/N) ∼ 2�∗(N/t) ∼ 2�∗(N) and E(e−tSN−1/N) → e−μt as N → ∞. To
see that lim supN→∞ N2

�∗(N)
E(W 2

1 ) ≤ 2/μ2, fix a ∈ (0, μ). By Lemma 1 there exists

N0 ∈ N and q ∈ (0, 1) such that P(SN−1 ≤ aN) ≤ qN for all N ∈ N with N > N0.
Noting that E(W 2

1 1{X2+···+XN≤aN}) ≤ P(SN−1 ≤ aN) ≤ qN , it suffices to verify
that

lim sup
N→∞

N2

�∗(N)
E(W 2

1 1{X2+···+XN>aN}) ≤ 2

μ2 . (15)

In order to see this, let λ ∈ (a, μ) and decompose E(W 2
1 1{X2+···+XN>aN}) =

E(W 2
1 1AN

) + E(W 2
1 1BN

), where AN := {aN < X2 + · · · + XN ≤ λN} and
BN := {X2 + · · · + XN > λN}. We have

N2

�∗(N)
E(W 2

1 1AN
) = N2

�∗(N)

∫ ∞

0
uψ ′′(u)E(e−uSN−1 1{aN<SN−1≤λN}) du

≤ P(SN−1 ≤ λN)
N2

�∗(N)

∫ ∞

0
uψ ′′(u)e−uaN du

= P(SN−1 ≤ λN)
1

�∗(N)

∫ ∞

0
tψ ′′(t/N)e−at dt

∼ P(SN−1 ≤ λN)
1

�∗(N)
ψ ′′(1/N)

∫ ∞

0
te−at dt

∼ P(SN−1 ≤ λN)
2

a2 → 0, N → ∞,

where the second last asymptotics holds by Theorem 3 of Karamata [22], applied
with f (t) := te−at and ϕ := ψ ′′, which is slowly varying at 0. For the second part
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we obtain

N2

�∗(N)
E(W 2

1 1BN
) = N2

�∗(N)

∫ ∞

0
uψ ′′(u)E(e−uSN−1 1{SN−1>λN}) du

≤ N2

�∗(N)

∫ ∞

0
uψ ′′(u)e−uλN du

= 1

�∗(N)

∫ ∞

0
tψ ′′(t/N)e−λt dt

∼ 1

�∗(N)
ψ ′′(1/N)

∫ ∞

0
te−λt dt ∼ 2

λ2 ,

where the second last asymptotics holds again by Theorem 3 of Karamata [22], now
applied with f (t) := te−λt and ϕ := ψ ′′. Therefore,

lim sup
N→∞

N2

�∗(N)
E(W 2

1 1{X2+···+XN>aN})

≤ lim sup
N→∞

N2

�∗(N)
E(W 2

1 1AN
) + lim sup

N→∞
N2

�∗(N)
E(W 2

1 1BN
)

≤ 0 + 2

λ2 = 2

λ2 .

Letting λ ↑ μ shows that (15) holds. Thus, (14) is established. The rest of the proof
now works as follows. By the monotone density theorem (Lemma 4), applied with
ρ = 0,

−uψ ′′′(u)

ψ ′′(u)
∼ −uψ ′′′(u)

2�∗(1/u)
→ 0, u → 0.

Thus, for every ε > 0 there exists δ = δ(ε) > 0 such that −uψ ′′′(u) ≤ εψ ′′(u) for
all u ∈ (0, δ). Therefore, together with Lemma 3, as N → ∞,

E(W 3
1 ) ∼ 1

2

∫ δ

0
u2(−ψ ′′′(u))(ψ(u))N−1 du

≤ ε

2

∫ δ

0
uψ ′′(u)(ψ(u))N−1 du ∼ ε

2
E(W 2

1 ).

Thus, lim supN→∞ E(W 3
1 )/E(W 2

1 ) ≤ ε/2. Since ε can be chosen arbitrarily small, it

follows that limN→∞ �
(N)
1 (3)/cN = limN→∞ E(W 3

1 )/E(W 2
1 ) = 0, which is equiva-

lent (see, for example, [29, Section 4]) to the property that the model is in the domain
of attraction of the Kingman coalescent.

We now turn to the proofs of the three remaining parts (iv)–(vi) of Theorem 1.
We first consider the case 0 < α < 1 corresponding to part (v) of Theorem 1. The
boundary cases (iv) (α = 1) and (vi) (α = 0) will be considered afterwards. Assume
that 0 < α < 1. Then (6) is exactly Eq. (2.3b) of Bingham and Doney [3] with
n = 0, β = α ∈ (0, 1) and L(x) := �(1 − α)�(x). By [3, Theorem A], (6) is hence
equivalent (see [3, Eq. (2.1)]) to 1 − ψ(u) ∼ uαL(1/u) = �(1 − α)uα�(1/u) as
u → 0.
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Proof of Theorem 1 (v). For k ∈ N0 and x > 0 define hk(x) := xk
P(X > x).

By (6), hk(x) ∼ xk−α�(x) as x → ∞. Karamata’s Tauberian theorem [2, Theo-
rem 1.7.6], applied with U := hk , ρ := k − α and c := �(ρ + 1), yields for all
k ∈ N0 that ĥk(u) := u

∫ ∞
0 e−uxxk

P(X > x) dx ∼ �(k − α + 1)uα−k�(1/u) as
u → 0. Thus, by (8), for all k ∈ N,

ϕk(u) := E(Xke−uX) =
∫ ∞

0

d

dx
(xke−ux)P(X > x) dx

=
∫ ∞

0
(kxk−1e−ux − uxke−ux)P(X > x) dx = k

u
ĥk−1(u) − ĥk(u)

∼ k

u
�(k − α)uα−(k−1)�(1/u) − �(k − α + 1)uα−k�(1/u)

= α�(k − α)uα−k�(1/u), u → 0. (16)

We now turn to the joint moments of W1, . . . ,Wj . Let a1, a2, . . . be positive real
numbers satisfying L(aN) ∼ aα

N/N as N → ∞. Moreover, fix some δ ∈ (0,∞). The
exact value of δ is irrelevant but it is important that δ is finite. Let j, k1, . . . , kj ∈ N.
Define k := k1 + · · · + kj . By Lemma 3, as N → ∞,

�
(N)
j (k1, . . . , kj ) = (N)jE(W

k1
1 · · ·Wkj

j )

∼ Nj

�(k)

∫ δ

0
uk−1

E(e−uSN−j )

j∏
i=1

ϕki
(u) du

= Nj

�(k)ak
N

∫ δaN

0
tk−1

E(e−tSN−j /aN )

j∏
i=1

ϕki
(t/aN) dt.

Corollary 1, an Abelian result á la Karamata provided in the appendix for conve-
nience, applied to xN := 1/aN , fN(t) := tk−1

E(e−tSN−j /aN )1(0,δaN )(t) and ϕ :=∏j
i=1 ϕki

, which is regularly varying at 0 with index
∑j

i=1(α − ki) = jα − k, yields,
as N → ∞,

�
(N)
j (k1 . . . , kj ) ∼ Nj

∏j
i=1 ϕki

(1/aN)

�(k)ak
N

∫ δaN

0
tjα−1

E(e−tSN−j /aN ) dt. (17)

In the following the asymptotic relation (17) is used to verify by induction on j ∈ N

that, for all k1, . . . , kj ∈ N,

lim
N→∞ �

(N)
j (k1 . . . , kj ) = αj−1 �(j)

�(k)

j∏
i=1

�(ki − α)

�(1 − α)
. (18)

Since �
(N)
1 (1) = NE(W1) = 1, the choice j = k1 = 1 in (17) yields

∫ δaN

0
tα−1

E(e−tSN−1/aN ) dt ∼ aN

Nϕ1(1/aN)
∼ 1

α
, N → ∞, (19)
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where the last asymptotics holds, since ϕ1(1/aN) ∼ α�(1 − α)a1−α
N �(aN) and

aα
N/N ∼ L(aN) = �(1 − α)�(N). Note that in (19) it is important that δ < ∞

because otherwise the integral on the left hand side of (19) could take the value ∞.
For j = 1 and k1 = k ∈ N, (17) thus reduces to

�
(N)
1 (k) ∼ Nϕk(1/aN)

�(k)ak
N

1

α
∼ �(k − α)

�(k)�(1 − α)
, N → ∞,

which shows that (18) holds for j = 1. In particular, cN = �
(N)
1 (2) → 1 − α > 0

as N → ∞. The induction step from j − 1 to j (≥ 2) works as follows. By the
consistency relation (4) and the induction hypothesis,

�
(N)
j (1, . . . , 1) = �

(N)
j−1(1, . . . , 1) − (j − 1)�

(N)
j−1(2, 1, . . . , 1)

→ αj−2 − αj−2(1 − α) = αj−1.

Thus, (18) holds for k1 = · · · = kj = 1 and the choice k1 = · · · = kj = 1 in (17)
yields

∫ δaN

0
tjα−1

E(e−tSN−j /aN ) dt ∼ �(j)a
j
N

Nj (ϕ1(1/aN))j
αj−1 ∼ �(j)

α
, N → ∞.

Therefore, (17) reduces to

�
(N)
j (k1, . . . , kj ) ∼ Nj

∏j

i=1 ϕki
(1/aN)

�(k)ak
N

�(j)

α

∼ Nj�(j)
∏j

i=1(α�(ki − α)a
ki−α
N �(aN))

α�(k)ak
N

= αj−1 �(j)

�(k)

(N�(1 − α)�(aN)

aα
N

)j
j∏

i=1

�(ki − α)

�(1 − α)

→ αj−1 �(j)

�(k)

j∏
i=1

�(ki − α)

�(1 − α)
=: φj (k1, . . . , kj ),

since N�(1 − α)�(aN) = NL(aN) ∼ aα
N as N → ∞. The induction is complete.

In summary, �
(N)
j (k1, . . . , kj ) → φj (k1, . . . , kj ) as N → ∞ for all j, k1, . . . ,

kj ∈ N. The quantities φj (k1, . . . , kj ) are (see [31, Eq. (16)] for the analogous for-
mula for the rates of the continuous-time Poisson–Dirichlet coalescent) the transition
probabilities of the discrete-time two-parameter Poisson–Dirichlet coalescent with
parameters α and 0. The convergence result (v) of Theorem 1 therefore follows from
[32, Theorem 2.1].

Let us now turn to the (boundary) case α = 1, so we now assume that P(X > x) ∼
x−1�(x) as x → ∞ for some function � slowly varying at ∞.
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Proof of Theorem 1 (iv). The proof has much in common with that of part (v). The
details are however slightly different. For all x > 0,

E(X1{X≤x}) =
∫ ∞

0
P(X1{X≤x} > t) dt =

∫ x

0
P(t < X ≤ x) dt

=
∫ x

0

(
P(X > t) − P(X > x)

)
dt =

∫ x

0
P(X > t) dt − xP(X > x).

Using that
∫ x

0 P(X > t) dt ∼ ∫ x

1 �(t)/t dt = �∗(x), xP(X > x) ∼ �(x) and
�(x)/�∗(x) → 0 as x → ∞, it follows that E(X1{X≤x}) ∼ �∗(x) as x → ∞. Recall
that �∗ is slowly varying at ∞. Thus, Eq. (2.3c) of Bingham and Doney [3] holds
with n = 0 and α = β = 1 and L := �∗, which is equivalent (see [3, Theorem A,
Eq. (2.1)]) to

1 − ψ(u) ∼ u�∗(1/u), u → 0

and as well (see [3, Theorem A, Eq. (2.4)]) equivalent to

ϕ1(u) := E(Xe−uX) = −ψ ′(u) ∼ �∗(1/u), u → 0.

For k ∈ N \ {1}, the asymptotic relation

ϕk(u) := E(Xke−uX) ∼ �(k − 1)u1−k�(1/u), u → 0, (20)

is verified exactly as in the proof of part (v) of Theorem 1. In particular, ϕk is regularly
varying at 0 with index 1 − k, k ∈ N0.

We now turn to the joint moments of W1, . . . ,Wj . Let a1, a2, . . . be positive real
numbers satisfying �∗(aN) ∼ aN/N as N → ∞. As in the proof of part (v) of
Theorem 1, fix some δ ∈ (0,∞). Again, the exact value of δ is irrelevant but it is
important that δ is finite. Let j, k1, . . . , kj ∈ N. Define k := k1 + · · · + kj . By
Lemma 3, as N → ∞,

E(W
k1
1 · · ·Wkj

j ) ∼ 1

�(k)

∫ δ

0
uk−1

E(e−uSN−j )

j∏
i=1

ϕki
(u) du

= 1

�(k)ak
N

∫ δaN

0
tk−1

E(e−tSN−j /aN )

j∏
i=1

ϕki
(t/aN) dt.

Corollary 1, applied to xN := 1/aN , fN(t) := tk−1
E(e−tSN−j /aN )1(0,δaN )(t) and

ϕ := ∏j

i=1 ϕki
, which is regularly varying at 0 with index

∑j

i=1(1 − ki) = j − k,
shows that, as N → ∞,

E(W
k1
1 · · ·Wkj

j ) ∼
∏j

i=1 ϕki
(1/aN)

�(k)ak
N

∫ δaN

0
tj−1

E(e−tSN−j /aN ) dt. (21)

Since E(W1) = 1/N , the asymptotic relation (21) turns for j = k1 = 1 into

1

N
∼ a−1

N ϕ1(1/aN)

∫ δaN

0
E(e−tSN−1/aN ) dt

∼ a−1
N �∗(aN)

∫ δaN

0
E(e−tSN−1/aN ) dt,
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or, equivalently,∫ δaN

0
E(e−tSN−1/aN ) dt ∼ aN

N�∗(aN)
∼ 1, N → ∞.

Therefore, for j = 1 and k = k1 ∈ N \ {1}, (21) reduces to

E(Wk
1 ) ∼ ϕk(1/aN)

�(k)ak
N

∼ �(aN)

(k − 1)aN

, N → ∞,

since ϕk(1/aN) ∼ �(k − 1)ak−1
N �(aN) by (20). Thus, the coalescence probability cN

satisfies

cN = NE(W 2
1 ) ∼ N�(aN)

aN

∼ �(aN)

�∗(aN)
→ 0, N → ∞,

and

�
(N)
1 (k)

cN

= E(Wk
1 )

E(W 2
1 )

→ 1

k − 1
=

∫
[0,1]

xk−2 �(dx), k ∈ N \ {1},

where � denotes the uniform distribution on [0, 1]. To see that simultaneous multiple
collisions cannot occur in the limit, note that (N)2E(W1W2) = 1 − cN ∼ 1 as
N → ∞, or, equivalently, E(W1W2) ∼ 1/N2 as N → ∞. Thus, (21) reduces for
j = 2 and k1 = k2 = 1 to

1

N2 ∼ ϕ2
1(1/aN)

a2
N

∫ δaN

0
tE(e−tSN−2/aN ) dt

∼
(�∗(aN)

aN

)2
∫ δaN

0
tE(e−tSN−2/aN ) dt,

or, equivalently,∫ δaN

0
tE(e−tSN−2/aN ) dt ∼

( aN

N�∗(aN)

)2 ∼ 1, N → ∞. (22)

Therefore, for j = 2 and k1, k2 ∈ N \ {1}, (21) reduces to

E(W
k1
1 W

k2
2 ) ∼ ϕk1(1/aN)ϕk2(1/aN)

�(k)ak
N

∼ �(k1 − 1)�(k2 − 1)

�(k)

(�(aN)

aN

)2
,

where the last asymptotics holds since ϕki
(1/aN) ∼ �(ki − 1)a

ki−1
N �(aN) by (20).

In particular, �
(N)
2 (2, 2) = (N)2E(W 2

1 W 2
2 ) ∼ (N�(aN)/aN)2/6 ∼ c2

N/6. For
j, k1, . . . , kj ∈ N \ {1} it follows from the monotonicity property (5) that

�
(N)
j (k1, . . . , kj ) ≤ �

(N)
2 (2, 2) = O(c2

N), and, therefore, �
(N)
j (k1, . . . , kj )/cN → 0

as N → ∞, which shows that simultaneous multiple collisions cannot occur in the
limit.

To summarize, by [32, Theorem 2.1], the model is in the domain of attraction of
the �-coalescent with � the uniform distribution on [0, 1], which is the Bolthausen–
Sznitman coalescent.
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Remark 4. Suppose that (6) holds with α ∈ (0, 1). Using the same techniques as in
the previous proof, it follows for all j ∈ N and k1, . . . , kj ≥ 2 that

�
(N)
j (k1, . . . , kj ) = (N)jE(W

k1
1 · · · Wkj

j )

∼ �(j)�(k1 − 1) · · · �(kj − 1)

�(k)
c
j
N , N → ∞,

where cN ∼ N�(aN)/aN ∼ �(aN)/�∗(aN) → 0 as N → ∞. Thanks to the mono-
tonicity property (5) this formula is only needed for j ∈ {1, 2} in the previous proof.

We finally turn to the case α = 0 corresponding to the last part (vi) of Theorem 1.

Proof of Theorem 1 (vi). Let QN denote the distribution of X2 +· · ·+XN
d= SN−1.

For all p > 0,

E(W
p

1 ) = E(W
p

1 1{X2+···+XN≤N}) +
∫

(N,∞)

E

((
X

X + x

)p)
QN(dx). (23)

From Lemma 1 it follows that there exists q ∈ (0, 1) such that

E(W
p

1 1{X2+···+XN≤N}) ≤ P(SN−1 ≤ N) ≤ qN

for all sufficiently large N . By Lemma 2, E((X/(X+x))p) ∼ �(x) as x → ∞, which
implies that∫

(N,∞)

E

((
X

X + x

)p)
QN(dx) ∼

∫
(N,∞)

�(x)QN(dx), N → ∞. (24)

Note that the integral on the right hand side of (24) does not depend on the parame-
ter p. For p = 1, taking E(W1) = 1/N into account, Eq. (23), multiplied by N , turns
into

1 = NE(W11{X2+···+XN≤N}) + N

∫
(N,∞)

E

(
X

X + x

)
QN(dx).

Noting that, for all sufficiently large N ,

NE(W11{X2+···+XN≤N}) ≤ NP(SN−1 ≤ N) ≤ NqN → 0, N → ∞,

it follows that limN→∞ N
∫
(N,∞)

E(X/(X + x))QN(dx) = 1, or, equivalently,

1

N
∼

∫
(N,∞)

E

(
X

X + x

)
QN(dx) ∼

∫
(N,∞)

�(x)QN(dx), N → ∞,

where the last asymptotics holds by (24) for p = 1. Therefore, for every p > 0
the integral in (24) is asymptotically equal to 1/N and it follows from (23) that
NE(W

p

1 ) → 1 as N → ∞ for all p > 0. In particular, cN = NE(W 2
1 ) → 1

as N → ∞. Moreover, �
(N)
2 (2, 2) = (N)2E(W 2

1 W 2
2 ) ≤ (N)2E(W1W2) = 1 −

cN → 0 as N → ∞. Thus, for all j, k1, . . . , kj ∈ N \ {1}, �
(N)
j (k1, . . . , kj ) ≤

�
(N)
2 (2, 2) → 0 as N → ∞, which shows that simultaneous multiple collisions can-

not occur in the limit. By [32, Theorem 2.1], the model is in the domain of attraction
of the discrete-time star-shaped coalescent.
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A Appendix

For convenience we present the following version of the monotone density theorem.

Lemma 4. Let x0 ∈ (0,∞] and assume that G : (0, x0) → R has the form G(x) =∫
(x,x0)

g(y) λ(dy) for some measurable function g : (0, x0) → R. If G(x) ∼ x−ρ�(x)

as x → 0 for some constant ρ ∈ [0,∞) and some function � slowly varying at 0 and
if g is monotone in some right neighborhood of 0, then limx→0 xρ+1g(x)/�(x) = ρ.

Remark 5. Note that G′(x) = −g(x). The statement of the lemma is hence equiva-
lent to limx→0 xG′(x)/G(x) = −ρ.

The following proof of Lemma 4 almost exactly coincides with the proofs known
for standard versions of the monotone density theorem (see, for example, Bingham,
Goldie and Teugels [2, Theorem 1.7.2] or Feller [12, p. 446]. The proof is provided,
since the monotone density theorem in the form of Lemma 4 is heavily used through-
out the proofs in Section 4.

Proof of Lemma 4. Suppose first that g is nonincreasing in some right neighbor-
hood of 0. If 0 < a < b < ∞, then, for all x ∈ (0, x0/b), G(ax) − G(bx) =∫
(ax,bx] g(y) λ(dy) so, for x small enough,

(b − a)xg(bx)

x−ρ�(x)
≤ G(ax) − G(bx)

x−ρ�(x)
≤ (b − a)xg(ax)

x−ρ�(x)
.

The middle fraction is

G(ax)

(ax)−ρ�(ax)
a−ρ �(ax)

�(x)
− G(bx)

(bx)−ρ�(bx)
b−ρ �(bx)

�(x)
→ a−ρ − b−ρ, x → 0,

so the first inequality above yields

lim sup
x→0

g(bx)

x−ρ−1�(x)
≤ a−ρ − b−ρ

b − a
.

Taking b := 1 and letting a ↑ 1 gives

lim sup
x→0

g(x)

x−ρ−1�(x)
≤ lim

a→1

a−ρ − 1

1 − a
= ρ.

By a similar treatment of the right inequality with a := 1 and b ↓ 1 we find that the
lim inf is at least ρ, and the conclusion follows. The argument when g is nondecreas-
ing in some right neighborhood of 0 is similar.

The following two results are extended versions of Theorem 2 and Theorem 3 of
Karamata [22] adapted to our purposes. Lemma 5 provides conditions under which
a slowly varying part inside an integral can be moved in front of the integral without
changing the asymptotics of the integral. Corollary 1 is a similar result for the regu-
larly varying case. The results are slightly more general than those provided in [22],
since the functions gN and fN arising in the statements are allowed to depend on N ,
which is not the case in the formulation of [22].
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Lemma 5. Let L : (0,∞) → (0,∞) be slowly varying at 0 (or ∞), let (xN)N∈N be
a sequence of positive real numbers satisfying xN → 0 (or xN → ∞) as N → ∞.
Furthermore, let gN : (0,∞) → [0,∞) be nonnegative, integrable functions with
0 <

∫ ∞
0 gN(t) dt < ∞ for all N ∈ N and such that, for some a > 0 and some η > 0,

∫ a

0
t−ηgN(t) dt < ∞ and

∫ ∞

a

tηgN(t) dt < ∞

for all N ∈ N. Then, as N → ∞,∫ ∞

0
L(xN t)gN(t) dt ∼ L(xN)

∫ ∞

0
gN(t) dt.

Proof. Define P(x) := xηL(x) and Q(x) := x−ηL(x), x > 0. Note that P is
regularly varying with index η and Q is regularly varying with index −η. By [2,
Theorem 1.5.2], P(xN t)/P (xN) → tη as N → ∞ uniformly in t ∈ (0, a] and
Q(xN t)/Q(xN) → t−η as N → ∞ uniformly in t ∈ [a,∞). Thus, for every ε > 0
there exists N0 = N0(ε) ∈ N such that, for all N ∈ N with N > N0,

P(xN)(1 − ε) ≤ t−ηP (xN t) ≤ P(xN)(1 + ε) for all t ∈ (0, a]

and

Q(xN)(1 − ε) ≤ tηQ(xN t) ≤ Q(xN)(1 + ε) for all t ∈ [a,∞).

For all N ∈ N with N > N0 it follows that∫ ∞

0
L(xN t)gN(t) dt

= x
−η
N

∫ a

0
t−ηP (xN t)gN(t) dt + x

η
N

∫ ∞

a

tηQ(xN t)gN(t) dt

≤ x
−η
N P (xN)(1 + ε)

∫ a

0
gN(t) dt + x

η
NQ(xN)(1 + ε)

∫ ∞

a

gN(t) dt

= (1 + ε)L(xN)

∫ ∞

0
gN(t) dt

and, analogously,
∫ ∞

0 L(xN t)gN(t) dt ≥ (1 − ε)L(xN)
∫ ∞

0 gN(t) dt .

Corollary 1. Let ϕ : (0,∞) → (0,∞) be regularly varying at 0 (or ∞) with index
γ ∈ R and let (xN)N∈N be a sequence of positive real numbers satisfying xN → 0
(or xN → ∞) as N → ∞. Furthermore, let fN : (0,∞) → [0,∞), N ∈ N,
be functions such that 0 <

∫ ∞
0 tηfN(t) dt < ∞ for all N ∈ N and all η in some

neighborhood of γ , i.e. for all η ∈ (γ − ε, γ + ε) for some ε > 0. Then, as N → ∞,∫ ∞

0
ϕ(xN t)fN(t) dt ∼ ϕ(xN)

∫ ∞

0
tγ fN(t) dt.
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Proof. Define L(x) := x−γ ϕ(x) for x > 0, and gN(t) := tγ fN(t) for t > 0. Choose
η := ε/2 > 0. Then, for any a > 0,∫ a

0
t−ηgN(t) dt =

∫ a

0
tγ−ηfN(t) dt ≤

∫ ∞

0
tγ−ηfN(t) dt < ∞

by assumption and as well∫ ∞

a

tηgN(t) dt =
∫ ∞

a

tγ+ηfN(t) dt ≤
∫ ∞

0
tγ+ηfN(t) dt < ∞

by assumption. Thus, Lemma 5 is applicable, which yields the result.
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