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Abstract A linear structural regression model is studied, where the covariate is observed with
a mixture of the classical and Berkson measurement errors. Both variances of the classical and
Berkson errors are assumed known. Without normality assumptions, consistent estimators of
model parameters are constructed and conditions for their asymptotic normality are given. The
estimators are divided into two asymptotically independent groups.
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1 Introduction

Regression models with measurement errors in covariates are quite popular nowa-
days [1, 2, 4], see also [5] for the comparison of various estimation methods in such
models.

We consider a linear regression model under the presence of the classical and
Berkson errors in the covariate:

y = β0 + β1ξ + ε, w = x + δ, ξ = x + u. (1.1)
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Here, y is the observable response variable, ξ and x are unobservable latent variables,
w is the observable surrogate variable; ε, δ and u are centred errors, ε is error in
response, δ is the classical measurement error, and u is Berkson measurement error;
random variables x, ε, δ and u are independent.

In model (1.1), we have a mixture of the classical and Berkson errors. Let D stand
for the variance. Indicate two extreme cases.

(a) Dδ = 0, then δ = 0, and (1.1) yields a linear model with Berkson error [1, 2]

y = β0 + β1ξ + ε, ξ = w + u. (1.2)

(b) Du = 0, then u = 0, and (1.1) yields a linear model with the classical error
[1, 2]

y = β0 + β1ξ + ε, w = ξ + δ. (1.3)

Thus, the model (1.1) combines seminal models (1.2) and (1.3).
Models with a mixture of the classical and Berkson errors appear in radio-epide-

miology. In [4, Section 7.2] the following measurement error model is considered:

Dmes
i = D̄i

tr + σiγi, Dtr
i = D̄i

tr
δF,i . (1.4)

Here, Dmes
i is the measured individual instrumental absorbed thyroid dose for the

ith person of a cohort of persons residing in Ukrainian regions that suffered from
the Chornobyl accident, Dtr

i is the corresponding true absorbed thyroid dose (i.e.,

the first latent variable), D̄i
tr

is the second latent variable; σiγi is the additive clas-
sical error, δF,i is the multiplicative Berkson error, σi is the standard deviation of
the heteroscedastic classical measurement error, γi is standard normal and δF,i is a
lognormal random variable; D̄i

tr
, γi and δF,i are independent random variables.

In [4], the model (1.4) is combined with the binary model which resembles a
logistic one:

P(Yi = 1|Dtr
i ) = λi

1 + λi

, P(Yi = 0|Dtr
i ) = 1

1 + λi

, (1.5)

where λi is the total incidence rate related to cases of thyroid cancer,

λi = λ0 + EAR · Dtr
i . (1.6)

Here, positive regression coefficients λ0 and EAR are the background incidence rate
and the excess absolute risk, respectively. In the binary model (1.5), (1.6), (1.4), the
observed sample consists of pairs (Yi,D

mes
i ), i = 1, . . . , N , where Yi = 1 in the case

of detected disease, and Yi = 0 in the absence of disease within some time interval.
The presented linear model (1.1) is a simplified analogue of the binary measure-

ment error model, where ξ , w and x are counterparts of Dtr
i , Dmes

i and D̄i
tr

, respec-
tively, and the binary model (1.5), (1.6) is replaced with the linear regression, and the
multiplicative Berkson error δF,i is replaced with the additive Berkson error u.

The goal of the present paper is to study asymptotic properties of estimators of
model parameters in the linear regression (1.1). The modest aim is to have a better
understanding of the binary model (1.5), (1.6), (1.4) and similar models.
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The paper is organized as follows. In Section 2, we present the observation model
in more detail, and under the normality of x and u, derive from the underlying model
the one like (1.3) with the classical error only. At that we obtain consistent estimators
for β0 and β1 which unexpectedly coincide with the adjusted least squares estimators
[2, 4], constructed by ignoring Berkson error u. The proposed estimators remain con-
sistent without the normality of x and u. Section 3 gives conditions for the asymptotic
normality of the estimators, and we divide them into two asymptotically independent
groups. In doing so, we reparametrize the model similarly to [3], where the basic
model (1.3) was studied. Section 4 concludes our findings.

We use the following notation. The symbol E denotes expectation and acts as
an operator on the total product of quantities, cov stands for the covariance of two
random variables and for the covariance matrix of a random vector. The upper in-
dex � denotes transposition. In the paper, all the vectors are column ones. The bar
means averaging over i = 1, . . . , n, e.g., a := n−1 ∑n

i=1 ai , ab� := n−1 ∑n
i=1 aib

�
i .

Sample covariance of random variables {ai, bi, i = 1, . . . , n} is denoted as Sab, i.e.
Sab = n−1 ∑n

i=1(ai − a)(bi − b). Convergence with probability 1 and in distribu-

tion are denoted as
P1→ and

d→, respectively. A sequence of random variables that
converges to zero in probability is denoted as op(1), and a sequence of bounded in
probability random variables is denoted as Op(1). Ip stands for the identity p × p

matrix.

2 Construction of estimators for the normal latent variable and the normal
Berkson error

2.1 Model and assumptions

We consider the structural model (1.1). Denote μ = Eξ and let σ 2
y , σ 2

ξ , σ 2
ε , σ 2

w, σ 2
x , σ 2

δ

and σ 2
u be the variances of y, ξ , ε, w, x, δ and u, respectively. We need the following

conditions for the consistency of the proposed estimators of model parameters.

(i) Random variables x, ε, δ and u are independent.

(ii) Random variables ε, δ and u have zero expectations and finite variances, and x

has a finite and positive variance σ 2
x .

(iii) Variances of σ 2
δ and σ 2

u are positive and known, and other model parameters
β0, β1, μ, σ 2

ε , σ 2
x are unknown.

Consider independent copies of model (1.1):

yi = β0 + β1ξi + εi, wi = xi + δi, ξi = xi + ui, i = 1, 2, . . .

Under assumption (i), this means that random vectors (xi, εi, δi , ui)
�, i = 1, 2, . . .,

are i.i.d. and have the same distribution as (x, ε, δ, u)�. Based on observations (yi ,
wi), i = 1, . . . , n, we want to estimate the unknown model parameters.

Remark 1. We allow σ 2
ε = 0. The corresponding model (with ε = 0) is called data

model.
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Now, we explain why we impose condition (iii). The classical errors-in-variables
model (1.3), with normally distributed ξ , ε and δ, and unknown 6 parameters β0, β1,
μ, σ 2

ξ , σ 2
ε , σ 2

δ is not identifiable [2]. Hence for the model (1.1), condition (iii) assumes

σ 2
δ to be known. The next statement explains why we suppose that σ 2

u is known as
well.

Lemma 1. Consider the model (1.1) under conditions (i) and (ii). Let σ 2
δ be known

and random variables x, ε, δ and u be Gaussian. Then this model with 6 unknown
parameters β0, β1, μ, σ 2

x , σ 2
ε , σ 2

u is not identifiable.

Proof. The distribution of the observed Gaussian vector Z := (y,w)� is uniquely
defined by EZ and C := cov(Z). Introduce two different collections of model pa-
rameters:

(a) β0 = 0, β1 = 1, μ = 0, σ 2
x = 1, σ 2

ε = 1, σ 2
u = 1, and

(b) β0 = 0, β1 = 1, μ = 0, σ 2
x = 1, σ 2

ε = 0.5, σ 2
u = 1.5.

In both cases it holds

EZ = 0, C =
[

3 1
1 3 + σ 2

δ

]
.

Therefore, the distribution of Z is the same for both collections of parameters, and
the model is not identifiable.

Notice that under conditions of Lemma 1, the parameters β0 and β1 are identi-
fiable (see [2] for the definition of an identifiable parameter). Moreover, in the next
subsection we will construct consistent estimators, as n → ∞, for β0 and β1 under
the only known parameter σ 2

δ .

2.2 Consistent estimators of model parameters

Now, besides conditions (i) to (iii), we assume the following.

(iv) Random variables x and u are Gaussian.

Now, out of (1.1) we derive a linear model with the classical error only. The
conditional distribution of x given ξ is as follows [1, 4]:

L(x|ξ) = N(Kξ + (1 − K)μ,Kσ 2
u ),

K := σ 2
x /σ 2

ξ is the reliability ratio [2], 0 ≤ K ≤ 1. Moreover, x can be decomposed
as

x = Kξ + (1 − K)μ + √
Kσuγ, γ ∼ N(0, 1),

where ξ , γ , ε, δ are mutually independent. Then

w = Kξ + (1 − K)μ + √
Kσuγ + δ.

w

K
− 1 − K

K
μ = ξ + σu√

K
γ + δ

K
.
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Introduce new variables

z := w

K
− 1 − K

K
μ, v := σu√

K
γ + δ

K
.

We derived a linear model with the classical error:

y = β0 + β1ξ + ε, z = ξ + v, (2.1)

with independent ξ , ε, v and σ 2
v := Dv = σ 2

u /K + σ 2
δ /K2.

Suppose at the moment that K is known. Then the adjusted least squares (ALS)
estimator β̃1 of β1 is consistent and given as [2, 4]:

β̃1 := Szy

Szz − σ 2
v

=
1
K

Swy

1
K2 Sww − σ 2

v

= Swy

Sww−σ 2
δ

K
− σ 2

u

. (2.2)

When K is unknown, we can estimate it consistently as

K̂ = σ̂ 2
x

σ̂ 2
x + σ 2

u

= Sww − σ 2
δ

Sww − σ 2
δ + σ 2

u

. (2.3)

Now, we insert (2.3) into (2.2) instead of K and obtain the desired estimator

β̂1 = Swy

Sww − σ 2
δ

. (2.4)

Next, in model (2.1) the ALS estimator of β0 is as follows [2, 4]:

β̃0 := y − β̃1z = y − β̃1

(
w

K
− 1 − K

K
μ

)
.

But K and μ are unknown, and instead of them we substitute the corresponding
consistent estimators (2.3) and

μ̂ := w. (2.5)

Then β̃1 changes to β̂1, and we obtain the desired estimator

β̂0 = y − β̂1

(
w

K̂
− 1 − K̂

K̂
w

)
= y − β̂1w. (2.6)

It is remarkable that β̂0 and β̂1 are the so-called naive ALS estimators in the model
(1.1), where we neglected the presence of the Berkson error u. To be precise, β̂0 and
β̂1 are the ALS estimators for the classical model (1.3). The estimators (2.4), (2.6)
use σ 2

δ but not σ 2
u .

In our model, we have to estimate 5 parameters β0, β1, μ, σ 2
x , σ 2

ε . We possess
already 3 estimators (2.6), (2.4) and (2.5). Moreover, we used the estimator

σ̂ 2
x = Sww − σ 2

δ . (2.7)
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Finally, in the model (2.1) the ALS estimator of σ 2
ε is as follows [4]:

σ̃ 2
ε = Syy − β̃1Szy = Syy − β̃1

K
Swy.

Instead of unknown K , we substitute (2.3) and get the final estimator

σ̂ 2
ε := Syy − β̂1Swy(Sww − σ 2

δ + σ 2
u )

Sww − σ 2
δ

. (2.8)

Though we derived the estimators under the normality assumption (iv), they re-
main consistent without this restriction.

Theorem 1. In model (1.1), assume conditions (i)–(iii). Then there exists a random
number n0 such that expressions (2.4), (2.6), (2.5), (2.7), (2.8) are well defined with
probability 1 for all n ≥ n0 and yield strongly consistent estimators of β1, β0, μ, σ 2

x ,
σ 2

ε , respectively, i.e., they converge a.s. to the corresponding true values as n → ∞.

Proof. Here, we check the strong consistency of β̂1 only. We have

cov(w, y) = cov(x, β1ξ) = β1 cov(x, x + u) = β1σ
2
x ,

β̂1
P1→ cov(w, y)

Dw − σ 2
δ

= β1σ
2
x

σ 2
x

= β1,

where
P1→ denotes the convergence with probability 1 and indicates the strong consis-

tency of the estimator.

3 Asymptotic normality of the estimators

3.1 Asymptotic variance of the estimator of slope coefficient

We need the following moment assumption.

(v) Eδ4 < ∞.

Theorem 2. Assume conditions (i), (ii), (v), and suppose that σ 2
δ is known and posi-

tive. Then the estimator (2.4) is asymptotically normal, in more detail,

√
n(β̂1 − β1)

d→ N(0, σ 2
β1

), (3.1)

where

σ 2
β1

:= β2
1 (σ 2

δ σ 2
x + D(δ2) + σ 2

uσ 2
w) + σ 2

ε σ 2
w

σ 4
x

. (3.2)

Proof. We follow the line of the proof of Theorem 2.22 [4], and use expansions of
sample covariances and Slutsky’s lemma [4, p. 44]. We centralize x as

ρ := x − μ.
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Then

y = β0 + β1μ + β1ρ + ε + β1u, w = μ + ρ + δ,

Swy = Sρ+δ, β1ρ+ε+β1u = β1Sρρ + Sρε + β1Sρu + β1Sδρ + Sδε + β1Sδu, (3.3)

Sww = Sρ+δ, ρ+δ = Sρρ + 2Sρδ + Sδδ, (3.4)

Sww − σ 2
δ = σ 2

x + op(1). (3.5)

Using (2.4) and expansions (3.3)–(3.5), we obtain

√
n(β̂1 − β1) = −β1

√
n(Sδδ − σ 2

δ − Suρ + Sδρ − Suδ) + √
n(Sρε + Sδε)

σ 2
x + op(1)

. (3.6)

Next,

Sδδ − σ 2
δ = δ2 − σ 2

δ + op(1)√
n

,

Suρ = uρ + op(1)√
n

, Sδρ = δρ + op(1)√
n

,

Suδ = uδ + op(1)√
n

, Sρε = ρε + op(1)√
n

, Sδε = δε + op(1)√
n

.

We insert these relations into (3.6) and get

√
n(β̂1 −β1) = op(1)+ −β1

√
n(δ2 − σ 2

δ − uρ + δρ − uδ) + √
n(ρε + δε)

σ 2
x

. (3.7)

Using condition (v) and Central Limit Theorem, we get

√
n(δ2 − σ 2

δ , uρ, δρ, uδ, ρε, δε)� d→ γ = (γi)
6
1 ∼ N6(0, S),

S = diag(D(δ2), σ 2
uσ 2

x , σ 2
δ σ 2

x , σ 2
δ σ 2

u , σ 2
x σ 2

ε , σ 2
δ σ 2

ε ).

The diagonal of S contains variances of averaged random variables, e.g., S22 =
D(uρ) = E(uρ)2 = σ 2

uσ 2
x , and off-diagonal entries of S are vanishing because δ,

ρ, ε, u are independent. Then the numerator in (3.7) converges in distribution to

−β1(γ1 − γ2 + γ3 − γ4) + γ5 + γ6 ∼ N(0, β2
1 (S11 + S22 + S33 + S44) + S55 + S66).

Relation (3.7) and Slutsky’s lemma imply (3.1) with

σ 2
β1

= β2
1 (D(δ2) + σ 2

uσ 2
x + σ 2

δ σ 2
x + σ 2

uσ 2
δ ) + σ 2

x σ 2
ε + σ 2

δ σ 2
ε

σ 4
x

. (3.8)

Since σ 2
w = σ 2

x + σ 2
δ , the right-hand sides of (3.8) and (3.2) coincide.

Remark 2. If condition (v) is replaced with the assumption δ ∼ N(0, σ 2
δ ), then

D(δ2) = 2σ 4
δ and (3.2) is simplified as

σ 2
β1

= β2
1 (σ 4

δ + σ 2
δ σ 2

w + σ 2
uσ 2

w) + σ 2
wσ 2

ε

σ 4
x

. (3.9)
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The convergence (3.1), (3.2) can be applied to construct the asymptotic confi-
dence interval for β1. For this purpose we have to ensure that σ 2

β1
> 0 (this holds if

either σ 2
δ > 0 or β1 
= 0) and to estimate σ 2

β1
consistently. The latter is possible for

normal δ, since all the parameters on the right-hand side of (3.9) are estimated con-
sistently due to Theorem 1. Without the normality of δ, it is problematic to estimate
the 4th moment D(δ2) in (3.8). If Eδ4 is assumed known, then σ 2

β1
can be estimated

consistently as well.
Analysis of formula (3.8) allows to find out in which proportion the classical error

and Berkson one affect the quality of the slope estimation. Denote


u = |β1|σuσx, 
δ =
√

β2
1 (σ 2

δ σ 2
x + D(δ2)) + σ 2

δ σ 2
ε , 
uδ = |β1|σuσδ.

Then
σ 2

β1
= σ−4

x (
2
δ + 
2

u + 
2
uδ + σ 2

x σ 2
ε ).

The normalized slope estimator
√

n(β̂1 − β1) can be approximated in distribution by
a random variable

σ−2
x (
δγ1 + 
uγ2 + 
uδγ3 + σxσεγ4),

with i.i.d. standard normal γ1, . . . , γ4. Given σ 2
x and σ 2

ε , terms 
δγ1, 
uγ2 and 
uδγ3
distinguish the influence of the classical error, Berkson error and of the cumulative
effect from both errors, respectively, on the precision of the slope estimator. Thus,
this influence can be evaluated in proportion 
δ : 
u : 
uδ . Suppose that β1 
= 0 and
Eδ4 is known. The influence can be estimated in proportion 
̂δ : 
̂u : 
̂uδ , with


̂u := |β̂1|σuσ̂x, 
̂δ :=
√

β̂2
1 (σ 2

δ σ̂ 2
x + D(δ2)) + σ 2

δ σ̂ 2
ε , 
̂uδ := |β̂1|σuσδ.

3.2 Asymptotic independence of groups of estimators

We slightly reparametrize the model (1.1) to a form

y = μy + β1(ξ − μ) + ε, w = x + δ, ξ = x + u. (3.10)

This model is obtained from (1.1) after introducing a new parameter μy = β0 + β1μ

in place of β0. Based on independent copies of the model

yi = μy + β1(ξi − μ) + εi, wi = xi + δi, ξi = xi + ui

(here, independent random vectors (xi, εi, δi , ui), i ≥ 1, are distributed as a random
vector (x, ε, δ, u) in (3.10)) and on observations (yi, wi), i = 1, . . . , n, we estimate
a vector of unknown parameters

θ = (μ,μy, σ
2
w, β1, σ

2
ε )�,

assuming condition (iii) which states that σ 2
δ and σ 2

u are known. For model (3.10), we
assume also (i), (ii) and impose two additional assumptions.

(vi) x, δ, u and ε have zero skewness, i.e., their centered third moments are zeros.

(vii) σ 2
ε > 0, Eε4 < ∞ and the distribution of ε is not concentrated at two points.
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Theorem 1 implies that a strongly consistent estimator

θ̂ = (μ̂, μ̂y, σ̂
2
w, β̂1, σ̂

2
ε )�

of θ can be defined explicitly as

θ̂ = (w, y, Sww,
Swy

Sww − σ 2
δ

, Syy − S2
wy(Sww − σ 2

δ + σ 2
u )

(Sww − σ 2
δ )2

)�. (3.11)

Introduce the corresponding estimation function

s = s(θ; w, y) = (sμ, sμy , sσ 2
w , sβ1 , sσ 2

ε )�, (3.12)

sμ := w − μ, sμy := y − μy, sσ 2
w := (w − μ)2 − σ 2

w,

sβ1 := β1(w − μ)2 − β1σ
2
δ − (w − μ)(y − μy),

sσ 2
ε := (y − μy)

2 − σ 2
ε − β2

1 (w − μ)2 + β2
1 (σ 2

δ − σ 2
u ).

With probability one, the estimator (3.11) satisfies the estimating equation

n∑
i=1

s(θ̂; wi, yi) = 0.

Definition 1. Let α̂ and β̂ be asymptotically normal estimators of α ∈ R
p and β ∈

R
q , respectively, such that

√
n

[
α̂ − α

β̂ − β

]
d→ Np+q(0, ) as n → ∞,

with a nonsingular asymptotic covariance matrix . The estimators α̂ and β̂ are
called asymptotically independent if  can be partitioned as

 = block-diag(α,β) =
[
α 0
0 β

]
,

with α ∈ R
p×p and β ∈ R

q×q .

It is convenient to deal with asymptotically independent estimators α̂ and β̂, be-
cause asymptotic confidence region for the augmented parameter (α�β�)� can be
constructed as the Cartesian product of asymptotic confidence ellipsoids for α and β.

Theorem 3. Assume conditions (i)–(iii), (vii) and that x, δ, u have finite 4th moments.
Then:

(a) the estimator (3.11) in model (3.10) is asymptotically normal, in more detail,

√
n(θ̂ − θ)

d→ N5(0, θ ) (3.13)

with a nonsingular asymptotic covariance matrix θ ;

(b) under additional assumption (vi), groups of estimators (μ̂, μ̂y)
� and (̂σ 2

w, β̂1,

σ̂ 2
ε )� are asymptotically independent.
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Proof. (a) We prove (3.13) with a nonsingular θ .
1. Since all the variances in the underlying model are assumed positive, the true

vector θ is an inner point of the parameter set � = R
2 × (0,∞) × R × (0,∞).

As was mentioned above, θ̂ is strongly consistent. The estimating function (3.12)
is unbiased, i.e. Eθ s(θ; w, y) = 0. Introduce two matrices

V := −Eθ

∂s(θ; w, y)

∂θ� = block-diag(I2, V2),

with

V2 :=
⎡
⎣1 0 0

0 −σ 2
x 0

0 2β1(σ
2
x + σ 2

u ) 1

⎤
⎦ ,

and
B := covθ (s(θ; w, y)).

Since ε, x, δ, u have finite 4th moments, B is well defined.
The unbiasedness of s(θ; w, y), consistency of θ̂ and nonsingularity of V imply

(3.13) by Theorem A.26 from [4], and θ can be found by the sandwich formula

θ = V −1B(V −1)�.

2. It remains to prove that B is nonsingular. For this purpose, we have to show
that the five random variables

sμ = sμ(θ; w, y), sμy = sμy (θ; w, y), sσ 2
w = sσ 2

w(θ; w, y),

sβ1 = sβ1(θ; w, y), sσ 2
ε = sσ 2

ε (θ; w, y)

are linearly independent for the true value of θ .
Consider a random vector

h := (w − μ, y − μy, (w − μ)2, (w − μ)(y − μy), (y − μy)
2)�. (3.14)

It holds
(sμ, sμy , sσ 2

w , sβ1 , sσ 2
ε )� = T h + a,

where T = T (θ) is a nonsingular square matrix and a = a(θ) is a nonrandom vector.
The matrix T is nonsingular, hence it is enough to show that neither nontrivial linear
combination of the components of h is a constant.

We use the centralization ρ = x − μ. Suppose that for some real numbers a11,
a12, a22, a1, a2 and a3, the following holds with probability one:

F := a11(w − μ)2 + a12(w − μ)(y − μy) + a22(y − μy)
2+

+a1(w − μ) + a2(y − μy) + a3 = 0,

F = a11(ρ + δ)2 + a12(ρ + δ)(β1ρ + β1u + ε) + a22(β1ρ + β1u + ε)2+
+a1(ρ + δ) + a2(β1ρ + β1u + ε) + a3 = 0.

Then a.s.
0 = E[F |ε] = a22ε

2 + a2ε + b3, b3 ∈ R,
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hence due to condition (vii), a22 = a2 = 0. And we have a.s.

0 = E[F |δ] = a11δ
2 + a1δ + c3, c3 ∈ R. (3.15)

Consider two cases about the support of δ.
2.1. Here we suppose that δ is not concentrated at two points. Then (3.15) implies

a11 = a1 = 0. Next, a.s.

0 = E[F |ε, δ] = a12δε + d3, d3 ∈ R,

0 = D(a12δε) = a2
12σ

2
δ σ 2

ε , a12 = 0,

and we get the desired

a11 = a12 = a22 = a1 = a2 = 0. (3.16)

2.2. Now, we suppose that for some δ0 
= 0, it holds

P(δ = δ0) = P(δ = −δ0) = 1

2
.

Then with probability one,

F(ρ, ε, δ0, u) = F(ρ, ε,−δ0, u) = 0,

0 = F(ρ, ε, δ0, u) − F(ρ, ε,−δ0, u) = 2δ0G,

0 = G = 2a11ρ + a12(β1ρ + β1u + ε) + a1,

0 = E[G|ε] = a12ε + a1, a12 = a1 = 0;
a11ρ = 0 a.s., a11 = 0.

Thus, in this case (3.16) holds as well. Statement (a) of Theorem 3 is proven.
(b) Now, we rely additionally on the assumption (vi) about vanishing centered

third moments. By statement (a), B is nonsingular. We have to show that it has a
block-diagonal structure

B = block-diag(B1, B2) (3.17)

with some matrices B1 ∈ R
2×2 and B2 ∈ R

3×3, then θ will be block-diagonal as
well, with nonsingular blocks:

θ = block-diag(1, 2), 1 = B1, 2 = V −1
2 B2(V

−1
2 )T ,

and statement (b) of Theorem 3 will be proven.
Using assumption (vi), we have:

cov(sμ, sσ 2
w) = E(x − μ)3 + Eδ3 = 0;

cov(sμ, sβ1) = cov(w − μ, β1(w − μ)2) − cov(w − μ, (w − μ)(y − μy)) =
= −E(ρ + δ)2(β1ρ + β1u + ε) = −β1Eρ3 = 0;

cov(sμ, sσ 2
ε ) = cov(w − μ, (y − μy)

2) − β2
1 cov(w − μ, (w − μ)2) =

= E(w − μ)(y − μy)
2 = E(ρ + δ)(β1ρ + β1u + ε)2 = β2

1 Eρ3 = 0;
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cov(sμy , sσ 2
w) = β1Eρ3 = 0;

cov(sμy , sβ1) = β1E(w − μ)2(y − μy) − E(w − μ)(y − μy)
2 =

= β2
1 Eρ3 − β2

1 Eρ3 = 0;
cov(sμy , sσ 2

ε ) = E(y − μy)
3 − β2

1 E(w − μ)2(y − μy) =
= E(β1ρ + β1u + ε)3 − β3

1 Eρ3 = β3
1 Eu3 + Eε3 = 0.

This proves relation (3.17).

Remark 3. Theorem 3 is not valid without condition (vii). Indeed, suppose that for
some ε0 
= 0,

P(ε = ε0) = P(ε = −ε0) = 1

2
.

If additionally β1 = 0 then (y − μy)
2 = ε2 = ε2

0 a.s., and

F0 := (y − μy)
2 − ε2

0 = 0 a.s.

Thus, certain nontrivial linear combination of components of vector (3.14) is a con-
stant, hence the block B2 in (3.17) is singular, and the asymptotic covariance matrix
θ is degenerate in this specific case.

4 Simulation study

We simulated test data in order to evaluate the cover probability for the asymptotic
confidence interval of the slope parameter, which is constructed based on Theorem 2.
Observations in model (1.1) were generated as follows: x ∼ N(−1, 1), u ∼ N(0, σ 2

u )

with σ 2
u ∈ {10i : i = 1, . . . , 15}, δ ∼ N(0, 1), ε ∼ N(0, 1), β1 = 2, β0 = 1, with

the sample size n ∈ {10i : i = 1, . . . , 10}. For each collection of model parameters,
N = 10, 000 realizations were generated. For each realization, the slope estimate and
the estimate of its asymptotic variance were computed (here, we inserted into (3.2) the
estimates of all unknown model parameters). For an ensemble of N realizations, the
cover probability was calculated for constructed 95% asymptotic confidence intervals
for the slope parameter. We briefly report the obtained results.

Figure 1 shows how the cover probability deviation decreases from 0.95 with
increase of the sample size. This effect is stable for different values of the Berkson
error variance. Figure 2 illustrates how the cover probability deviation increases from
0.95 with increase of the Berkson error variance. As can be seen in Figure 1, the latter
effect is getting weaker with increase of the sample size.

5 Conclusion

We dealt with a linear observation model (1.1) with a mixture of the classical and
Berkson errors in the covariate. Surprisingly enough, we constructed consistent es-
timators for the regression parameters without the knowledge of the variance of the
Berkson error. Nevertheless, the size of the Berkson error makes influence on the
asymptotic variances of β̂0 and β̂1.
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Fig. 1. Cover Probability Plot - Sample Size effect perspective

Fig. 2. Cover Probability Plot - Berkson effect perspective

Then we modified the model to an equivalent centralized form (3.10). This made
possible to divide estimators of all unknown model parameters into two asymptoti-
cally independent groups.

In future we intend to consider the prediction problem for the model (1.1), like it
was done in [6] for various measurement error models. Also it would be interesting
to consider a polynomial model with a mixture of the classical and Berkson errors, as
well as a version of linear model with a vector response and vector covariate.
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