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Abstract We study convexity properties of the Rényi entropy as function of α > 0 on finite
alphabets. We also describe robustness of the Rényi entropy on finite alphabets, and it turns out
that the rate of respective convergence depends on initial alphabet. We establish convergence of
the disturbed entropy when the initial distribution is uniform but the number of events increases
to ∞ and prove that the limit of Rényi entropy of the binomial distribution is equal to Rényi
entropy of the Poisson distribution.
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1 Introduction

Let (�,F, P) be a probability space supporting all distributions considered below.
For any N ≥ 1 introduce the family of discrete distributions p = (p1, p2, . . . , pN)

with probabilities

pi ≥ 0, 1 ≤ i ≤ N,N ≥ 1, p1 + · · · + pN = 1.
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In the present paper we investigate some properties of the Rényi entropy, which was
proposed by Rényi in [14],

Hα(p) = 1

1 − α
log

(
N∑

k=1

pα
k

)
, α > 0, α �= 1,

including its limit value as α → 1, i.e., the Shannon entropy

H(p) = −
N∑

k=1

pk log(pk).

Due to this continuity, it is possible to put H1(p) = H(p). We consider the Rényi
entropy as a functional of various parameters. The first approach is to fix the distribu-
tion and consider Hα(p) as the function of α > 0. Some of the properties of Hα(p)

as the function of α > 0 are well known. In particular, it is known that Hα(p) is
continuous and nonincreasing in α ∈ (0,∞), limα→0+ Hα(p) = log m, where m is
the number of nonzero probabilities, and limα→+∞ Hα(p) = − log maxk pk . How-
ever, for the reader’s convenience, we provide the short proofs of this and some other
simple statements in the Appendix. One can see that these properties of the entropy
itself and its first derivative are common for all finite distributions. Also, it is known
that Rényi entropy is Schur concave as a function of a discrete distribution, that is

(pi − pj )

(
∂Hα(p)

∂pi

− ∂Hα(p)

∂pj

)
≤ 0, i �= j.

Some additional results such as lower bounds on the difference in the Rényi entropy
for distributions defined on countable alphabets could be found in [12]. Those results
usually use the Rényi divergence of order α of a distribution P from a distribution Q

Dα (P ||Q) = 1

α − 1
log

(
N∑

i=1

pα
i

qα−1
i

)
,

which is very similar to the Kullback–Leibler divergence. Some most important prop-
erties of the Rényi divergences were reviewed and extended in [7]. Rényi divergences
for most commonly used univariate continuous distributions could be found in [8].
The Rényi entropy and divergence is widely used in majorization theory [6, 15],
statistics [4, 13], information theory [12, 7, 1] and many other fields. Boundedness of
the Rényi entropy was shown in [5] for discrete log-concave distributions depending
on its variance. There are other operational definitions of the Rényi entropy given
in [11], which are used in practice. It is also used in analysis of financial time se-
ries. As it is stated in [16], the Rényi entropy can deal effectively with heavy-tailed
distributions and reflect a short-range characteristics of financial time series. So, in
some sense, entropy can be connected to the long- and short-range dependence of the
selected stochastic processes and allows to compare the memory inherent to various
processes. Other methods of comparing the memory of the processes are proposed,
e.g., in [3] and [2]. What is more, the Rényi entropy is used in physics. For it to be
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physically meaningful as thermostatistical quantity it should not change drastically if
the probability distribution is slightly changed. It is important that experimental un-
certainty in determining the distribution function not cause entropy to diverge. In [9]
it is shown that the Rényi entropy is uniformly continuous for probabilities on finite
sets. In our paper we go on and find the rate of convergence. In the present paper we
restrict ourselves to the standard Rényi entropy and go a step ahead in comparison of
standard properties, namely, we investigate convexity of the Rényi entropy with the
help of the second derivative. It turned out that from this point of view, the situation
is much more interesting and uncertain in comparison with the behavior of the first
derivative, and crucially depends on the distribution. One might say that all the stan-
dard guesses are wrong. Of course, the second derivative is continuous (evidently, it
simply means that it is continuous at 1 because at all other points the continuity is
obvious), but then the surprises begin. If the second derivative starts with a positive
value at zero, it can either remain positive or have inflection points, depending on the
distribution. If it starts from the negative value, it can have the first infection point
both before 1 and after 1, depending on the distribution, too (point 1 is interesting
as some crucial point for entropy, so, we compare the value of inflection points with
it). The value of the second derivative at zero is bounded from below but unbounded
from above. Due to the over-complexity of some expressions, which defied analyti-
cal consideration, we propose several illustrations performed by numerical methods.
We investigate robustness of the Rényi entropy w.r.t. the distribution, and it turns
out that the rate of respective convergence depends on initial distribution, too. Fur-
ther, we establish convergence of the disturbed entropy when the initial distribution
is uniform but the number of events increases to ∞, and prove that the limit of Rényi
entropy of the binomial distribution is equal to entropy of the Poisson distribution. It
was previously proved in [10] that the Shannon entropy of the binomial distribution
is increasing to entropy of the Poisson distribution. Our proof of this particular fact
is simpler because uses only Lebesgue’s dominated convergence theorem. The paper
is organized as follows. Section 2 is devoted to the convexity properties of the Rényi
entropy, Section 3 describes robustness of the Rényi entropy, and Section A contains
some auxiliary results.

2 Convexity of the Rényi entropy

To start, we consider the general properties of the 2nd derivative of the Rényi entropy.

2.1 The form and the continuity of the 2nd derivative

Let us denote Si(α) = ∑N
k=1 pα

k logi pk , i = 0, 1, 2, 3. Denote also f (α) =
log

(∑N
k=1 pα

k

)
. Obviously, the function f ∈ C∞(R+), and its first three derivatives

equal

f ′(α) = S1(α)

S0(α)
, f ′′(α) = S2(α)S0(α) − S2

1(α)

S2
0(α)

,

f ′′′(α) = S3(α)S2
0(α) − 3S2(α)S1(α)S0(α) + 2S3

1(α)

S3
0(α)

.
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In particular, if one considers the random variable ξ taking values log pk with proba-
bility pk , then

f ′(1) = E(ξ) < 0, f ′′(1) = E(ξ2) − (E(ξ))2 > 0,

f ′′′(1) = E(ξ3) − 3E(ξ2)E(ξ) + 2(E(ξ))3,
(1)

and the sign of f ′′′(1) is not fixed (as we can see below, it can be both + and −).

Lemma 1. Let pk �= 0 for all 1 ≤ k ≤ N . Then

(i) (a) The 2nd derivative H′′
α(p) equals

H′′
α(p) = − 1

(1 − α)3

(
N∑

k=1

(
(1 − α)q ′

k(α) + 2qk(α)
)

log
qk(α)

pk

)
, (2)

where

qk(α) = pα
k∑N

k=1 pα
k

.

(b) The 2nd derivative H′′
α(p) can be also presented as

H′′
α(p) = −1

3
f ′′′(θ) (3)

for some 0 < θ < α.

(ii) The 2nd derivative H′′
α(p) is continuous on R+ if we put

H′′
1(p) = −1

3
f ′′′(1) = −1

3
(E(ξ3) − 3E(ξ2)E(ξ) + 2(E(ξ))3).

Proof. Equality (2) is a result of direct calculations. Concerning equality (3), we can
present Hα(p) as

Hα(p) = f (α) − f (1)

1 − α
,

therefore, −Hα(p) is a slope function for f . Taking successive derivatives, we get
from the standard Taylor formula that

H′
α(p) = f ′(α)(1 − α) + f (α)

(1 − α)2 = −1

2
f

′′
(η),

and

H′′
α(p) = f ′′(α)(1 − α)2 + 2f ′(α)

(1 − α) + 2f (α)
= −1

3
f

′′′
(θ),

where η, θ ∈ (1, α). If α → 1, then both η and θ tend to 1. Taking into account (1),
we immediately get both equality (3) and statement (ii).
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2.2 Behavior of the 2nd derivative at the origin
Let us consider the starting point for the 2nd derivative, i.e., the behavior of H′′

α(p)

at zero as a function of a distribution vector p. Analyzing (2), we see that H′′
α(p) as

function of α is continuous in 0. Moreover,

qk(0) = 1/N, q ′
k(0) = log pk

N
−

∑N
k=1 log pk

N2 ,

so we can present H′′
α(p) as

H′′
0(p) = −

N∑
k=1

(
1

N
log pk − 1

N2

N∑
i=1

log pi + 2

N

)
log

1

Npk

=
N∑

k=1

(
1

N
log pk − 1

N2

N∑
i=1

log pi + 2

N

)
(log N + log pk)

= 2 log N + 1

N

N∑
k=1

(log pk)
2 − 1

N2

(
N∑

k=1

log pk

)2

+ 2

N

N∑
k=1

log pk.

Now we are interested in the sign of H′′
α(p). It is very simple to give an example

of a distribution for which H′′
α(p) > 0. One of such examples is given in Figure 1.

Negative H′′
α(p) is also possible, however, at this moment we prefer to start with a

more general result.

Lemma 2. If some probability vector p is a point of local extremum of H′′
α(p) then

either p = p(unif orm) = ( 1
N

, . . . , 1
N

)
or it contains two different probabilities.

Proof. Let us formulate the necessary conditions for H′′
0(p) to have a local extremum

at some point. Taking into account the limitation
∑N

k=1 pk = 1, these conditions have
the form⎧⎨
⎩2 log N + 1

N

∑N
k=1(log pk)

2 − 1
N2

(∑N
k=1 log pk

)2 + 2
N

∑N
k=1 log pk −→ extr∑N

k=1 pk = 1.

We write the Lagrangian function

L = λ0

⎛
⎝2 log N + 1

N

N∑
k=1

(log pk)
2 − 1

N2

(
N∑

k=1

log pk

)2

+ 2

N

N∑
k=1

log pk

⎞
⎠

+λ

(
N∑

k=1

pk − 1

)
.

If some p is an extremum point then there exist λ0 and λ such that λ2
0 + λ2 �= 0 and

∂L
∂pi

(p) = 0 for all 1 ≤ i ≤ N , i.e.,

∂L

∂pi

= λ0

(
2

Npi

log pi − 2

N2pi

(
N∑

k=1

log pk

)
+ 2

Npi

)
+ λ = 0.
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If λ0 = 0 then λ = 0. However, λ2
0 + λ2 �= 0, therefore we can put λ0 = 1. Then

−λpi = 2

N
log pi − 2

N2

(
N∑

k=1

log pk

)
+ 2

N
.

Taking the sum of these equalities we get that λ = −2, whence

pi − 1

N
log pi = 1

N
− 1

N2

(
N∑

k=1

log pk

)
. (4)

So, if the distribution vector p is an extremum point then p1 − 1
N

log p1 = · · · =
pN − 1

N
log pN . Let us take a look at the continuous function f (x) = x − 1

N
log x,

x ∈ (0, 1). Its derivative equals

f ′(x) = 1 − 1

Nx
= 0 ⇔ x = 1

N
, sign(f ′(x)) = sign

(
x − 1

N

)
,

lim
x→0+ f (x) = +∞, lim

x→+1
f (x) = 1.

So, f (x) has its global minimum at point x = 1
N

, and for any f ( 1
N

) < y ≤ 1 there
exist two points, x′ �= x′′, x′, x′′ ∈ (0, 1) such that f (x′) = f (x′′) = y. Thus,
if H′′

0(p) achieves local extremum at vector p, then it contains no more than two
different probabilities. Obviously, it can be p = p(unif orm) = ( 1

N
, . . . , 1

N

)
.

Remark 1. Note that H′′
0(p(unif orm)) = 0. Therefore, in order to find the distribu-

tion for which H′′
0(p) < 0, let us consider the distribution vector that contains only

two different probabilities p0, q0 such that:{
p0 − q0 = 1

N
(log p0 − log q0) ,

kp0 + (N − k)q0 = 1,
(5)

where N, k ∈ N, N > k and p0, q0 ∈ (0, 1).

Lemma 3. Let p be the distribution vector satisfying (5). Then H′′
0(p) < 0.

Proof. First, we will show that H′′
0(p) is nonpositive. For that we rewrite H′′

0(p) in
terms of p0 and q0:

H′′
0(p) = 2 log N + 1

N

(
k(log p0)

2 + (N − k)(log q0)
2
)

− 1

N2 (k log p0 + (N − k) log q0)
2 + 2

N
(k log p0 + (N − k) log q0)

= 2 log N + k(N − k)

N2

(
(log p0)

2 − 2 log p0 log q0 + (log q0)
2
)

+ 2k

N
(log p0 − log q0) + 2 log q0

= 2 log Nq0 + k(N − k)(p0 − q0)
2 + 2k(p0 − q0).
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We know that kp0 + (N − k)q0 = 1, whence k = Nq0−1
q0−p0

, and N − k = 1−Np0
q0−p0

. Then

H′′
0(p) = 2 log Nq0 + (1 − Nq0)(Np0 − 1) + 2(1 − Nq0)

= 2 log Nq0 + N(p0 − q0) + 1 − N2p0q0

= log(Nq0)
2 + log

p0

q0
+ 1 − N2p0q0 = log N2p0q0 − N2p0q0 + 1.

Note that log x − x + 1 < 0 for x > 0, x �= 1. We want to show that under conditions
(5) N2p0q0 cannot be equal to 1. Suppose that N2p0q0 = 1. Then it follows from (5)
that

k

N2 + (N − k)q2
0 = q0.

It means that q0 and p0 are algebraic numbers. Thus, their defference p0 − q0 is also
algebraic. On the other hand, by the Lindemann–Weierstrass theorem 1

N
(log p0 −

log q0) is transcendental number, which contradicts (5). So N2p0q0 �= 1 and H′′
0(p) <

0.

Theorem 1. For any n > 2 there exists N ≥ n and a probability vector p =
(p1, . . . , pN) such that H′′

0(p) < 0.

Proof. Consider a distribution vector p that satisfies conditions (5). From Lemma 3
we know that H′′

0(p) < 0. Now we want to show that there exist an arbitrarily large
N ∈ N and a distribution vector p of length N that satisfy those conditions. For that
we denote

x = Np0, y = Nq0, r = k

N
= y − 1

y − x
.

Then 0 < x < 1 < y and r < 1 and x − y = log x − log y. The function x − log x

is decreasing on (0, 1), is increasing on (1,+∞) and is equal to 1 at point 1. Let
y = y(x) be the implicit function defined by x − y = log x − log y. By that we get
the 1-to-1 correspondence from x ∈ (0, 1) to y ∈ (1,+∞). We also have fuction the
r(x) = y(x)−1

y(x)−x
. If we find x′ ∈ (0, 1) such that r ′ = r(x′) is rational then we could

pick N, k ∈ N such that r ′ = k
N

and get q distribution vector p satisfying (5) with
p0 = x

N
, q0 = y

N
. However, we will not look for such x′, bot will just show that they

exist. To do that, observe that y(x) is a continuous function of x and so is the function
r(x) = y(x)−1

y(x)−x
. What is more,

y(x) → +∞, x → 0+ so r(x) → 1, x → 0+.

Let us fix x0 ∈ (0, 1), r(x0) < 1. Then for any r ′ ∈ (r(x0), 1) there exists x′ ∈ (0, x0)

such that r(x′) = r ′. By taking r ′ ∈ Q we get that there exists x′ such that k
N

< 1 and
is rational. Finally, we want to show that N can be arbitrarily large. For that simply
observe that k

N
= r ′ so as r ′ → 1− we get that N → +∞.

Lemma 4. Let N be fixed. Then H′′
0(p) as the function of vector p is bounded from

below and is unbounded from above.
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Proof. Recall that H′′
0(p) = 0 on the uniform distribution and exclude this case from

the further consideration. In order to simplify the notations, we denote xk = log pk ,
and let

SN := N(H′′
0(p) − 2 log N) =

N∑
k=1

(xk)
2 − 1

N

(
N∑

k=1

xk

)2

+ 2
N∑

k=1

xk.

Note that there exists n ≤ N − 1 such that

x1 < log
1

N
, . . . , xn < log

1

N
, xn+1 ≥ log

1

N
, . . . , xN ≥ log

1

N
.

Further, denote the rectangle A = [log 1
N

; 0]N−n ⊂ RN−n, and let

SN,1 =
n∑

k=1

xk, SN,2 =
N∑

k=n+1

xk.

Let us establish that H′′
0(p) is bounded from below. In this connection, rewrite SN as

SN =
n∑

k=1

x2
k +

N∑
k=n+1

x2
k − 1

N

(
(SN,1)

2 + 2SN,1SN,2 + (SN,2)
2
)

+ 2SN,1 + 2SN,2.

By the Cauchy–Schwarz inequality we have

(
n∑

k=1

xk

)2

≤ n

n∑
k=1

x2
k ,

(
N∑

k=n+1

xk

)2

≤ (N − n)

N∑
k=n+1

x2
k .

Therefore

SN ≥
(

1 − n

N

) n∑
k=1

x2
k + n

N

N∑
k=n+1

x2
k − 2

N
SN,1SN,2 + 2SN,1 + 2SN,2

=
n∑

k=1

((
1 − n

N

)
x2
k + xk

(
2 − 2

N
SN,2

))
+ n

N

N∑
k=n+1

x2
k + 2SN,2

= 1

N

n∑
k=1

(
(N − n) x2

k + 2xk

(
N − SN,2

)) + n

N

N∑
k=n+1

x2
k + 2SN,2.

There exists M > 0 such that for every n ≤ N − 1 we have |SN,2| ≤ M because A

is compact and SN,2 is continuous on A. Obviously, n
N

∑N
k=n+1 x2

k ≥ 0. Finally, for
every 1 ≤ k ≤ n we have that (N − n) x2

k + 2xk (N − S2) is bounded from below

by the value − (N−S2,N )2

N−n
≥ −N2 − M2. Resuming, we get that SN is bounded from

below, and consequently H′′
0(p) is bounded from below for fixed N .
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Now we want to establish that H′′
0(p) is not bounded from above. In this connec-

tion, let ε > 0, and let us consider the distribution of the form p1 = ε, p2 = · · · =
pN = 1−ε

N−1 . Then we have

H′′
0(p) = 2 log N + 1

N

N∑
k=1

(log pk)
2 − 1

N2

(
N∑

k=1

log pk

)2

+ 2

N

N∑
k=1

log pk

= 2 log N + N − 1

N

(
log

1 − ε

N − 1

)2

+ 1

N
(log ε)2

− 1

N2

(
(N − 1) log

1 − ε

N − 1
+ log ε

)2

+ 2(N − 1)

N
log

1 − ε

N − 1
+ 2

N
log ε

=
(

1

N
− 1

N2

)
(log ε)2 +

(
2

N
− 2(N − 1)

N2 log
1 − ε

N − 1

)
log ε + 2 log N

+
(

N − 1

N
− (N − 1)2

N2

) (
log

1 − ε

N − 1

)2

+ 2(N − 1)

N
log

1 − ε

N − 1
→ +∞, ε → 0 + .

2.3 Superposition of entropy that is convex

Now we establish that the superposition of entropy with some decreasing function is
convex. Namely, we shall consider the function

Gβ(p) = −H1+ 1
β
(p) = β log

(
N∑

k=1

p
1+1/β
k

)
, β > 0, (6)

and prove its convexity. Because now we consider the tools that do not include dif-
ferentiation, we can assume that some probabilities are zero. In order to prove the
convexity, we start with the following simple and known result whose proof is added
for the reader’s convenience.

Lemma 5. For any measure space (X , �,μ) and any measurable f ∈ Lp(X , �,μ)

for some interval p ∈ [a, b], ‖f ‖p = ‖f ‖Lp(X ,�,μ) is log-convex as a function of
1/p on this interval.

Proof. For any p2, p1 > 0 and θ ∈ (0, 1), denote p = (
θ/p1 + (1 − θ)/p2

)−1 and
observe that

θp/p1 + (1 − θ)p/p2 = 1.

Therefore, by the Hölder inequality

‖f ‖p
p =

∫
X

|f (x)|θp · |f (x)|(1−θ)pμ(dx)

≤
(∫

X
|f (x)|p1μ(dx)

)θp/p1
(∫

X
|f (x)|p2μ(dx)

)(1−θ)p/p2

,
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whence
log ‖f ‖p ≤ θ log ‖f ‖p1

+ (1 − θ) log ‖f ‖p2
,

as required.

Corollary 1. For any probability vector p = (pk, 1 ≤ k ≤ N), the function
Gβ(p), β > 0, is convex.

Proof. It follows from Lemma 5 by setting X = {1, . . . , N}, μ(A) = ∑
k∈A pk ,

f (k) = pk , k ∈ X .

Remark 2. It follows immediately from (6) that for the function

Gβ(p) = β log
N∑

k=1

p
1+1/β
k , β > 0,

Hα(p) = G 1
α−1

(p). For α > 1, 1
α−1 is convex. If there be such p that G·(p) be

nondecreasing on an interval, then G 1
α−1

(p) be convex on that interval and Hα(p) be

convex, too. However,

G′
β(p) = log

N∑
k=1

p
1+1/β
k − 1

β

∑N
k=1 p

1+1/β
k log pk∑N

k=1 p
1+1/β
k

= −
N∑

k=1

p
1+1/β
k∑N

k=1 p
1+1/β
k

log
p

1/β
k∑N

k=1 p
1+1/β
k

≤ 0.

In some sense, this is a reason why we cannot say something definite concerning
the 2nd derivative of entropy either on the whole semiaxes or even in the interval
[1,+∞).

2.4 Graphs of Hα(p) and its second derivative for several probability distributions

Fig. 1. Graphs of Hα(p) and H′′
α(p), where p1 = p2 = 0.4, p3 = 0.2. Here Hα(p) is convex

as a function of α > 0
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Fig. 2. Graphs of Hα(p) and H′′
α(p), where p1 = · · · = p198 = 1

400 , p199 = p200 = 101
400 .

Dot is the point where H
′′
α(p) = 0 and this point is α = 0.99422

Fig. 3. Graphs of Hα(p) and H′′
α(p), where p1 = · · · = p10 = 0.01, p11 = p12 = 0.15,

p13 = p14 = 0.3. Here the second derivative becomes positive long before point 1 (at point
0.11318)

Fig. 4. Graphs of Hα(p) and H′′
α(p), where p1 = · · · = p10 = 0.08, p11 = 0.2. Here the

second derivative becomes positive after point 1 (at point 2.9997)
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Fig. 5. Graphs of Hα(p) and H′′
α(p), where p1 = · · · = p100 = 0.0001, p101 = · · · =

p200 = 0.0079, p201 = 0.2. Here the second derivative has two zeros

Fig. 6. Graph of Hα(p), where p1 = p2 = 0.05, p3 is changing from 0 to 0.9 and p4 =
1 − p1 − p2 − p3

3 Robustness of the Rényi entropy

Now we study the asymptotic behavior of the Rényi entropy depending on the be-
havior of the involved probabilities. The first problem is the stability of the entropy
w.r.t. involved probabilities and the rate of its convergence to the limit value when
probabilities tend to their limit value with the fixed rate.

3.1 Rate of convergence of the disturbed entropy when the initial distribution is
arbitrary but fixed

Let us look at distributions that are “near” some fixed distribution p = (pk, 1 ≤
k ≤ N) and construct the approximate distribution p(ε) = (pk(ε), 1 ≤ k ≤ N) as
follows. We can assume that some probabilities are zero, and we shall see that this
assumption influences the rate of convergence of the Rényi entropy to the limit value.
So, let 0 ≤ N1 < N be a number of zero probabilities, and for them we consider
approximate values of the form pk(ε) = ckε, 0 ≤ ck ≤ 1, 1 ≤ k ≤ N1. Further, let
N2 = N − N1 ≥ 1 be a number of nonzero probabilities, and for them we consider
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approximate values of the form pk(ε) = pk + ckε, |ck| ≤ 1, N1 + 1 ≤ k ≤ N , where
c1 + · · · + cN = 0 and ε ≤ min

N1+1≤k≤N
pk . Assume also that there exists k ≤ N such

that ck �= 0, otherwise Hα(p)−Hα(p(ε)) = 0. So, we disturb the intial probabilities
linearly in ε with different weights whose sum should necessarily be zero. These
assumptions imply that 0 ≤ pk(ε) ≤ 1 and p1(ε) + · · · + pN(ε) = 1. Now we
want to find out how entropy of the disturbed distribution will differ from the initial
entropy, depending on parameters ε, N and α. We start with α = 1.

Theorem 2. Let the number N and coefficients c1, . . . , cN be fixed, and let α = 1.
We have three different situations:

(i) Let N1 ≥ 1 and there exists k ≤ N1 such that ck �= 0. Then

H1(p) − H1(p(ε)) ∼ ε log ε

N1∑
k=1

ck, ε → 0.

(ii) Let for all k ≤ N1 ck = 0 and
∑N

k=N1+1 ck log pk �= 0. Then

H1(p) − H1(p(ε)) ∼ ε

N∑
k=N1+1

ck log pk, ε → 0.

(iii) Let for all k ≤ N1 ck = 0 and
∑N

k=N1+1 ck log pk = 0. Then

H1(p) − H1(p(ε)) ∼ ε2

2

N∑
k=N1+1

c2
k

pk

, ε → 0.

Proof. First of all, we will find the asymptotic behavior of two auxiliary functions as
ε → 0. First, let 0 ≤ ck ≤ 1. Then

ckε log(ckε) = ckε log ε + ckε log ck = ckε log ε + o(ε log ε), ε → 0.

Second, let pk > 0, |ck| ≤ 1. Taking into account the Taylor expansion of logarithm

log(1 + x) = x − x2

2
+ o(x2), x → 0,

we can write:

(pk + ckε) log(pk + ckε) − pk log pk = ckε log pk + (pk + ckε) log(1 + ckp
−1
k ε)

= ckε log pk + (pk + ckε)

(
ckp

−1
k ε − 1

2
(ckp

−1
k ε)2 + o(ε2)

)

= ε(ck log pk + ck) + ε2
(

c2
kp

−1
k − 1

2
c2
kp

−1
k

)
+ o(ε2)

= ε(ck log pk + ck) + c2
kε

2

2pk

+ o(ε2), ε → 0. (7)
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In particular, we immediately get from (3.1) that

(pk + ckε) log(pk + ckε) − pk log pk = o(ε log ε), ε → 0,

and

(pk + ckε) log(pk + ckε) − pk log pk = ε(ck log pk + ck) + o(ε), ε → 0

Now simply observe the following.

(i) lim
ε→0

H1(p) − H1(p(ε))

ε log ε

= lim
ε→0

1

ε log ε

N1∑
k=1

ckε log ckε

+ 1

ε log ε

N∑
k=N1+1

((pk + ckε) log(pk + ckε) − pk log pk)

= lim
ε→0

1

ε log ε

⎛
⎝ N1∑

k=1

(ckε log ε + o(ε log ε)) +
N∑

k=N1+1

o(ε log ε)

⎞
⎠

=
N1∑
k=1

ck.

(ii) Since for any k ≤ N1 we have that ck = 0 and the total sum c1 + · · · + cN = 0
then cN1+1 + · · · + cN = 0. Furthermore, in this case

lim
ε→0

H1(p) − H1(p(ε))

ε
= lim

ε→0

1

ε

N∑
k=N1+1

((pk + ckε) log(pk + ckε) − pk log pk)

= lim
ε→0

1

ε

N∑
k=N1+1

(ε(ck log pk + ck) + o(ε))

=
N∑

k=N1+1

(ck log pk + ck) =
N∑

k=N1+1

ck log pk.

(iii) In this case we have the following relations:

lim
ε→0

H1(p) − H1(p(ε))

ε2 = lim
ε→0

1

ε2

N∑
k=N1+1

((pk + ckε) log(pk + ckε) − pk log pk)

= lim
ε→0

1

ε2

N∑
k=N1+1

(ε(ck log pk + ck) + c2
kε

2

2pk

+ o(ε2))

= lim
ε→0

1

ε2

N∑
k=N1+1

(
c2
kε

2

2pk

+ o(ε2)

)
= 1

2

N∑
k=N1+1

c2
k

pk

.

Theorem is proved.
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Now we proceed with α < 1.

Theorem 3. Let the number N and coefficients c1, . . . , cN be fixed, and let α < 1.
Then we have three different situations:

(i) Let N1 ≥ 1 and there exists k ≤ N1 such that ck �= 0. Then

Hα(p) − Hα(p(ε)) ∼ εα

α − 1

(
N1∑
k=1

cα
k

)⎛
⎝ N∑

k=N1+1

pα
k

⎞
⎠

−1

, ε → 0.

(ii) Let for all k ≤ N1 ck = 0 and
∑N

k=N1+1 ckp
α−1
k �= 0. Then

Hα(p) − Hα(p(ε)) ∼ αε

α − 1

⎛
⎝ N∑

k=N1+1

ckp
α−1
k

⎞
⎠

⎛
⎝ N∑

k=N1+1

pα
k

⎞
⎠

−1

, ε → 0.

(iii) Let for all k ≤ N1 ck = 0 and
∑N

k=N1+1 ckp
α−1
k = 0. Then

Hα(p) − Hα(p(ε)) ∼ αε2

2

⎛
⎝ N∑

k=N1+1

c2
kp

α−2
k

⎞
⎠

⎛
⎝ N∑

k=N1+1

pα
k

⎞
⎠

−1

, ε → 0.

Proof. Similarly to proof of Theorem 2, we start with several asymptotic relations as
ε → 0. Namely, let pk > 0, |ck| ≤ 1. Taking into account the Taylor expansion of
(1 + x)α that has the form

(1 + x)α = 1 + αx + o(x), x → 0,

we can write:

αck(pk + ckε)
α−1 = αckp

α−1
k (1 + ckp

−1
k ε)α−1

= αckp
α−1
k (1 + (α − 1)ckp

−1
k ε + o(ε))

= αckp
α−1
k + α(α − 1)c2

kp
α−2
k ε + o(ε), ε → 0.

(8)

As a consequence, we get the following asymptotic relations:

αck(pk + ckε)
α−1 = o(εα−1), ε → 0, (9)

and

αck(pk + ckε)
α−1 = αckp

α−1
k + o(1), ε → 0

(i) Applying L’Hospital’s rule, we get:

lim
ε→0

Hα(p) − Hα(p(ε))

εα
= lim

ε→0

1

(α − 1)εα
log

⎛
⎝ N1∑

k=1

(ckε)
α +

N∑
k=N1+1

(pk + ckε)
α

⎞
⎠
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− 1

(α − 1)εα
log

(
N∑

k=1

pα
k

)
= 1

α − 1
lim
ε→0

1

αεα−1

×
∑N1

k=1 αcα
k εα−1 + ∑N

k=N1+1 αck(pk + ckε)
α−1∑N1

k=1(ckε)α + ∑N
k=N1+1(pk + ckε)α

= 1

α − 1
lim
ε→0

∑N1
k=1 cα

k + ε1−α
∑N

k=N1+1 o(εα−1)∑N1
k=1(ckε)α + ∑N

k=N1+1(pk + ckε)α

= 1

α − 1

(
N1∑
k=1

cα
k

) ⎛
⎝ N∑

k=N1+1

pα
k

⎞
⎠

−1

.

(ii) In this case we can transform the value under a limit as follows:

lim
ε→0

Hα(p) − Hα(p(ε))

ε

= lim
ε→0

1

(α − 1)ε

⎛
⎝log

⎛
⎝ N∑

k=N1+1

(pk + ckε)
α

⎞
⎠ − log

(
N∑

k=1

pα
k

)⎞
⎠

= 1

α − 1
lim
ε→0

∑N
k=N1+1 αck(pk + ckε)

α−1∑N
k=N1+1(pk + ckε)α

= 1

α − 1
lim
ε→0

∑N
k=N1+1(αckp

α−1
k + o(1))∑N

k=N1+1(pk + ckε)α

= α

α − 1

⎛
⎝ N∑

k=N1+1

ckp
α−1
k

⎞
⎠

⎛
⎝ N∑

k=N1+1

pα
k

⎞
⎠

−1

.

(iii) Finally, in the 3rd case,

lim
ε→0

Hα(p) − Hα(p(ε))

ε2

= lim
ε→0

1

(α − 1)ε2

⎛
⎝log

⎛
⎝ N∑

k=N1+1

(pk + ckε)
α

⎞
⎠ − log

(
N∑

k=1

pα
k

)⎞
⎠

= 1

α − 1
lim
ε→0

1

2ε

∑N
k=N1+1 αck(pk + ckε)

α−1∑N
k=N1+1(pk + ckε)α

= 1

α − 1
lim
ε→0

1

2ε

∑N
k=N1+1(αckp

α−1
k + α(α − 1)c2

kp
α−2
k ε + o(ε))∑N

k=N1+1(pk + ckε)α

= 1

α − 1
lim
ε→0

1

2ε

∑N
k=N1+1(α(α − 1)c2

kp
α−2
k ε + o(ε))∑N

k=N1+1(pk + ckε)α
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= α

2

⎛
⎝ N∑

k=N1+1

c2
kp

α−2
k

⎞
⎠

⎛
⎝ N∑

k=N1+1

pα
k

⎞
⎠

−1

.

Theorem is proved.

Now we conclude with α > 1. In this case, five different asymptotics are possible.

Theorem 4. Let the number N and coefficients c1, . . . , cN be fixed, and let α > 1.
Then five different situations are possible:

(i) Let
∑N

k=N1+1 ckp
α−1
k �= 0. Then for any N1 ≥ 0 and α > 1, we have that

Hα(p) − Hα(p(ε)) ∼ αε

α − 1

⎛
⎝ N∑

k=N1+1

ckp
α−1
k

⎞
⎠

⎛
⎝ N∑

k=N1+1

pα
k

⎞
⎠

−1

, ε → 0.

(ii) Let
∑N

k=N1+1 ckp
α−1
k = 0, N1 ≥ 1, and there exists k ≤ N1 such that ck �= 0.

Then for α < 2 it holds that

Hα(p) − Hα(p(ε)) ∼ εα

α − 1

(
N1∑
k=1

cα
k

)⎛
⎝ N∑

k=N1+1

pα
k

⎞
⎠

−1

, ε → 0.

(iii) Let
∑N

k=N1+1 ckp
α−1
k = 0, N1 ≥ 0 and for all k ≤ N1 we have that ck = 0.

Then for α < 2 it holds that

Hα(p) − Hα(p(ε)) ∼ αε2

2

⎛
⎝ N∑

k=N1+1

c2
kp

α−2
k

⎞
⎠

⎛
⎝ N∑

k=N1+1

pα
k

⎞
⎠

−1

, ε → 0.

(iv) Let
∑N

k=N1+1 ckp
α−1
k = 0, α = 2. Then for any N1 ≥ 0 and ck, k ≤ N1, we

have that

Hα(p) − Hα(p(ε)) ∼ ε2

(
N∑

k=1

c2
k

) ⎛
⎝ N∑

k=N1+1

p2
k

⎞
⎠

−1

, ε → 0.

(v) Let
∑N

k=N1+1 ckp
α−1
k = 0, α > 2. Then for any N1 ≥ 0 and ck, k ≤ N1, we

have that

Hα(p) − Hα(p(ε)) ∼ αε2

2

⎛
⎝ N∑

k=N1+1

c2
kp

α−2
k

⎞
⎠

⎛
⎝ N∑

k=N1+1

pα
k

⎞
⎠

−1

, ε → 0.

Proof. As in the proof of Theorem 3, we shall use expansions (8) and (9). The main
tool will be L’Hospital’s rule.
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(i) Let
∑N

k=N1+1 ckp
α−1
k �= 0. Then for any N1 ≥ 0 and α > 1, we have the

following relations:

lim
ε→0

Hα(p) − Hα(p(ε))

ε
= lim

ε→0

1

(α − 1)ε
log

⎛
⎝ N1∑

k=1

(ckε)
α +

N∑
k=N1+1

(pk + ckε)
α

⎞
⎠

− 1

(α − 1)ε
log

(
N∑

k=1

pα
k

)
= 1

α − 1

× lim
ε→0

∑N1
k=1 αcα

k εα−1 + ∑N
k=N1+1 αck(pk + ckε)

α−1∑N1
k=1(ckε)α + ∑N

k=N1+1(pk + ckε)α

= α

α − 1

⎛
⎝ N∑

k=N1+1

ckp
α−1
k

⎞
⎠

⎛
⎝ N∑

k=N1+1

pα
k

⎞
⎠

−1

.

(ii) Let
∑N

k=N1+1 ckp
α−1
k = 0, N1 ≥ 1, and there exists k ≤ N1 such that ck �= 0.

Then for α < 2 we have that

lim
ε→0

Hα(p) − Hα(p(ε))

εα

= lim
ε→0

1

(α − 1)εα
log

⎛
⎝ N1∑

k=1

(ckε)
α +

N∑
k=N1+1

(pk + ckε)
α

⎞
⎠

− 1

(α − 1)εα
log

(
N∑

k=1

pα
k

)
= 1

α − 1
lim
ε→0

1

αεα−1

×
∑N1

k=1 αcα
k εα−1 + ∑N

k=N1+1 αck(pk + ckε)
α−1∑N1

k=1(ckε)α + ∑N
k=N1+1(pk + ckε)α

= 1

α − 1
lim
ε→0

∑N1
k=1 cα

k εα−1 + ∑N
k=N1+1((α − 1)c2

kp
α−2
k ε + o(ε))

εα−1
(∑N1

k=1(ckε)α + ∑N
k=N1+1(pk + ckε)α

)

= 1

α − 1

(
N1∑
k=1

cα
k

) ⎛
⎝ N∑

k=N1+1

pα
k

⎞
⎠

−1

.

(iii) Let
∑N

k=N1+1 ckp
α−1
k = 0, N1 ≥ 0 and for all k ≤ N1 we have that ck = 0.

Then for α < 2 it holds that

lim
ε→0

Hα(p) − Hα(p(ε))

ε2

= lim
ε→0

1

(α − 1)ε2

⎛
⎝log

⎛
⎝ N∑

k=N1+1

(pk + ckε)
α

⎞
⎠ − log

(
N∑

k=1

pα
k

)⎞
⎠
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= 1

α − 1
lim
ε→0

1

2ε

∑N
k=N1+1 αck(pk + ckε)

α−1∑N
k=N1+1(pk + ckε)α

= 1

α − 1
lim
ε→0

∑N
k=N1+1(αckp

α−1
k + α(α − 1)c2

kp
α−2
k ε + o(ε))

2ε
(∑N

k=N1+1(pk + ckε)α
)

= 1

α − 1
lim
ε→0

∑N
k=N1+1(α(α − 1)c2

kp
α−2
k ε + o(ε))

2ε
(∑N

k=N1+1(pk + ckε)α
)

= α

2

⎛
⎝ N∑

k=N1+1

c2
kp

α−2
k

⎞
⎠

⎛
⎝ N∑

k=N1+1

pα
k

⎞
⎠

−1

.

(iv) Obviously, in the case α = 2 we have the simple value of the entropy:

H2(p) = − log

(
N∑

k=1

p2
k

)
.

Therefore, if
∑N

k=N1+1 ckp
α−1
k = 0, α = 2, then for any N1 ≥ 0 and ck, k ≤ N1, we

have that

lim
ε→0

H2(p) − H2(p(ε))

ε2 = lim
ε→0

1

ε2 log

⎛
⎝ N1∑

k=1

(ckε)
2 +

N∑
k=N1+1

(pk + ckε)
2

⎞
⎠

− 1

ε2 log

(
N∑

k=1

p2
k

)
= lim

ε→0

1

2ε

×
∑N1

k=1 2c2
kε + ∑N

k=N1+1 2ck(pk + ckε)∑N1
k=1(ckε)2 + ∑N

k=N1+1(pk + ckε)2

= lim
ε→0

∑N1
k=1 c2

k + ∑N
k=N1+1 c2

k∑N1
k=1(ckε)2 + ∑N

k=N1+1(pk + ckε)2

=
(

N∑
k=1

c2
k

) ⎛
⎝ N∑

k=N1+1

p2
k

⎞
⎠

−1

.

(v) Let
∑N

k=N1+1 ckp
α−1
k = 0, α > 2. Then for any N1 ≥ 0 and ck, k ≤ N1, we

have that

lim
ε→0

Hα(p) − Hα(p(ε))

ε2

= lim
ε→0

1

(α − 1)ε2 log

⎛
⎝ N1∑

k=1

(ckε)
α +

N∑
k=N1+1

(pk + ckε)
α

⎞
⎠

− 1

(α − 1)ε2 log

(
N∑

k=1

pα
k

)
= 1

α − 1
lim
ε→0

1

2ε
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×
∑N1

k=1 αcα
k εα−1 + ∑N

k=N1+1 αck(pk + ckε)
α−1∑N1

k=1(ckε)α + ∑N
k=N1+1(pk + ckε)α

= 1

α − 1
lim
ε→0

∑N1
k=1 αcα

k εα−1 + ∑N
k=N1+1(α(α − 1)c2

kp
α−2
k ε + o(ε))

2ε
(∑N1

k=1(ckε)α + ∑N
k=N1+1(pk + ckε)α

)

= α

2

⎛
⎝ N∑

k=N1+1

c2
kp

α−2
k

⎞
⎠

⎛
⎝ N∑

k=N1+1

pα
k

⎞
⎠

−1

.

Theorem is proved.

3.2 Convergence of the disturbed entropy when the initial distribution is uniform
but the number of events increases to ∞

The second problem is to establish conditions of stability of the entropy of uni-
form distribution when the number of events tends to ∞. Let N > 1, pN(uni) =
( 1
N

, . . . , 1
N

) be a vector of uniform distribution with N possible states, ε = ε(N) ≤
1
N

, and {ckN ; N ≥ 1, 1 ≤ k ≤ N} be a family of fixed numbers (not all zero)

such that |ckN | ≤ 1 and
∑N

k=1 ckN = 0. Note that for any N ≥ 1 there are strictly
positive numbers ckN for some k and consider the disturbed distribution vector p

′
N =

( 1
N

+ c1Nε, . . . , 1
N

+ cNNε).

Theorem 5. Let ε(N) = o( 1
N

), N → ∞. Then

Hα(pN) − Hα(p
′
N) → 0, N → ∞.

Proof. We know that Nε → 0, as N → ∞, and the family of numbers {ckn; n ≥
1, 1 ≤ k ≤ n} is bounded. Therefore the values

sup
n≥1, 1≤k≤n

(1 + Ncknε) → 1, inf
n≥1, 1≤k≤n

(1 + Ncknε) → 1, N → ∞,

as the functions of N , and for every N ≥ 1, sup
n≥1, 1≤k≤n

(1 + Ncknε) ≥ 1. Recall that

the function x log x is increasing for x ≥ 1, and x log x ≤ 0 for 0 < x < 1. Moreover,
Rényi entropy is maximal on the uniform distribution. As a consequence of all these
observations and assumptions we get that

0 ≤ H1(pN) − H1(p
′
N) = 1

N

N∑
k=1

(1 + NckNε) log(1 + NckNε)

≤ 1

N

N∑
k=1

sup
n≥1, 1≤k≤n

(1 + Ncknε) log sup
n≥1, 1≤k≤n

(1 + Ncknε)

= sup
n≥1, 1≤k≤n

(1 + Ncknε) log sup
n≥1, 1≤k≤n

(1 + Ncknε)

→ 0, N → ∞.
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Let α > 1. Then

0 ≤ Hα(pN) − Hα(p
′
N) = 1

α − 1
log

(
1

N

N∑
k=1

(1 + NckNε)α

)

≤ 1

α − 1
log

(
1

N

N∑
k=1

(
sup

n≥1, 1≤k≤n

(1 + Ncknε)

)α)

= α

α − 1
log

(
sup

n≥1, 1≤k≤n

(1 + Ncknε)

)
→ 0, N → ∞.

Similarly, for 0 < α < 1 we produce the transformations

0 ≤ Hα(pN) − Hα(p
′
N) = 1

α − 1
log

(
1

N

N∑
k=1

(1 + NckNε)α

)

≤ 1

α − 1
log

(
1

N

N∑
k=1

(
inf

n≥1, 1≤k≤n
(1 + Ncknε)

)α
)

= α

α − 1
log

(
inf

n≥1, 1≤k≤n
(1 + Ncknε)

)
→ 0, N → ∞,

and the proof follows.

3.3 Binomial and Poisson distributions

In this section we look at convergence of Rényi entropy of the binomial distribution
to Rényi entropy of the Poisson distribution.

Theorem 6. Let λ > 0 be fixed. For any α > 0

lim
n→∞Hα

(
B

(
n,

λ

n

))
= Hα(Poi(λ)).

Proof. First, let α = 1. We will find and regroup entropies of the binomial and
Poisson distributions.

H1 (B (n, p)) = −
n∑

k=0

(
n

k

)
pk(1 − p)n−k log

((
n

k

)
pk(1 − p)n−k

)

= −
n∑

k=0

(
n

k

)
pk(1 − p)n−k log

(
n

k

)

− n (p log p + (1 − p) log(1 − p))

= −
n∑

k=0

(
n

k

)
pk(1 − p)n−k(log n! − log k! − log(n − k)!) + np log n

− np log np − n log(1 − p) + np log(1 − p)

= np log(1 − p) − n log(1 − p) − np log np + np log n
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−
n∑

k=0

(
n

k

)
pk(1 − p)n−k(log n! − log k! − log(n − k)!).

H1(Poi(λ)) = −
∞∑

k=0

e−λ λk

k! log

(
e−λ λk

k!
)

= λ − λ log λ +
∞∑

k=0

e−λ λk

k! log k!

We want to show componentwise convergence of entropies. For that let us take np =
λ and observe that

np log(1 − p) = λ log(1 − p) → λ log 1 = 0, n → ∞, p → 0.

−n log(1 − p) = log

(
1 − λ

n

)−n

→ λ, n → ∞, p → 0.

−np log np = −λ log λ,

np log n −
n∑

k=0

(
n

k

)
pk(1 − p)n−k(log n! − log k! − log(n − k)!)

=
n∑

k=0

(
n

k

)
pk(1 − p)n−kk log n

−
n∑

k=0

(
n

k

)
pk(1 − p)n−k(log n! − log k! − log(n − k)!)

=
n∑

k=0

(
n

k

)
pk(1 − p)n−k

(
log nk − log n! + log k! + log(n − k)!

)

=
n∑

k=0

(
n

k

)
pk(1 − p)n−k

(
log

nk(n − k)!
n! + log k!

)
.

It is well known that log(x)
x

≤ 1, x > 0. Using this fact, we get the following repre-
sentation:(

n

k

)
pk(1 − p)n−k log

nk(n − k)!
n! = n!

(n − k)!k!
(

λ

n

)k (
1 − λ

n

)n−k

log
nk(n − k)!

n!
= λk

k!
(

1 − λ

n

)n−k
n!

nk(n − k)! log
nk(n − k)!

n!
≤ λk

k!
(

1 − λ

n

)n−k

≤ λk

k! .

For the second part of the sum simply observe that

(
n

k

)
pk(1 − p)n−k log k! = n!

(n − k)!k!
(

λ

n

)k (
1 − λ

n

)n−k

log k!

= λk

k! log k!
(

1 − λ

n

)n−k
n!

(n − k)!nk
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≤ λk

k! log k!

As
∑∞

k=0
λk

k! (1 + log k!) < ∞, by Lebesgue’s dominated convergence theorem:

lim
n→∞

n∑
k=0

(
n

k

)
pk(1 − p)n−k

(
log

nk(n − k)!
n! + log k!

)

=
∞∑

k=0

lim
n→∞

(
n

k

)
pk(1 − p)n−k

(
log

nk(n − k)!
n! + log k!

)

=
∞∑

k=0

lim
n→∞

λk

k!
(

1 − λ

n

)n−k
n!

(n − k)!nk

(
log

nk(n − k)!
n! + log k!

)

=
∞∑

k=0

e−λ λk

k! log k!

Finally, we get that

lim
n→∞H1

(
B

(
n,

λ

n

))
= H1(Poi(λ)).

For α �= 1 we have:

Hα(binomial) = 1

1 − α
log

n∑
k=0

((
n

k

)
pk(1 − p)n−k

)α

,

Hα(poisson) = 1

1 − α
log

+∞∑
k=0

(
e−λ λk

k!
)α

.

Thus, to show that

lim
n→∞Hα

(
B

(
n,

λ

n

))
= Hα(Poi(λ)),

it is enough to show the convergence of sums, which follows from Lebesgue’s domi-
nated convergence theorem and

((
n

k

)
pk(1 − p)n−k

)α

≤
(

λk

k!
)α

,

+∞∑
k=0

(
λk

k!
)α

< +∞.

A Appendix

We let 0 log 0 = 0 by continuity and prove several auxiliary results. Stating these
three lemmas, we assume that pi ≥ 0, 1 ≤ i ≤ N are fixed.
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Lemma 6. Hα(p) → H(p), α → 1.

Proof. Using L’Hospital’s rule, we get the following relations:

lim
α→1

Hα(p) = lim
α→1

1

1 − α
log

(
N∑

k=1

pα
k

)
= lim

α→1

1

−1

∑N
k=1 pα

k log(pk)∑N
k=1 pα

k

= −
N∑

k=1

pk log(pk) = H(p).

Let H1(p) := H(p) (Shannon entropy), and so Hα(p) is defined for all α > 0
and is continuous in α.

Lemma 7. Hα(p) is nonincreasing in α > 0.

Proof. Indeed,

∂Hα(p)

∂α
= 1

(1 − α)2 log

(
N∑

i=1

pα
i

)
+ 1

1 − α

∑N
k=1 pα

k log pk∑N
k=1 pα

k

= 1

(1 − α)2
∑N

k=1 pα
k

N∑
k=1

pα
k

(
log

(
N∑

i=1

pα
i

)
+ log p1−α

k

)

= −1

(1 − α)2

N∑
k=1

pα
k∑N

i=1 pα
i

log

(
pα

k∑N
i=1 pα

i

1

pk

)
.

Let qk = pα
k∑N

i=1 pα
i

. Then

∂Hα(p)

∂α
= −1

(1 − α)2

N∑
k=1

qk log
qk

pk

≤ 0.

The fact that Hα(p) ≤ H1(p) ≤ Hβ(p), where 0 < β < 1 < α follows from
Lemma 6.

Lemma 8. Hα(p) ≤ log N and it reaches maximum when distribution is uniform.

Proof. Let 1 ≤ m ≤ N be the number of nonzero probabilities. Then we have

lim
α→0+Hα(p) = lim

α→0+
1

1 − α
log

(
N∑

k=1

pα
k

)
= log m ≤ log N.

So Hα(p) ≤ log N due to Lemma 7. For the second part, put p1 = · · · = pN = 1
N

.

H1(p) = −
N∑

k=1

1

N
log

(
1

N

)
= log N.
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Hα(p) = 1

1 − α
log

(
N∑

k=1

1

Nα

)
= 1

1 − α
log

(
N

Nα

)
= log N.

Remark 3. Let 1 ≤ m ≤ N be the number of nonzero probabilities and without loss
of generality let pk < p1 = · · · = pN1 for every N1 + 1 ≤ k ≤ N . Then we can also
define

H0(p) := lim
α→0+Hα(p) = lim

α→0+
1

1 − α
log

(
N∑

k=1

pα
k

)
= log m.

H∞(p) : = lim
α→+∞Hα(p) = lim

α→+∞
1

1 − α
log

(
N∑

k=1

pα
k

)
=

= lim
α→+∞ −

∑N
k=1 pα

k log pk∑N
k=1 pα

k

= lim
α→+∞ −

N1 log p1 + ∑N
k=N1+1

(
pk

p1

)α

log pk

N1 + ∑N
k=N1+1

(
pk

p1

)α

= − log p1.
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