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Abstract Initiated around the year 2007, the Malliavin–Stein approach to probabilistic ap-
proximations combines Stein’s method with infinite-dimensional integration by parts formulae
based on the use of Malliavin-type operators. In the last decade, Malliavin–Stein techniques
have allowed researchers to establish new quantitative limit theorems in a variety of domains
of theoretical and applied stochastic analysis. The aim of this survey is to illustrate some of the
latest developments of the Malliavin–Stein method, with specific emphasis on extensions and
generalizations in the framework of Markov semigroups and of random point measures.
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1 Introduction and overview

The Malliavin–Stein method for probabilistic approximations was initiated in the
paper [64], with the aim of providing a quantitative counterpart to the (one- and multi-
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dimensional) central limit theorems for random variables living in the Wiener chaos
of a general separable Gaussian field. As formally discussed in the sections to follow,
the basic idea of the approach initiated in [64] is that, in order to assess the discrep-
ancy between some target law (Normal or Gamma, for instance), and the distribu-
tion of a nonlinear functional of a Gaussian field, one can fruitfully apply infinite-
dimensional integration by parts formulae from the Malliavin calculus of variations
[57, 66, 77, 78] to the general bounds associated with the so-called Stein’s method
for probabilistic approximations [66, 23]. In particular, the Malliavin–Stein approach
captures and amplifies the essence of [21], where Stein’s method was combined with
finite-dimensional integration by parts formulae for Gaussian vectors, in order to de-
duce second order Poincaré inequalities – as applied to random matrix models with
Gaussian-subordinated entries (see also [70, 96]).

We recall that, as initiated by P. Malliavin in the path-breaking reference [56], the
Malliavin calculus is an infinite-dimensional differential calculus, whose operators
act on smooth nonlinear functionals of Gaussian fields (or of more general prob-
abilistic objects). As vividly described in the classical references [57, 77], as well
as in the more recent books [66, 78], since its inception such a theory has gener-
ated a staggering number of applications, ranging, e.g., from mathematical physics to
stochastic differential equations, and from mathematical finance to stochastic geome-
try (in particular, models involving stabilization, but also hyperplane, flat or cylinder
processes), analysis on manifolds and mathematical statistics. On the other hand, the
similarly successful and popular Stein’s method (as created by Ch. Stein in the clas-
sical reference [92] – see also the 1986 monograph [93]) is a collection of analytical
techniques, allowing one to estimate the distance between the distributions of two
random objects, by using characterizing differential operators (or difference operator
in the case where the random variables of interest are discrete). The discovery in [64]
that the two theories can be fruitfully combined has been a major breakthrough in the
domain of probabilistic limit theorems and approximations.

Since the publication of [64], the Malliavin–Stein method has generated several
hundreds of papers, with ramifications in many (often unexpected) directions, includ-
ing functional inequalities, random matrix theory, stochastic geometry, noncommu-
tative probability and computer sciences. Many of hese developments largely exceed
the scope of the present survey, and we invite the interested reader to consult the
following general references (i)–(iii) for a more detailed presentation: (i) the web-
page [1] is a constantly updated resource, listing all existing papers written around
the Malliavin–Stein method; (ii) the monograph [66], written in 2012, contains a
self-contained presentation of Malliavin calculus and Stein’s method, as applied to
functionals of general Gaussian fields, with specific emphasis on random variables
belonging to a fixed Wiener chaos; (iii) the text [81] is a collection of surveys, contain-
ing an in-depth presentation of variational techniques on the Poisson space (including
the Malliavin–Stein method), together with their application to asymptotic problems
arising in stochastic geometry. The following more specific references (a)–(c) point to
some recent developments that we find particularly exciting and ripe for further devel-
opments: (a) the papers [58, 59, 68, 82, 85, 88, 94] provide a representative overview
of applications of Malliavin–Stein techniques to the study of nodal sets associated
with Gaussian random fields on two-dimensional manifolds; (b) the papers [62, 74]
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– and many of the reference therein – display a pervasive use of Malliavin–Stein
techniques to determine rates of convergence in total variation in the Breuer–Major
Theorem; (c) references [19, 61] deal with the problem of tightness and functional
convergence in the Breuer–Major theorem evoked at Point (b).

The aim of the present survey is twofold. On the one hand, we aim at presenting
the essence of the Malliavin–Stein method for functionals of Gaussian fields, by dis-
cussing the crucial elements of Malliavin calculus and Stein’s method together with
their interaction (see Section 2 and Section 3). On the other hand, we aim at introduc-
ing the reader to some of the most recent developments of the theory, with specific
focus on the general theory of Markov semigroups in a diffusive setting (following
the seminal references [52, 5], as well as [73, 53, 54]), and on integration by parts
formulae (and associated operators) in the context of functionals of a random point
measure [37, 38, 55, 49, 48, 90]. This corresponds to the content of Section 4 and
Section 5, respectively. Finally, Section 6 deals with some recent results (and open
problems) concerning χ2 approximations.

From now on, every random object will be defined on a suitable common prob-
ability space (�,F ,P), with E indicating mathematical expectation with respect to
P. Throughout the paper, the symbol N (μ, σ 2) will be a shorthand for the one-
dimensional Gaussian distribution with mean μ ∈ R and variance σ 2 > 0. In partic-
ular, X ∼ N (μ, σ 2) if and only if

P[X ∈ A] =
∫

A

e
− (x−μ)2

2σ2
dx√
2πσ 2

,

for every Borel set A ⊂ R.

2 Elements of Stein’s method for normal approximations

In this section, we briefly introduce the main ingredients of Stein’s method for nor-
mal approximations in dimension one. The approximation will be performed with
respect to the total variation and 1-Wasserstein distances between the distributions
of two random variables; more detailed information about these distances can be
found in [66, Appendix C] and the references therein.

The crucial intuition behind Stein’s method lies in the following heuristic reason-
ing: it is a well-known fact (see, e.g., Lemma 2.1-(e) below) that a random variable
X has the standard N (0, 1) distribution if and only if

E[Xf (X) − f ′(X)] = 0, (2.1)

for every smooth mapping f : R → R; heuristically, it follows that, if X is a random
variable such that the quantity E[Xf (X) − f ′(X)] is close to zero for a large class
of test functions f , then the distribution of X should be close to Gaussian.

The fact that such a heuristic argument can be made rigorous and applied in a wide
array of probabilistic models was the main discovery of Stein’s original contribution
[92], where the foundations of Stein’s method were first laid. The reader is referred to
Stein’s monograph [93], as well as the books [23, 66], for an exhaustive presentation
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of the theory and its applications (in particular, for extensions to multidimensional
approximations).

We recall that the total variation distance, between the laws of two real-valued
random variables F and G, is defined by

dT V (F,G) := sup
B∈B(R)

∣∣∣P[F ∈ B] − P[G ∈ B]
∣∣∣. (2.2)

One has to note that the topology induced by the distance dT V – on the set of all
probability measures on R – is stronger than the topology of convergence in distri-
bution; one sometimes uses the following equivalent representation of dT V (see, e.g.,
[66, p. 213]):

dT V (F,G)

= 1

2
sup

{∣∣E[h(F )] − E[h(G)]∣∣ : h is Borel measurable and ‖h‖∞ ≤ 1
}
. (2.3)

The 1-Wasserstein distance dW , between the distributions of two real-valued in-
tegrable random variables F and G, is given by

dW (F,G) := sup
h∈Lip(1)

∣∣∣E[h(F )] − E[h(G)]
∣∣∣, (2.4)

where Lip(K), K > 0, stands for the class of all Lipschitz mappings h : R → R such
that h has a Lipschitz constant ≤ K . As for total variation, the topology induced by
dW – on the set of all probability measures on R having a finite absolute first moment
– is stronger than the topology of convergence in distribution; it is also interesting to
recall the dual representation

dW (F,G) = infE
∣∣X − Y

∣∣, (2.5)

where the infimum is taken over all couplings (X, Y ) of F and G; see, e.g., [97, p. 95]
for a discussion of this fact.

The following classical result, whose complete proof can be found, e.g., in [66,
p. 64 and p. 67], contains all the elements of Stein’s method that are needed for our
discussion; as for many fundamental findings in the area, this result can be traced
back to [92].

Lemma 2.1. Let N ∼ N (0, 1) be a standard Gaussian random variable.

(a) Fix h : R → [0, 1], a Borel-measurable function. Define fh : R → R as

fh(x) := e
x2
2

∫ x

−∞
{h(y) − E[h(N)]}e− y2

2 dy, x ∈ R. (2.6)

Then, fh is continuous on R with ‖fh‖∞ ≤
√

π
2 and fh ∈ Lip(2). Moreover,

there exists a version of f ′
h verifying

f ′
h(x) − xfh(x) = h(x) − E[h(N)], for all x ∈ R. (2.7)
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(b) Consider h : R → R ∈ Lip(1), and define fh : R → R as in (2.6). Then, fh is
of class C1 on R, with ‖f ′

h‖∞ ≤ 1 and f ′
h ∈ Lip(2), and fh solves (2.7).

(c) Let X be an integrable random variable. Then

dT V (X,N) ≤ sup
f

∣∣∣E[f (X)X − f ′(X)
]∣∣∣

where the supremum is taken over all pairs (f, f ′) such that f is a Lipschitz

function whose absolute value is bounded by
√

π
2 , and f ′ is a version of the

derivative of f satisfying ‖f ′‖∞ ≤ 2.

(d) Let X be an integrable random variable. Then,

dW (X,N) ≤ sup
f

∣∣∣E[f (X)X − f ′(X)
]∣∣∣

where the supremum is taken over all C1 functions f : R → R such that
‖f ′‖∞ ≤ 2 and f ′ ∈ Lip(2).

(e) Let X be a general random variable. Then X ∼ N (0, 1) if and only if
E[f ′(X) − Xf (X)] = 0 for every absolutely continuous function f such that
E|f ′(N)| < +∞.

Sketch of the proof. Points (a) and (b) can be verified by a direct computation. Point (c)
and Point (d) follow by plugging the left-hand side of (2.7) into (2.3) and (2.4), re-
spectively. Finally, the fact that the relation E[f ′(X) − Xf (X)] = 0 implies that
X ∼ N (0, 1) is a direct consequence of Point (c), whereas the reverse implication
follows by an integration by parts argument.

3 Normal approximation with Stein’s method and Malliavin calculus

The first part of the present section contains some elements of Gaussian analysis and
Malliavin calculus. The reader can consult, for instance, the references [66, 77, 57,
78] for further details. In Section 3.2 we will shortly explore the connection between
Malliavin calculus and the version of Stein’s method presented in Section 2.

3.1 Isonormal processes, multiple integrals, and the Malliavin operators

Let H be a real separable Hilbert space. For any q ≥ 1, we write H⊗q and H�q to
indicate, respectively, the qth tensor power and the qth symmetric tensor power of
H; we also set by convention H⊗0 = H�0 = R. When H = L2(A,A, μ) =: L2(μ),
where μ is a σ -finite and nonatomic measure on the measurable space (A,A), then
H⊗q � L2(Aq,Aq, μq) =: L2(μq), and H�q � L2

s (A
q,Aq, μq) := L2

s (μ
q), where

L2
s (μ

q) stands for the subspace of L2(μq) composed of those functions that are μq -
almost everywhere symmetric. We denote by W = {W(h) : h ∈ H} an isonormal
Gaussian process over H. This means that W is a centered Gaussian family with a
covariance structure given by the relation E [W(h)W(g)] = 〈h, g〉H. Without loss of
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generality, we can also assume that F = σ(W), that is, F is generated by W , and
use the shorthand notation L2(�) := L2(�,F ,P).

For every q ≥ 1, the symbol Cq stands for the qth Wiener chaos of W , defined
as the closed linear subspace of L2(�) generated by the family {Hq(W(h)) : h ∈
H, ‖h‖H = 1}, where Hq is the qth Hermite polynomial, defined as follows:

Hq(x) = (−1)qe
x2
2

dq

dxq

(
e− x2

2
)
. (3.1)

We write by convention C0 = R. For any q ≥ 1, the mapping Iq(h⊗q) = Hq(W(h))

can be extended to a linear isometry between the symmetric tensor product H�q

(equipped with the modified norm
√

q! ‖·‖H⊗q ) and the qth Wiener chaos Cq . For
q = 0, we write by convention I0(c) = c, c ∈ R.

It is well known that L2(�) can be decomposed into the infinite orthogonal sum
of the spaces Cq : this means that any square-integrable random variable F ∈ L2(�)

admits the following Wiener–Itô chaotic expansion

F =
∞∑

q=0

Iq(fq), (3.2)

where the series converges in L2(�), f0 = E[F ], and the kernels fq ∈ H�q , q ≥ 1,
are uniquely determined by F . For every q ≥ 0, we denote by Jq the orthogonal
projection operator on the qth Wiener chaos. In particular, if F ∈ L2(�) has the form
(3.2), then JqF = Iq(fq) for every q ≥ 0.

Let {ek, k ≥ 1} be a complete orthonormal system in H. Given f ∈ H�p and
g ∈ H�q , for every r = 0, . . . , p ∧ q, the contraction of f and g of order r is the
element of H⊗(p+q−2r) defined by

f ⊗r g =
∞∑

i1,...,ir=1

〈f, ei1 ⊗ · · · ⊗ eir 〉H⊗r ⊗ 〈g, ei1 ⊗ · · · ⊗ eir 〉H⊗r . (3.3)

Notice that the definition of f ⊗r g does not depend on the particular choice of
{ek, k ≥ 1}, and that f ⊗r g is not necessarily symmetric; we denote its symmetriza-
tion by f ⊗̃rg ∈ H�(p+q−2r). Moreover, f ⊗0 g = f ⊗ g equals the tensor product
of f and g while, for p = q, f ⊗q g = 〈f, g〉H⊗q . When H = L2(A,A, μ) and
r = 1, . . . , p ∧ q, the contraction f ⊗r g is the element of L2(μp+q−2r ) given by

f ⊗r g(x1, . . . , xp+q−2r )

=
∫

Ar

f (x1, . . . , xp−r , a1, . . . , ar ) ×
×g(xp−r+1, . . . , xp+q−2r , a1, . . . , ar )dμ(a1)...dμ(ar). (3.4)

It is a standard fact of Gaussian analysis that the following multiplication for-
mula holds: if f ∈ H�p and g ∈ H�q , then

Ip(f )Iq(g) =
p∧q∑
r=0

r!
(

p

r

)(
q

r

)
Ip+q−2r (f ⊗̃rg). (3.5)
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We now introduce some basic elements of the Malliavin calculus with respect to
the isonormal Gaussian process W .

Let S be the set of all cylindrical random variables of the form

F = g (W(ϕ1), . . . ,W(ϕn)) , (3.6)

where n ≥ 1, g : R
n → R is an infinitely differentiable function such that its

partial derivatives have polynomial growth, and ϕi ∈ H, i = 1, . . . , n. The Malliavin
derivative of F with respect to W is the element of L2(�,H) defined as

DF =
n∑

i=1

∂g

∂xi

(W(ϕ1), . . . ,W(ϕn)) ϕi .

In particular, DW(h) = h for every h ∈ H. By iteration, one can define the mth
derivative DmF , which is an element of L2(�,H�m), for every m ≥ 2. For m ≥ 1
and p ≥ 1, Dm,p denotes the closure of S with respect to the norm ‖ · ‖m,p, defined
by the relation

‖F‖p
m,p = E

[|F |p] +
m∑

i=1

E

[
‖DiF‖p

H⊗i

]
.

We often use the (canonical) notation D
∞ := ⋂

m≥1
⋂

p≥1 D
m,p. For example, it

is a well-known fact that any random variable F that is a finite linear combination
of multiple Wiener–Itô integrals is an element of D∞. The Malliavin derivative D

obeys the following chain rule. If φ : Rn → R is continuously differentiable with
bounded partial derivatives and if F = (F1, . . . , Fn) is a vector of elements of D1,2,
then φ(F ) ∈ D

1,2 and

D φ(F) =
n∑

i=1

∂φ

∂xi

(F )DFi. (3.7)

Note also that a random variable F as in (3.2) is in D
1,2 if and only if∑∞

q=1 q‖JqF‖2
L2(�)

< ∞ and in this case one has the following explicit relation:

E

[
‖DF‖2

H

]
=

∞∑
q=1

q‖JqF‖2
L2(�)

.

If H = L2(A,A, μ) (with μ nonatomic), then the derivative of a random variable F

as in (3.2) can be identified with the element of L2(A × �) given by

DtF =
∞∑

q=1

qIq−1
(
fq(·, t)) , t ∈ A. (3.8)

The operator L, defined as L = ∑∞
q=0 −qJq , is the infinitesimal generator of

the Ornstein–Uhlenbeck semigroup. The domain of L is

DomL = {F ∈ L2(�) :
∞∑

q=1

q2
∥∥JqF

∥∥2
L2(�)

< ∞} = D
2,2.
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For any F ∈ L2(�), we define L−1F = ∑∞
q=1 − 1

q
Jq(F ). The operator L−1 is

called the pseudoinverse of L. Indeed, for any F ∈ L2(�), we have that L−1F ∈
DomL = D

2,2, and
LL−1F = F − E(F ). (3.9)

The following infinite dimensional Malliavin integration by parts formula plays a
crucial role in the analysis (see, for instance, [66, Section 2.9] for a proof).

Lemma 3.1. Suppose that F ∈ D
1,2 and G ∈ L2(�). Then, L−1G ∈ D

2,2 and

E[FG] = E[F ]E[G] + E[〈DF,−DL−1G〉H]. (3.10)

Inspired by the Malliavin integration by parts formula appearing in Lemma 3.1,
we now introduce a class of iterated Gamma operators. We will need such operators
in Section 6.

Definition 3.2 (See Chapter 8 in [66]). Let F ∈ D
∞; the sequence of random vari-

ables {�i(F )}i≥0 ⊂ D
∞ is recursively defined as follows. Set �0(F ) = F and, for

every i ≥ 1,
�i(F ) = 〈DF,−DL−1�i−1(F )〉H.

Definition 3.3 (Cumulants). Let F be a real-valued random variable such that
E|F |m < ∞ for some integer m ≥ 1, and write ϕF (t) = E[eitF ], t ∈ R, for the
characteristic function of F . Then, for r = 1, . . . , m, the rth cumulant of F , denoted
by κr(F ), is given by

κr(F ) = (−i)r
dr

dtr
log ϕF (t)|t=0. (3.11)

Remark 3.4. When E(F ) = 0, then the first four cumulants of F are the following:
κ1(F ) = E[F ] = 0, κ2(F ) = E[F 2] = Var(F ), κ3(F ) = E[F 3], and

κ4(F ) = E[F 4] − 3E[F 2]2.

The following statement explicitly connects the expectation of the random vari-
ables �r(F ) to the cumulants of F .

Proposition 3.5 (See Chapter 8 in [66]). Let F ∈ D
∞. Then κr(F ) =

(r − 1)!E[�r−1(F )] for every r ≥ 1.

As announced, in the next subsection we show how to use the above Malliavin
machinery in order to study the Stein’s bounds presented in Section 2.

3.2 Connection with Stein’s method

Let F ∈ D
1,2 with E[F ] = 0 and E[F 2] = 1. Take a C1 function such that

‖f ‖ ≤
√

π
2 and ‖f ′‖ ≤ 2. Using the Malliavin integration by parts formula stated in

Lemma 3.1 together with the chain rule (3.7), we can write∣∣∣E[f ′(F ) − Ff (F )]
∣∣∣ =

∣∣∣E[f ′(F )
(

1 − 〈DF,−DL−1F 〉H
)
]
∣∣∣

≤ 2E
∣∣∣1 − 〈DF,−DL−1F 〉H

∣∣∣. (3.12)
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If we furthermore assume that F ∈ D
1,4, then the random variable 1 −

〈DF,−DL−1F 〉H is square-integrable, using the Cauchy–Schwarz inequality we in-
fer that ∣∣∣E[f ′(F ) − Ff (F )]

∣∣∣ ≤ 2
√

Var
(〈DF,−DL−1F 〉H

)
.

Note that in above we used the fact that E[〈DF,−DL−1F 〉H] = E[F 2] = 1. The
above arguments combined with Lemma 2.1 yield immediately2 the next crucial
statement, originally proved in [64].

Theorem 3.6. Let F ∈ D
1,2 be a generic random element with E[F ] = 0 and

E[F 2] = 1. Let N ∼ N (0, 1). Assume further that F has a density with respect to
the Lebesgue measure. Then,

dT V (F,N) ≤ 2E
∣∣∣1 − 〈DF,−DL−1F 〉H

∣∣∣.
Moreover, assume that F ∈ D

1,4, then

dT V (F,N) ≤ 2
√

Var
(〈DF,−DL−1F 〉H

)
.

In particular case, if F = Iq(f ) belongs to the Wiener chaos of order q ≥ 2, then

dT V (F,N) ≤ 2

√
q − 1

3q

(
E[F 4] − 3

)
. (3.13)

Note that, by virtue of Lemma 2.1, similar bounds can be immediately obtained
for the Wasserstein distance dW (and many more – see [66, Chapter 5]). In particular,
the previous statement allows one to recover the following central limit theorem for
chaotic random variables, first proved in [80].

Corollary 3.7 (Fourth Moment Theorem). Let {Fn}n≥1 = {Iq(fn)}n≥1 be a sequence
of random elements in a fixed Wiener chaos of order q ≥ 2 such that E[F 2

n ] =
q!‖fn‖2 = 1. Assume that N ∼ N (0, 1). Then, as n tends to infinity, the following
assertions are equivalent.

(I) Fn −→ N in distribution.

(II) E[F 4
n ] −→ 3 (= E[N4]).

As demonstrated by the webpage [1], the ‘fourth moment theorem’ stated in
Corollary 3.7 has been the starting point of a very active line of research, composed
of several hundred papers connected with disparate applications. In the next section,
we will implicitly provide a general version of Theorem 3.6 (with the 1-Wasserstein
distance replacing the total variation distance), whose proof relies only on the spec-
tral properties of the Ornstein–Uhlenbeck generator L and on the so-called � calculus
(see, e.g., [18]).

2This is not completely accurate: attention has indeed to be paid to the fact that the function fh in (2.7)
is only almost everywhere differentiable, and F does not necessarily have a density – see [60, Theorem
5.2] for a detailed proof based on the Lusin theorem.
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4 The Markov triple approach

In this section, we introduce a general framework for studying and generalizing the
fourth moment phenomenon appearing in the statement of Corollary 3.7. The forth-
coming approach was first introduced in [52] by M. Ledoux, and then further devel-
oped and generalised in [5, 8].

4.1 Diffusive fourth moment structures

We start with definition of our general setup.

Definition 4.1. A diffusive fourth moment structure is a triple (E,μ, L) such that:

(a) (E,μ) is a probability space;

(b) L is a symmetric unbounded operator defined on some dense subset of
L2(E,μ), that we denote by D(L) (the set D(L) is called the domain of L);

(c) the associated carré-du-champ operator � is a symmetric bilinear operator,
and is defined by

2� [X, Y ] := L [XY ] − XL [Y ] − YL [X] ; (4.1)

(d) the operator L is diffusive, meaning that, for any C2
b function ϕ : R → R, any

X ∈ D(L), it holds that ϕ(X) ∈ D(L) and

L [ϕ(X)] = ϕ′(X)L[X] + ϕ′′(X)�[X,X]; (4.2)

Note that L[1] = 0 (by taking ϕ = 1 ∈ C2
b ). The latter property is equivalent to

say that the operator � satisfies the chain rule:

� [ϕ(X),X] = ϕ′(X)�[X,X];

(e) the operator −L diagonalizes the space L2(E,μ) with sp(−L) = N, meaning
that

L2(E,μ) =
∞⊕
i=0

Ker(L + iId);

(f) for any pair of eigenfunctions (X, Y ) of the operator −L associated with the
eigenvalues (p1, p2),

XY ∈
⊕

i≤p1+p2

Ker (L + iId) . (4.3)

In this context, we usually write �[X] instead of �[X,X] and E denotes the inte-
gration against probability measure μ.

Remark 4.2. (1) Property (d) together with symmetric property of the operator L
determine a functional calculus through the following fundamental integration
by parts formula: for any X, Y in D(L) and ϕ ∈ C2

b ,

E
[
ϕ′(X)� [X, Y ]

] = −E [ϕ(X)L [Y ]] = −E [YL [ϕ(X)]] . (4.4)



Malliavin–Stein method: a survey of some recent developments 151

(2) The results in this section can be stated under the weaker assumption that
sp(−L) = {0 = λ0 < λ1, . . . , λk < · · · } ⊂ R+ is discrete. However, to keep a
transparent presentation, we restrict ourselves to the assumption sp(−L) = N.
The reader is referred to [5] for further details.

(3) We point out that, by a recursive argument, assumption (4.3) yields that for any
X ∈ Ker(L + pId) and any polynomial P of degree m, we have

P(X) ∈
⊕
i≤mp

Ker (L + iId) . (4.5)

(4) The eigenspaces of a diffusive fourth moment structure are hypercontractive
(see [10] for details and sufficient conditions), that is, there exists a constant
C(M, k) such that for any X ∈ ⊕

i≤M Ker (L + iId):

E(X2k) ≤ C(M, k) E(X2)k. (4.6)

(5) Property (f) in the previous definition roughly implies that eigenfunctions of
L in a diffusive fourth moment structure behave like orthogonal polynomials
with respect to multiplication.

For further details on our setup, we refer the reader to [18] as well as [5, 8]. The
next example describes some diffiusive fourth moment structures. The reader can
consult [8, Section 2.2] for two classical methods for building further diffusive fourth
moment structures starting from known ones.

Example 4.3. (a) Finite-Dimensional Gaussian Structures: Let d ≥ 1 and de-
note by γd the d-dimensional standard Gaussian measure on R

d . It is well
known (see, for example, [18]), that γd is the invariant measure of the Ornstein–
Uhlenbeck generator, defined for any test function ϕ by

Lϕ(x) = 
ϕ −
d∑

i=1

xi∂iϕ(x). (4.7)

Its spectrum is given by −N0 and the eigenspaces are of the form

Ker(L + kId) =
⎧⎨⎩ ∑

i1+i2+···+id=k

α(i1, . . . , id )

d∏
j=1

Hij (xj )

⎫⎬⎭ ,

where Hn denotes the Hermite polynomial of order n. Since, eigenfunctions of
L are multivariate polynomials so it is straightforward to see that assumption
(f) is also verified.

(b) Wiener space and isonormal processes: Letting d → ∞ in the setup of
the previous item (a) one recovers the infinite dimensional generator of the
Ornstein–Uhlenbeck semigroup for isonormal processes, as defined in Sec-
tion 3.1. It is easily verified in particular, by using (3.5), that (�,F , L) is
also a diffusive fourth moment structure.
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(c) Laguerre Structure: Let ν ≥ −1, and π1,ν(dx) = xν−1 e−x

�(ν)
1(0,∞)dx be the

Gamma distribution with parameter ν on R+. The associated Laguerre genera-
tor is defined for any test function ϕ (in dimension one) by

L1,ν(ϕ) = xϕ′′(x) + (ν + 1 − x)ϕ′(x). (4.8)

By a classical tensorization procedure, we obtain the Laguerre generator in
dimension d associated with the measure

πd,ν(dx) = π1,ν(dx1)π1,ν(dx2) · · · π1,ν(dxd),

where x = (x1, x2, . . . , xd):

Ld,ν(ϕ) =
d∑

i=1

(
xi∂i,iϕ + (ν + 1 − xi)∂iϕ

)
. (4.9)

It is also classical that (see, for example, [18]) the spectrum of Ld,ν is given
by −N0 and moreover that

Ker(Ld,p + kId) =
⎧⎨⎩ ∑

i1+i2+···+id=k

α(i1, . . . , id )

d∏
j=1

L
(ν)
ij

(xj )

⎫⎬⎭ , (4.10)

where L
(ν)
n stands for the Laguerre polynomial of order n with parameter ν

which is defined by

L(ν)
n (x) = x−νex

n!
dn

dxn

(
e−xxn+ν

)
.

In the next subsection, we demonstrate how a diffusive fourth moment structure
can be combined with the tools of � calculus, in order to deduce substantial general-
izations of Theorem 3.6.

4.2 Connection with � calculus

Throughout this section, we assume that (E,μ, L) is a diffiusive fourth moment
structure. Our principal aim is to prove a fourth moment criterion analogous to that
of (3.13) for eigenfunctions of the operator L. To do this, we assume that X ∈
Ker(L + qId) for some q ≥ 1 with E[X2] = 1. The arguments implemented in
the proof will clearly demonstrate that requirements (d) and (f) in Definition 4.1 are
the most crucial elements in order to establish our estimates.

Proposition 4.4. Let q ≥ 1. Assume that X ∈ Ker(L + qId) with E[X2] = 1. Then,

Var (�[X]) ≤ q2

3

{
E[X4] − 3

}
.
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Proof. First note that by using integration by parts formula (4.4), we have E[�[X]] =
−E[XLX] = qE[X2] = q. Secondly, by using the definition of the carré-du-champ
operator � and the fact that LX = −qX, one easily verifies that

�[X] − q = 1

2
(L + 2qId) (X2 − 1).

Next, taking into account properties (f) and (g) we can conclude that

X2 − 1 ∈
⊕

1≤i≤2q

Ker (L + iId) .

For the rest of the proof, we use the notation Ji to denote the projection of a square-
integrable element X onto the eigenspace Ker (L + iId). Now,

Var (�[X])
= E

[
(�[X] − q)2

]
= 1

4
E

[
(L + 2qId) (X2 − 1) × (L + 2qId) (X2 − 1)

]
= 1

4
E

[
L(X2 − 1) (L + 2qId) (X2 − 1)

]
+ q

2
E

[
(X2 − 1) (L + 2qId) (X2 − 1)

]
= 1

4

∑
1≤i≤2q

(−i)(2q − i)E

[(
Ji(X

2 − 1)
)2
]
+ q

2
E

[
(X2 − 1) (L + 2qId) (X2 − 1)

]
≤ q

2
E

[
(X2 − 1) (L + 2qId) (X2 − 1)

]
= qE

[
(X2 − 1)(�[X] − q)

]
= qE

[
(X2 − 1)�[X]

]
= qE

[
�[X

3

3
− X,X]

]
= −qE

[(
X3

3
− X

)
LX

]
= q2

E

[
X

(
X3

3
− X

)]
= q2

E

[
X4

3
− X2

]
= q2

3

{
E[X4] − 3

}
,

thus yielding the desired conclusion.

In order to avoid some technicalities, we now present a quantitative bound in the
1-Wasserstein distance dW (and not in the more challenging total variation distance
dT V ) for eigenfunctions of the operator L. This requires to adapt the Stein’s method
machinery presented in Section 2 to our setting, as a direct application of the integra-
tion by part formula (4.4). The arguments below are borrowed in particular from [52,
Proposition 1].

Proposition 4.5. Let (E,μ, L) be a diffiusive fourth moment structure. Assume that
X ∈ Ker(L + qId) for some q ≥ 1 with E[X2] = 1. Let N ∼ N (0, 1). Then,

dW (X,N) ≤ 2

q
Var (�[X]) 1

2 .
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Proof. For every function f of class C1 on R, with ‖f ′‖∞ ≤ 1 and f ′ ∈ Lip(2)

according to Part (b) in Lemma 2.1, it is enough to show that∣∣∣E [
f ′(X) − Xf (X)

] ∣∣∣ ≤ 2

q
Var (�[X]) 1

2 .

Since LX = −qX, and diffusivity of the operator � together with integration by parts
formula (4.4), one can write that

E
[
f ′(X) − Xf (X)

] = E

[
f ′(X) + 1

q
L(X)f (X)

]
= E

[
f ′(X) − 1

q
�[f (X),X]

]
= E

[
f ′(X) − 1

q
f ′(X)�[X]

]
= 1

q
E
[
f ′(X) (q − �[X])] .

Now, the claim follows at once by using the Cauchy–Schwarz inequality and noting
that E[�[X]] = q E[X2] = q.

We end this section with the following general version of the fourth moment the-
orem for eigenfunctions of the operator L, obtained by combining Propositions 4.4
and 4.5.

Theorem 4.6. Let (E,μ, L) be a diffiusive fourth moment structure. Assume that
X ∈ Ker(L + qId) for some q ≥ 1 with E[X2] = 1. Let N ∼ N (0, 1). Then,

dW (X,N) ≤ 2√
3

√
E[X4] − 3.

It follows that, if {Xn}n≥1 is a sequence of eigenfunctions in a fixed eigenspace
Ker(L + qId) where q ≥ 1 and E[X2

n] = 1 for all n ≥ 1, then the following im-
plication holds: E[X4

n] → 3 if and only if Xn converges in distribution towards the
standard Gaussian random variable N .

Remark 4.7. The fact that the condition E[X4
n] → 3 is necessary for convergence

to the Gaussian random variable is a direct consequence of the hypercontractive esti-
mate (4.6).

4.3 Transport distances, Stein discrepancy and � calculus

The general setting of the Markov triple together with � calculus provide a suit-
able framework to study functional inequalities such as the classical logarithmic
Sobolev inequality or the celebrated Talagrand quadratic transportation cost in-
equality. For simplicity, here we restrict ourselves to the setting of Wiener structure
and the Gaussian measure to be our reference measure. The reader may consult refer-
ences [53, 54] for a presentation of the general setting, and [72, 73] for some previous
references connecting fourth moment theorems and entropic estimates.

Let d ≥ 1, and dγ (x) = (2π)− d
2 e− |x|

2 dx be the standard Gaussian measure
on R

d . Assume that dν = hdγ is a probability measure on R
d with a (smooth)

density function h : R
d → R+ with respect to the Gaussian measure γ . Inspired
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from Gaussian integration by parts formula we introduce first the crucial notion of a
Stein kernel τν associated with the probability measure ν and, then, the concept of
Stein discrepancy.

Definition 4.8. (a) A measurable matrix-valued map τν on R
d is called a Stein kernel

for the centered probability measure ν if for every smooth test function φ : Rd → R,∫
Rd

x · ∇φdν =
∫
Rd

〈τν, Hess(φ)〉HSdν,

where Hess(φ) stands for the Hessian of φ, and 〈 , 〉HS, and ‖ , ‖HS denote the usual
Hilbert–Schmidt scalar product and norm, respectively.
(b) The Stein discrepancy of ν with respect to γ is defined as

S(ν, γ ) = inf
( ∫

Rd

‖τν − Id‖2
HSdν

) 1
2

where the infimum is taken over all Stein kernels of ν, and takes the value +∞ if a
Stein kernel for ν does not exist.

We recall that the Stein kernel τν is uniquely defined in dimension d = 1, and that
unicity may fail in higher dimensions d ≥ 2, see [73, Appendix A]. Also, τγ = Idd×d

is the identity matrix. We further refer to [40, 25] for existence of the Stein kernel in
general settings. The interest of the Stein’s discrepancy comes, e.g., from the fact that
– as a simple application of Stein’s method –

dT V (ν, γ ) ≤ 2
∫
R

|τν − 1|dν ≤ 2
( ∫

R

|τν − 1|2dν
) 1

2
,

yielding that dT V (ν, γ ) ≤ 2 S(ν, γ ); see [53] for further details.
Next, we need the notion of Wasserstein distance. Let p ≥ 1. Given two probabil-

ity measures ν and μ on the Borel sets of Rd , whose marginals have finite moments
of order p, we define the p-Wasserstein distance between ν and μ as

Wp(ν, μ) = inf
π

( ∫
Rd×Rd

|x − y|pdπ(x, y)
) 1

p

where the infimum is taken over all probability measures π of Rd×R
d with marginals

ν and μ; note that W1 = dW , as defined in Section 2.
We recall that, for a measure ν = hγ with a smooth density function h on R

d ,

H(ν, γ ) :=
∫
Rd

h log hdγ = Entγ (h)

is the relative entropy of the measure ν with respect to γ , and

I(ν, γ ) :=
∫
Rd

|∇h|2
h

dγ

is the Fisher information of ν with respect to γ . After having established these
notions, we can state two popular probabilistic/entropic functional inequalities:
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(i) [Logarithmic Sobolev inequality]: H(ν, γ ) ≤ 1
2 I(ν, γ ).

(ii) [Talagrand quadratic transportation cost inequality]:

W2
2(ν, γ ) ≤ 2 H(ν, γ ).

The next theorem is borrowed from [53], and represents a significant improve-
ment of the previous logarithmic Sobolev and Talagrand inequalities based on the use
of Stein discrepancies: the techniques used in the proof are based on an interpolation
argument along the Ornstein–Uhlenbeck semigroup. The theorem establishes connec-
tions between the relative entropy H, the Stein discrepancy S, the Fisher information
I , and the Wasserstein distance W , customarily called the HSI and the WSH inequal-
ities. The reader is also referred to the recent works [40, 25, 89] for related estimates
of the Stein discrepancy based on the use of Poincaré inequalities, as well as on op-
timal transport techniques. See [15] for a further amplification of the approach of
[53], with applications to the quantitative multidimensional CLT in the 2-Wasserstein
distance. See also [33].

Theorem 4.9. Let dν = hdγ be a centered probability measure on R
d with smooth

density function h with respect to the standard Gaussian measure γ .

(1) Then the following Gaussian HSI inequality holds:

H(ν, γ ) ≤ 1

2
S2(ν, γ ) log

(
1 + I(ν, γ )

S2(ν, γ )

)
.

(2) Assume further that S(ν, γ ) and H(ν, γ ) are both positive and finite. Then, the
following Gaussian WSH inequality holds:

W2(ν, γ ) ≤ S(ν, γ ) arccos

(
e
− H(ν,γ )

S2(ν,γ )

)
.

The next subsection deals with the challenging problem of quantitative proba-
bilistic approximations in infinite dimension.

4.4 Functional approximations and Dirichlet structures

Although Stein’s method is already successfully used for quantifying functional limit
theorems of the Donsker type (see [11, 12], as well as [34, 35, 45, 91] for a discus-
sion of recent developments), the general problem of assessing the discrepancy be-
tween probability distributions on infinite-dimensional spaces (like, e.g., on classes
of smooth functions or on the Skorohod space) is essentially open.

In the last years a new direction of research has emerged, where the ideas be-
hind the Malliavin–Stein approach are applied in the framework of Dirichlet struc-
tures, in order to deal with quantitative estimates on the probabilistic approximation
of Hilbert space-valued random variables. A general (and impressive!) contribution
on the matter is the recent work by Bourguin and Campese [17], where the authors
are able to retrieve several Hilbert space counterparts of the finite-dimensional results
discussed in Section 3 above. Bourguin and Campese’s approach (whose discussion
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requires preliminaries that go beyond the scope of our survey) represents a substantial
addition to a line of investigation intiated by L. Coutin and L. Decreusefond in the
seminal works [26, 29, 27, 28, 30].

As a quick illustration, we conclude the section with two representative state-
ments, taken from [26, 30] and [29], respectively.

Theorem 4.10 (See [26] and Section 3.2 in [30]). Let (Nλ(t) : t ≥ 0) be a Poisson
process with intensity λ. Then, as λ → ∞,(

Nλ(t) − λt√
λ

: t ≥ 0

)
=⇒ (B(t) : t ≥ 0)

where the convergence takes place weakly in the Skorohkod space. Moreover, for
every β < 1

2 consider the so-called Besov–Liouville space Iβ,2,

Iβ,2 =
{
f : ∃ ḟ , f (x) = 1

�(β)

∫ x

0
(x − t)β−1ḟ (t)dt

}
.

Let μβ denote the Wiener measure on the space Iβ,2, and Qλ be the probability
measure induced by (Nλ(t) : t ≥ 0) . Then, there exists a constant cβ such that

sup
‖F‖

C2
b
(Iβ,2,R)

≤1

∣∣∣ ∫ FdQλ −
∫

Fdμβ

∣∣∣ ≤ cβ√
λ

where C2
b(Iβ,2,R) is the set of twice Fréchet differentiable functionals on Iβ,2.

The next result aims to provide a rate of convergence in the Donsker theorem in
Wasserstein distance. Let η ∈ (0, 1), p ≥ 1. Define the fractional Sobolev space Wη,p

as the closure of the space C1 w.r.t. norm

‖f ‖p
η,p :=

∫ 1

0
|f (t)|pdt +

∫ 1

0

∫ 1

0

|f (t) − f (s)|p
|t − s|1+pη

dsdt.

Also, for n ≥ 1, define An = {(k, j) : 1 ≤ k ≤ d, 0 ≤ j ≤ n − 1}, and let

Sn =
∑

(k,j)∈An

X(k,j)h
n
(k,j), hn

(k,j)(t) = √
n

∫ t

0
1[j/n,(j+1)/n](s)ds ek

where (ek) : 1 ≤ k ≤ d is the canonical basis of R
d , and (X(k,j), (k, j) ∈ An)

is a family of independent identically distributed, Rd -valued, random variables with
E[X] = 0, and E‖X‖2

Rd = 1, where X is a random variable which has their common
distribution.

Theorem 4.11 (See Section 3 in [29]). Let W = Wη,p

([0, 1],Rd
)
, and μη,p be the

law of the d-dimensional Brownian motion B on the space W . Then, there exists a
constant c such that for X ∈ Lp(W ;Rd, μη,p) with p ≥ 3,

sup
F∈Lip1(Wη,p)

∣∣∣E[F(Sn)] − E[F(B)]
∣∣∣ ≤ c ‖X‖p

Lp n− 1
6 + η

3 ln n
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where

Lip1(Wη,p) :=
{
F : Wη,p → R

d : ‖F(x)−F(y)‖Rd ≤ ‖x −y‖η,p, ∀x, y ∈ Wη,p

}
.

Further applications of the Malliavin–Stein techniques in the framework of Dirich-
let structures are contained in [32, 31]. The next section focuses on a discrete Markov
structure for which exact fourth moment estimates are available.

5 Bounds on the Poisson space: fourth moments, second-order Poincaré esti-
mates and two-scale stabilization

We will now describe a nondiffusive Markov triple for which a fourth moment re-
sult analogous to Proposition 4.5 holds. Such a Markov triple is associated with the
space of square-integrable functionals of a Poisson measure on a general pair (Z,Z ),
where Z is a Polish space and Z is the associated Borel σ -field. The requirement that
Z is Polish – together with several other assumptions adopted in the present section
– is made in order to simplify the discussion; the reader is referred to [37, 38] for
statements and proofs in the most general setting. See also [50, 51] for an exhaustive
presentation of tools of stochastic analysis for functionals of Poisson processes, as
well as [81] for a discussion of the relevance of variational techniques in the frame-
work of modern stochastic geometry.

5.1 Setup

Let μ be a nonatomic σ -finite measure on (Z,Z ), and set Zμ := {B ∈ Z : μ(B) <

∞}. In what follows, we will denote by

η = {η(B) : B ∈ Z }
a Poisson measure on (Z,Z ) with control (or intensity) μ. This means that η is a
random field indexed by the elements of Z , satisfying the following two properties:
(i) for every finite collection B1, . . . , Bm ∈ Z of pairwise disjoint sets, the random
variables η(B1), . . . , η(Bm) are stochastically independent, and (ii) for every B ∈ Z ,
the random variable η(B) has the Poisson distribution with mean μ(B).3 Whenever
B ∈ Zμ, we also write η̂(B) := η(B) − μ(B) and denote by

η̂ = {η̂(B) : B ∈ Zμ}
the compensated Poisson measure associated with η. Throughout this section, we
assume that F = σ(η).

It is a well-known fact that one can regard the Poisson measure η as a random
element taking values in the space Nσ = Nσ (Z) of all σ -finite point measures χ on
(Z,Z ) that satisfy χ(B) ∈ N0 ∪ {+∞} for all B ∈ Z . Such a space is equipped
with the smallest σ -field Nσ := Nσ (Z) such that, for each B ∈ Z , the mapping

3Here, we adopt the usual convention of identifying a Poisson random variable with mean zero (resp.
with infinite mean) with an a.s. zero (resp. infinite) random variable.
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Nσ � χ �→ χ(B) ∈ [0,+∞] is measurable. In view of our assumptions on Z and
following, e.g., [51, Section 6.1], throughout the paper we can assume without loss of
generality that η is proper, in the sense that η can be P -a.s. represented in the form

η =
η(Z)∑
n=1

δXn, (5.1)

where {Xn : n ≥ 1} is a countable collection of random elements with values in Z and
where we write δz for the Dirac measure at z. Since we assume μ to be nonatomic,
one has that Xk �= Xn for every k �= n, P -a.s.

Now denote by F(Nσ ) the class of all measurable functions f : Nσ → R and by
L0(�) := L0(�,F ) the class of real-valued, measurable functions F on �. Note
that, as F = σ(η), each F ∈ L0(�) has the form F = f(η) for some measurable
function f. This f, called a representative of F , is Pη-a.s. uniquely defined, where
Pη = P ◦ η−1 is the image measure of P under η. Using a representative f of F , one
can introduce the add-one-cost operator D+ = (D+

z )z∈Z on L0(�) as follows:

D+
z F := f(η + δz) − f(η) , z ∈ Z. (5.2)

Similarly, we define D− on L0(�) as

D−
z F := f(η) − f(η − δz) , if z ∈ supp(η) , and D−

z F := 0, otherwise, (5.3)

where supp(χ) := {
z ∈ Z : for all A ∈ Z s.t.z ∈ A: χ(A) ≥ 1

}
is the support of

the measure χ ∈ Nσ . We call −D− the remove-one-cost operator associated with η.
We stress that the definitions of D+F and D−F are, respectively, P ⊗ μ-a.e. and P -
a.s. independent of the choice of the representative f – see, e.g., the discussion in [37,
Section 2] and the references therein. Note that the operator D+ can be straightfor-
wardly iterated as follows: set D(1) := D+ and, for n ≥ 2 and z1, . . . , zn ∈ Z and
F ∈ L0(�), recursively define

D(n)
z1,...,zn

F := D+
z1

(
D(n−1)

z2,...,zn
F
)
.

5.2 L1 integration by parts

One of the most fundamental formulae in the theory of Poisson processes is the so-
called Mecke formula stating that, for each measurable function h : Nσ × Z →
[0,+∞], the identity

E

[∫
Z

h(η + δz, z)μ(dz)

]
= E

[∫
Z

h(η, z)η(dz)

]
(5.4)

holds true. In fact, the equation (5.4) characterizes the Poisson process, see [51, Chap-
ter 4] for a detailed discussion. Such a formula can be used in order to define an
(approximate) integration by parts formula on the Poisson space.

For random variables F,G ∈ L0(�) such that D+F D+G ∈ L1(P ⊗ μ), we
define

�0(F,G) := 1

2

{∫
Z

(D+
z FD+

z G)μ(dz) +
∫

Z

(D−
z FD−

z G) η(dz)

}
(5.5)
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which verifies E[|�0(F,G)|] < ∞, and E[�0(F,G)] = E[∫
Z
(D+

z FD+
z G)μ(dz)],

in view of the Mecke formula. The following statement, taken from [37], can be re-
garded as an integration by parts formula in the framework of Poisson random mea-
sures, playing a role similar to that of Lemma 3.1 in the setting of Gaussian fields. It
is an almost direct consequence of (5.4).

Lemma 5.1 (L1 integration by parts). Let G,H ∈ L0(�) be such that

GD+H, D+GD+H ∈ L1(P ⊗ μ).

Then,

E

[
G

(∫
Z

D+
z H μ(dz) −

∫
Z

D−
z H η(dz)

)]
= −E[�0(G,H)]. (5.6)

5.3 Multiple integrals
For an integer p ≥ 1 we denote by L2(μp) the Hilbert space of all square-integrable
and real-valued functions on Zp and we write L2

s (μ
p) for the subspace of those

functions in L2(μp) which are μp-a.e. symmetric. Moreover, for ease of notation, we
denote by ‖·‖2 and 〈·, ·〉2 the usual norm and scalar product on L2(μp) for whatever
value of p. We further define L2(μ0) := R. For f ∈ L2(μp), we denote by Ip(f ) the
multiple Wiener–Itô integral of f with respect to η̂. If p = 0, then, by convention,
I0(c) := c for each c ∈ R. Now let p, q ≥ 0 be integers. The following basic
properties are proved, e.g., in [50], and are analogous to the properties of multiple
integrals in a Gaussian framework, as discussed in Section 3.1:

1. Ip(f ) = Ip(f̃ ), where f̃ denotes the canonical symmetrization of f ∈
L2(μp);

2. Ip(f ) ∈ L2(P ), and E
[
Ip(f )Iq(g)

] = δp,q p! 〈f̃ , g̃〉2, where δp,q denotes the
Kronecker delta symbol.

As in the Gaussian framework of Section 3.1, for p ≥ 0 the Hilbert space con-
sisting of all random variables Ip(f ), f ∈ L2(μp), is called the p-th Wiener chaos
associated with η, and is customarily denoted by Cp. It is a crucial fact that every
F ∈ L2(P ) admits a unique representation

F = E[F ] +
∞∑

p=1

Ip(fp) , (5.7)

where fp ∈ L2
s (μ

p), p ≥ 1, are suitable symmetric kernel functions, and the series
converges in L2(P ). Identity (5.7) is the analogue of relation (3.2), and is once again
referred to as the chaotic decomposition of the functional F ∈ L2(P ).

The multiple integrals discussed in this section also enjoy multiplicative prop-
erties similar to formula (3.5) above – see, e.g., [50, Proposition 5] for a precise
statement. One consequence of such product formulae is that, if F ∈ Cp and G ∈ Cq

are such that FG is square-integrable, then

FG ∈
p+q⊕
r=0

Cr, (5.8)

which can be seen as a property analogous to (4.3).
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5.4 Malliavin operators
We now briefly discuss Malliavin operators on the Poisson space.

1. The domain dom D of the Malliavin derivative operator D is the set of all
F ∈ L2(P ) such that the chaotic decomposition (5.7) of F satisfies∑∞

p=1 p p!‖fp‖2
2 < ∞. For such an F , the random function Z � z �→ DzF ∈

L2(P ) is defined via

DzF =
∞∑

p=1

pIp−1
(
fp(z, ·)) , (5.9)

whenever z is such that the series is converging in L2(P ) (this happens μ-a.e.),
and set to zero otherwise; note that fp(z, ·) is an a.e. symmetric function on
Zp−1. Hence, DF = (DzF )z∈Z is indeed an element of L2

(
P ⊗ μ

)
. It is

well-known that F ∈ dom D if and only if D+F ∈ L2
(
P ⊗μ

)
, and in this case

DzF = D+
z F, P ⊗ μ-a.e. (5.10)

2. The domain dom L of the Ornstein–Uhlenbeck generator L is the set of
those F ∈ L2(P ) whose chaotic decomposition (5.7) verifies the condition∑∞

p=1 p2 p!‖fp‖2
2 < ∞ (so that dom L ⊂ dom D) and, for F ∈ dom L, one

defines

LF = −
∞∑

p=1

pIp(fp) . (5.11)

By definition, E[LF ] = 0; also, from (5.11) it is easy to see that L is symmet-
ric, in the sense that

E
[
(LF)G

] = E
[
F(LG)

]
for all F,G ∈ dom L. Note that, from (5.11), it is immediate that the spectrum
of −L is given by the nonnegative integers and that F ∈ dom L is an eigen-
function of −L with corresponding eigenvalue p if and only if F = Ip(fp) for
some fp ∈ L2

s (μ
p), that is:

Cp = Ker(L + pI).

The following identity corresponds to formula (65) in [50]: if F ∈ dom L is
such that D+F ∈ L1(P ⊗ μ), then

LF =
∫
Z

(
D+

z F
)
μ(dz) −

∫
Z

(
D−

z F
)
η(dz) . (5.12)

Define for any F ∈ L2(P ) the pseudoinverse L−1 by

L−1F = −
∞∑

p=1

1

p
Ip(fp).

Recall [50, Section 8] the covariance identity

Cov(F,G) = −
∫

E[DzGDzL−1F ]μ(dz). (5.13)
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3. For suitable random variables F,G ∈ dom L such that FG ∈ dom L, we
introduce the carré du champ operator � associated with L by

�(F,G) := 1

2

(
L(FG) − FLG − GLF

)
. (5.14)

The symmetry of L implies immediately the crucial integration by parts for-
mula

E
[
(LF)G

] = E
[
F(LG)

] = −E
[
�(F,G)

]; (5.15)

we will see below that, for many random variables F , G, relation (5.15) is
indeed the same as identity appearing in Lemma 5.1.

The following result – proved in [37] – provides an explicit representation of the
carré-du-champ operator � in terms of �0, as introduced in (5.5).

Proposition 5.2. For all F,G ∈ dom L such that FG ∈ dom L and

DF, DG, FDG, GDF ∈ L1(P ⊗ μ),

we have that DF = D+F , DG = D+G, in such a way that DF DG=D+F D+G∈
L1(P ⊗ μ), and

�(F,G) = �0(F,G), (5.16)

where �0 is defined in (5.5).

One crucial consequence of this result is that the operator � is not diffusive, in the
sense that the triple (�, P, L) is not a diffusive fourth moment structure, as introduced
in Definition 4.1; it follows in particular that the machinery of Section 4 cannot be
directly applied.

5.5 Fourth moment theorems

Starting at least from the reference [83] (where Malliavin calculus and Stein’s method
were first combined on the Poisson space), the establishing a fourth moment bound
similar to Theorem 4.6 on the Poisson space has been an open problem for several
years. As recalled above, the main difficulty in achieving such a result is the discrete
nature of add-one-cost and remove-one-cost operators, preventing in particular the
triple (�, P, L) from enjoying a diffusive property.

The next statement contains one of the main bounds proved in [38], and shows that
a quantitative fourth moment bound is available on the Poisson space. Such a bound
(which also has a multidimensional extension) is proved by a clever combination of
Malliavin-type techniques with an infinitesimal version of the exchangeable pairs
approach toward Stein’s method – see, e.g., [23].

Theorem 5.3. For q ≥ 2, let F = Iq(fq) be a multiple integral of order q with
respect to η̂, and assume that E[F 2] = 1. Then,

dW (F,N) ≤
(√

2

π
+ 4

3

)√
E[F 4] − 3.
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One should notice that the first bound of this type was proved in [37] under
slightly more restrictive assumptions; also, reference [37] contains analogous bounds
in the Kolmogorov distance, that are not achievable by using exchangeable pairs. In
particular, one of the key estimates used in [37] is the following remarkable equality
and bound

1

2q

∫
Z

E
[|D+

z F |4]μ(dz)= 3

q
E
[
F 2�(F, F )

]−E
[
F 4]≤ 4q − 3

2q

(
E
[
F 4]−3E[F 2]2

)
,

that are valid for every F ∈ Cq , q ≥ 2, such that the mapping z �→ D+
z F verifies

some minimal integrability conditions.

5.6 Second-order Poincaré estimates

What one calls second-order Poincaré inequalities is a collection of analytic esti-
mates (first established on the Poisson space in [55]) where the Wasserstein and Kol-
mogorov distances, between a given function of η and a Gaussian random variable,
are bounded by integrated moments of iterated add-one-cost operators on the Pois-
son space. The rationality behind such a name is the following. Just as the Poincaré
inequality

Var(F ) ≤
∫

Z

E[(D+
z F )2]μ(dz), (5.17)

controls the variance of a random variable F by means of integrated moments of the
add-one cost (see [51, Section 18.3]), the integrated moments of second-order add-
one-cost D+

x D+
y F := D2

z,yF controll the discrepancy between the distribution of
F and that of a Gaussian random variable – a phenomenon already observed in the
Gaussian setting [21, 70, 96], where gradients typically replace add-one-cost opera-
tors.

For the rest of the section, we exclusively consider square-integrable random vari-
ables F such that F ∈ dom D, in such a way that D+F = DF (up to negligible sets).
The starting point for proving second-order Poincaré estimates is the covariance iden-
tity (5.13), which can be proved as in the Gaussian setting by means of chaos expan-
sions. When one combines Stein’s method with such a formula, it is however not pos-
sible to deduce the existence of a Stein kernel as in the Gaussian setting (see (3.12)),
since Malliavin operators on a Poisson space do not enjoy an exact chain rule such
as (3.7). Indeed, we have that, for sufficiently smooth mapping f : R → R,

Cov(F, f (F )) = −
∫

E[Dz(f (F ))DzL−1F ]μ(dz)

=: −
∫

E[f ′(F )DzFDzL−1F ]μ(dz) + R

where we approximate Dz(f (F )) = f (F + DzF) − f (F ) by f ′(F )DzF with the
error term

DzF

∫ 1

0
[f ′(F + tDzF ) − f ′(F )]dt
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appearing in the implicit definition of R; notice that, in general, R �= 0, thus the
previous computations do not yield the existence of a Stein kernel. Selecting f as in
Lemma 2.1-(d), one can bound the error term in the aforementioned calculation by
|DzF |2. Therefore, for F such that E[F ] = 0 and Var[F ] = 1, one has the bound

dW (F,N) ≤
√

Var
[ ∫

DzFDzL−1F ]μ(dz)
]

+
∫

E[|DzF |2|DzL−1F |]μ(dz).

Applying the Poincaré inequality (5.17) to the variance term, as well as the contrac-
tion bound [55, Lemma 3.4] for the add-one-cost

E[|DzL−1F |p] ≤ E[|DzF |p], p ≥ 1,

and analogous estimates for the iterated add-one-cost, leads to the following theorem.

Theorem 5.4 (Second-order Poincaré estimates [55]). Let F ∈ dom D be such that
E[F ] = 0 and Var[F ] = 1, and let N be a standard Gaussian random variable. Then,

dW (F,N) ≤ γ1 + γ2 + γ3,

where

γ1 := 2
[ ∫∫∫

E[(DxFDyF)2]1/2
E[(D2

x,zFD2
y,zF )2]1/2μ3(dxdydz)

]1/2
,

γ2 :=
[ ∫∫∫

E[(D2
x,zFD2

y,zF )2]μ3(dxdydz)
]1/2

,

γ3 :=
∫

E[|DxF |3]μ(dx).

As mentioned above, second-order Poincaré techniques are equally useful for ob-
taining bounds in the Kolmogorov distance – see [55], as well as [90] for a powerful
extension to the framework of multivariate normal approximations.

An example of a successful application of second-order Poincaré estimates from
[55] (to which we refer the reader for a discussion of the associated literature) is the
derivation of presumably optimal Berry–Esseen bounds for the total edge length of
the Poisson-based nearest neighbor graph. More precisely, let ηt be a Poisson point
process with intensity t > 0 on a convex compact set H ⊂ R

d . We consider the graph
with vertex set supp ηt and edge set formed by {x, y} ⊂ supp ηt when either x is the
nearest neighbor of y or the other way around. Consider the total edge length of the
graph so obtained, denoted by Lt . Then we have

dW

(Lt − E[Lt ]√
Var[Lt ] , N

)
≤ C√

t
,

where C depends only on H . We refer the reader to [55, Theorem 7.1] for a far more
general statement, and to [49] for a collection of presumably optimal bounds on the
normal approximation of exponentially stabilizing random variables (see the next
subsection).
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5.7 Stabilization theory and two-scale bounds
While the second-order Poincaré estimates can provide sharp Berry–Esseen bounds,
they are not always applicable. This is the case, for instance, for certain combinatorial
optimization statistics or connectivity functionals of the underlying Poisson process.
The problem is typically that the iterated add-one-cost of the functionals, although
well-defined almost surely, are not computationally tractable, e.g., for obtaining mo-
ment estimates.

In this section, we present an alternative collection of analytic inequalities, called
the two-scale stabilization bounds, which avoid the use of iterated add-one-cost –
they are one of the main findings from [48]; see also [22] for several related esti-
mates obtained by a discretization procedure. As their name suggests, these bounds
are closely related to the stabilization theory of Penrose and Yukich [87, 86]. Such a
theory originated from the ground-breaking central limit theorem of Kesten and Lee
[46] for the total edge weight Mn of Euclidean minimal spanning trees (MST) with
stationary Poisson points ηn in a ball of radius n ∈ N. Recall that the MST is the con-
nected graph over the vertex set ηn that minimizes its total length. Without referring
to the stochastic analysis on the Poisson space, Kesten and Lee already performed a
fine study of the add-one-cost of Mn (and not of the iterated add-one-cost) implying
some moment estimates of DxMn. Penrose and Yukich [87] extrapolated the high
level ideas from [46] and transformed them into a general theory applicable to (non-
quantitative) central limit theorems for a plethora of problems in stochastic geometry.
The theory was further extended to multivariate normal approximation by Penrose
[86]. A variant of the theory using score functionals was put forward by Baryshnikov
and Yukich [13].

We now define properly the notions of strong and weak stabilization. We assume
for concreteness that the ambient space is R

d and η is a Poisson process of unit
intensity. A Poisson functional F = F(η) is strongly stabilizing if there exists an
almost surely finite random variable R, called the stabilization radius, such that

D0F(η|BR
) = D0F(η),

where BR stands for a ball with radius R centered at the origin. Here is a simple exam-
ple. Fix r > 0 and make an edge between two points in ηn := η|Bn within distance r .
The graph G(ηn, r) so obtained is known as the Gilbert graph or the random geo-
metric graph. Then, the number F(ηn) of edges within a finite window containing
the origin has stabilization radius R = r almost surely, since D0F(η) is the number
of edges incident to the origin in G(η+δ0, r). Proving strong stabilization often relies
on combinatorial and geometric arguments in many problems of stochastic geome-
try, see [87] for a list of examples. In general situations, R is genuinely random in
contrast to the simple example given above.

To obtain central limit theorems, it actually suffices to show a weaker version of
stabilization. We say that F is weakly stabilizing if for any sequence of measurable
sets En satisfying lim inf En = R

d , we have the almost sure convergence

D0F(η|En) → 


where 
 is a random variable. It is clear that a strongly stabilizing functional is also
weakly stabilizing with 
 = D0F(η).
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Theorem 5.5 ( See [87, Theorem 3.1]). Suppose that F is weakly stabilizing and
satisfies the moment condition

sup
A

E[|D0F(η|A)|4] < ∞,

where the supremum is taken for all balls A that contain 0. Then there exists σ 2 ≥ 0,
such that

1√
Vol(Bn)

(F (ηn) − E[F(ηn)]) d→ N(0, σ 2).

It is remarkable how few assumptions one needs in order to obtain a CLT. Notice
that the limiting variance σ 2 could be 0. In [87], it was shown that σ 2 > 0 whenever 


is not a constant. Theorem 5.5 was proved by a martingale method and does not offer
insights on how fast the normalized sequence converges to normal. The latter question
was addressed in a recent preprint by Lachièze-Rey, Peccati and Yang [48]. Under
slightly strengthened conditions on the functionals, they assessed the rate of normal
approximation in Theorem 5.5. To state one of the bounds that can be deduced from
[48], we consider again the ball Bn of radius n centered at the origin, and introduce
the key quantity

ψn = ψn(An,·) := sup
x∈Bn

E[|DxF(η|Bn) − DxF(η|An,x )|], n ≥ 1,

where An,x is any measurable set indexed by n and x. In practice, we take An,x =
Bbn(x) = {y : |x − y| ≤ bn} with 1 � bn � n which is a local window of
x compared to the scale of Bn. In what follows, we accept this choice and call ψn

a two-scale discrepancy in view of this interpretation. The following result, taken
from [48], can be applied in many concrete problems in stochastic geometry.

Theorem 5.6 ([48, Corollary 1.3]). Let F̂n = Var[F(ηn)]−1/2(F (ηn) − E[F(ηn)])
with ηn = η|Bn as before. Suppose that

sup
n∈N,x∈Bn

E[|DxF(ηn)|p] < ∞

for some p > 4 and also that there exists an absolute constant b > 0 such that
Var[F(ηn)] ≥ b|Bn|. Then there exists a finite positive constant c such that

1

c
dW (F̂n,N(0, 1)) ≤ ψ

1
2 (1− 4

p
)

n +
(bn

n

) d
2
.

This theorem simplifies and extends some arguments in the proof of a quanti-
tative CLT for the minimal spanning trees by Chatterjee and Sen [22]. Analogous
Kolmogorov bounds for univariate normal approximation, and bounds for multivari-
ate normal approximation are also considered in [48]. More remarks are in order.

Remark 5.7. i) The sequence (bn) serves as a free parameter in the bound. One
should keep track of the dependence of ψn on bn and make an optimization in
the end.
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ii) For any fixed x ∈ R
d , applying the weak stabilization condition for F with two

sequences (Bn) and (Bbn(x)) (together with the translation invariance of η and
the moment assumption for the add-one-cost) yields the following convergence

E[|DxF(η|Bn) − DxF(η|Bbn (x))|] → 0.

As such, Theorem 5.6 quantifies Theorem 5.5 after uniformly strengthening the
assumptions of Theorem 5.5.

iii) When the functional is strongly stabilizing, this bound takes an even simpler
form. More precisely, we say Rx is a stabilization radius at x if

DxF(η|BR(x)) = DxF(η).

Then, applying Hölder’s inequality and the uniform moment condition for the
add-one-cost leads to the existence a positive finite c such that

ψn ≤ c sup
x∈Bn

P[Rx ≥ bn]1− 1
p .

Hence, the upper tail of Rx is relevant in the rate of normal approximation.
One may further classify the stabilization condition with regards to the decay
of the upper tail. For instance, we say that the funcitonal F is exponentially
stabilizing if Rx has a sub-exponential upper tail.

iv) There are some general methods for obtaining lower bounds of variance. For
example, one can partition the space into nonoverlapping cubes of appropriate
size then use projection method for functions of independent random variables
such as Hoeffding decomposition. Another method via chaos expansion was
given in [55, Section 5]

We mention one application where the second order Poincaré estimates do not
apply but the two-scale stabilization bounds do. Fix r > 0 and consider the number
Kn of components in the Gilbert graph G(ηn, 2r) (or equivalently the Boolean model
Or,n = ∪x∈ηnB(x, r)) as n → ∞. This corresponds to the so-called thermodynamic
regime, where the family of random sets Or = ∪x∈ηB(x, r) (unbounded analogue of
Or,n) indexed by r exhibits a phase transition at some r∗ ∈ (0,∞) defined as

r∗ = inf{r : P[0 is connected to infinity in Or ] > 0}.
We stress that the analysis of Kn is relatively involved in the critical phase due to
the co-existence of the unbounded occupied component and the unbounded vacant
component (in Oc

r ). However, the following estimate was obtained in [48] for all
r > 0 in dimension 2 using the strong stabilization bound:

dW ((Kn − E[Kn])/
√

Var[Kn], N(0, 1)) ≤ C

nβ
,

where C and β are finite positive constants. In d ≥ 3, a polylogarithmic rate was
obtained. The bottleneck of these estimates are the two-arm exponents of the critical
Boolean models which are hard to improve.
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More generally, when one considers higher dimensional topological statistics of
the Boolean model such as the Betti numbers, it may occur that strong stabilization
does not hold [98, 95, 20]. In such case, the two-scale weak stabilization bound might
be well suited for obtaining quantitative CLT’s.

6 Malliavin–Stein method for targets in the second Wiener chaos

In this section, we present a short overview of some recent developments of the
Mallaivin–Stein approach for target distributions in the second Gaussian Wiener
chaos. We also formulate some complementary conjectures. We adopt the same no-
tation as in Section 3.1 above. Let W stand for an isonormal Gaussian process on a
separable Hilbert space H. Recall that the elements in the second Wiener chaos are
random variables having the general form F = I2(f ), with f ∈ H�2. With any kernel
f ∈ H�2, we associate the following Hilbert–Schmidt operator

Af : H �→ H; g �→ f ⊗1 g.

We also write {αf,k}k≥1 and {ef,k}k≥1, respectively, to indicate the (not necessarily
distinct) eigenvalues of Af and the corresponding eigenvectors. The next proposition
gathers together some relevant properties of the elements of the second Wiener chaos
associated with W .

Proposition 6.1 (See Section 2.7.4 in [66]). Let F = I2(f ), f ∈ H�2, be a generic
element of the second Wiener chaos of W .

1. The following equality holds: F = ∑
k≥1 αf,k

(
N2

k − 1
)
, where {Nk}k≥1 is a

sequence of i.i.d. N (0, 1) random variables that are elements of the isonormal
process W , and the series converges in L2(�) and almost surely.

2. For any r ≥ 2,
κr(F ) = 2r−1(r − 1)!

∑
k≥1

αr
f,k.

3. The law of the random variable F is determined by its moments, or equiva-
lently, by its cumulants.

For the rest of the section, to avoid unnecessary complication, we consider target
distributions in the second Wiener chaos of the form

F∞ =
d∑

i=1

α∞,i (N
2
i − 1) (6.1)

where Ni ∼ N (0, 1) are i.i.d, and the coefficients (α∞,i : i = 1, . . . , d) are dis-
tinct, and α∞,i = 0 for i ≥ d + 1. We also work under the normalization as-
sumption E[F 2∞] = 1. We highlight the following particular cases: (i) α∞,i = 1
for i = 1, . . . , d , for which the target random variable F∞ reduces to a centered chi-
squared distribution with d degree of freedom (here, the Malliavin–Stein method
has been successfully implemented in a series of papers [63, 36, 64, 71, 6]); (ii) d = 2,
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and α∞,1 ×α∞,2 < 0, in which case the target random variable F∞ belongs to the so-
called Variance–Gamma class of probability distributions. We refer to [41–43, 39, 7]
for development of Stein and Malliavin–Stein methods for the Variance–Gamma dis-
tributions.

To any target distribution F∞ of the form (6.1) we attach the following polynomial

Q(x) = (
P(x)

)2 :=
(
x

d∏
i=1

(x − α∞,i )
)2

. (6.2)

It turns out that polynomials P and Q plays a major role in quantitative limit theorems
in this setup. The next result provides a (suitable) Stein operator for target distribu-
tions F∞ in the second Wiener chaos. Also, the stability phenomenon of the weak
convergence of the sequences in the second Wiener chaos is studied in [69] using
tools from complex analysis.

Theorem 6.2 (Stein characterization [3]). Let F∞ be an element of the second Wiener
chaos of the form (6.1). Assume that F is a generic centered random variable living
in a finite sum of Wiener chaoses (hence smooth in the sense of Malliavin calculus).
Then, F = F∞ (equality in distribution) if and only if E [A∞f (F )] = 0 where the
differential operator A∞ is given by

A∞f (x) :=
d+1∑
l=2

(bl − al−1x)f (d+2−l)(x) − ad+1xf (x), (6.3)

for all functions f : R → R such that A∞f (F ) ∈ L1(�) and coefficients

al := P (l)(0)

l!2l−1 , 1 ≤ l ≤ d + 1, (6.4)

bl :=
d+1∑
r=l

ar

(r − l + 1)!κr−l+2(F∞), 2 ≤ l ≤ d + 1. (6.5)

The polynomials P and Q are given by relation (6.2).

The next conjecture puts forward a non-Gaussian counterpart to the Stein’s
Lemma 2.1.

Conjecture 6.3 (Stein Universality Lemma). Let H denote an appropriate separating
(see [66, Definition C.1.1]) class of test functions. For every given test function h ∈ H
consider the associated Stein equation

A∞f (x) = h(x) − E[h(F∞)]. (6.6)

Then, equation (6.6) admits a bounded d times differentiable solution fh such that
‖f (r)

h ‖∞ < +∞ for all r = 1, . . . , d and the bounds are independent of the given
test function h.

The rest of the section is devoted to several quantitative estimates involving target
distributions in the second Wiener chaos. The first estimate is stated in terms of the
2-Wasserstein transport distance W2 (see Section 4.3 for definition). See also [47] for
several related results of a quantitative nature.
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Theorem 6.4 ([2]). Let (Fn : n ≥ 1) be a sequence of random variables belonging to
the second Wiener chaos associated to the isonormal process W so that E[F 2

n ] = 1
for all n ≥ 1. Assume that the target random variable F∞ takes the form (6.1). Define


(Fn) :=
deg(Q)∑
r=2

Q(r)(0)

r!
κr(Fn)

(r − 1)!2r−1 , (6.7)

where the polynomial Q is given by (6.2). Then, there exists a constant C > 0 (pos-
sibly depending only on the target random variable F∞ but independent of n) such
that

W2(Fn, F∞) ≤ C

(√

(Fn) +

d+1∑
r=2

|κr(Fn) − κr(F∞)|
)

. (6.8)

Example 6.5. Consider the target random variable F∞ of the form (6.1) with d = 2
and α∞,1 = −α∞,2 = 1/2. Hence, F∞ (= N1 × N2, where N1, N2 ∼ N (0, 1) are
independent and equality holds in law) belongs to the class of Variance–Gamma dis-
tributions V Gc(r, θ, σ ) with parameters r = σ = 1 and θ = 0. Then, [39, Corollary
5.10, part (a)] reads

dW (Fn, F∞) ≤ C

√

(Fn) + 1/4 κ2

3 (Fn) (6.9)

that is in line with the estimate (6.8). One has to note that κ3(F∞) = 0.

The next result provides a quantitative bound in the Kolmogorov distance. The
proof relies on the classical Berry–Essen estimate in terms of bounding the difference
of the characteristic functions. We recall that for two real-valued random variables X

and Y the Kolmogorov distance is defined as

dKol(X, Y ) := sup
x∈R

∣∣∣P[X ≤ x] − P[Y ≤ x]
∣∣∣.

Theorem 6.6 ([4]). Let the target random variable F∞ in the second Wiener chaos
be of the form (6.1). Assume that (Fn : n ≥ 1) be a sequence of centered random
elements living in a finite sum of the Wiener chaoses. Then, there exists a constant C

(possibly depending on the sequence (Fn), but not on n) such that

dKol(Fn, F∞)

≤ C

√√√√
E

[∣∣∣ d+1∑
r=1

ar (�r−1(Fn) − E[�r−1(Fn)])
∣∣∣] +

d+1∑
r=2

|κr(Fn) − κr(F∞)|

≤ C

√√√√√
√√√√Var

(
d+1∑
r=1

ar�r−1(Fn)

)
+

d+1∑
r=2

|κr(Fn) − κr(F∞)|

(6.10)

where the coefficients (ar : r = 1, . . . , d + 1) are given by relation (6.4). In the
particular case, when the sequence (Fn : n ≥ 1) belongs to the second Wiener chaos,
it holds that

Var

(
d+1∑
r=1

ar�r−1(Fn)

)
= 
(Fn)
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where the quantity 
(Fn) is as in Theorem 6.4, and the estimate (6.10) takes the form
(compare with the estimate (6.8))

dKol(Fn, F∞) ≤ C

√√√√√

(Fn) +

d+1∑
r=2

|κr(Fn) − κr(F∞)|.

We end the section with the following conjecture, whose object is the control of
the iterated Gamma operators of Malliavin calculus appearing in the RHS of the esti-
mate (6.10) by means of finitely many cumulants. Lastly, we point out that the forth-
coming estimate (6.12) has to be compared with the famous estimate Var(�1(F )) ≤
C κ4(F ) in the normal approximation setting, when F is a chaotic random variable.

Conjecture 6.7. Let F∞ be the target random variable in the second Wiener chaos
of the form (6.1). Assume that F = Iq(f ) is a chaotic random variable in the q-th
Wiener chaos with q ≥ 2. Then, there exists a general constant C (possibly depending
on q and d) such that

Var

(
d+1∑
r=1

P (r)(0)

r!2r−1 �r−1(F )

)
≤ C

deg(Q)∑
r=2

Q(r)(0)

r!
κr(F )

(r − 1)!2r−1 (6.11)

where the polynomials P and Q are given by equation (6.2). In the particular case
of the normal product target distribution, i.e., d = 2, and α∞,1 = −α∞,2 = 1/2, the
estimate (6.11) boils down to

Var (�2(F ) − F) ≤ C

{
κ6(F )

5! − 2
κ4(F )

3! + κ2(F )

}
, (6.12)

where C is an absolute constant.
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