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Abstract A problem of drift parameter estimation is studied for a nonergodic weighted frac-
tional Vasicek model defined as dXt = θ(μ+Xt )dt +dB

a,b
t , t ≥ 0, with unknown parameters

θ > 0, μ ∈ R and α := θμ, whereas Ba,b := {Ba,b
t , t ≥ 0} is a weighted fractional Brownian

motion with parameters a > −1, |b| < 1, |b| < a + 1. Least square-type estimators (θ̃T , μ̃T )

and (θ̃T , α̃T ) are provided, respectively, for (θ, μ) and (θ, α) based on a continuous-time ob-
servation of {Xt , t ∈ [0, T ]} as T → ∞. The strong consistency and the joint asymptotic
distribution of (θ̃T , μ̃T ) and (θ̃T , α̃T ) are studied. Moreover, it is obtained that the limit distri-
bution of θ̃T is a Cauchy-type distribution, and μ̃T and α̃T are asymptotically normal.

Keywords Weighted fractional Vasicek model, parameter estimation, strong consistency,
joint asymptotic distribution, Young integral
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1 Introduction

The statistical inference of non-ergodic Itô-type diffusions has a long history. For
motivation and further references, we refer the reader to Basawa and Scott [2], Dietz
and Kutoyants [9], Jacod [17] and Shimizu [24]. On the one hand, the statistical anal-
ysis of equations driven by fractional Gaussian processes is obviously more recent.
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The development of stochastic calculus with respect to the fractional Gaussian pro-
cesses allowed to study such models. On the other hand, the long range dependence
property makes the fractional Gaussian processes important driving noises in model-
ing several phenomena arising from finance, economic, telecommunication networks
and physics.

Let Ba,b := {Ba,b
t , t ≥ 0} be a weighted fractional Brownian motion (wfBm)

with parameters (a, b) such that a > −1, |b| < 1 and |b| < a + 1, that is, Ba,b is
defined as a centered Gaussian process starting from zero with covariance

Ra,b(t, s) = E
(
B

a,b
t Ba,b

s

)
=

∫ s∧t

0
ua

[
(t − u)b + (s − u)b

]
du, s, t ≥ 0. (1)

For a = 0, −1 < b < 1, the wfBm is a fractional Brownian motion (fBm), up
to a multiplicative constant 2

b+1 , with the Hurst parameter b+1
2 . The process Ba,b

was introduced in [5] as an extension of fBm. Moreover, it shares several properties
with fBm, such as self-similarity, path continuity, behavior of increments, long-range
dependence, nonsemimartingale, and others. But, unlike fBm, the wfBm does not
have stationary increments for a �= 0. For more details about the subject, we refer the
reader to [5].

The purpose of this paper is to estimate jointly the drift parameters of the weighted
fractional Vasicek (also called weighted fractional mean-reverting Ornstein–Uhlen-
beck) process X := {Xt, t ≥ 0} that is defined as the unique (pathwise) solution
to

X0 = 0, dXt = θ (μ + Xt) dt + dB
a,b
t , t ≥ 0, (2)

where θ > 0 and μ ∈ R are considered as unknown parameters. When a = b = 0,
Ba,b is a standard Brownian motion, and in this case the model (2) with μ = 0
was originally proposed by Ornstein and Uhlenbeck and then it was generalized by
Vasicek, see [23].

In recent years, several researchers have been interested in studying statistical
estimation problems for Gaussian Ornstein–Uhlenbeck processes. Estimation of the
drift parameters in fractional-noise-driven Ornstein–Uhlenbeck processes is a prob-
lem that is both well-motivated by practical needs and theoretically challenging. In
the finance context, our practical motivation to study this estimation problem is to
provide tools to understand volatility modeling in finance. Indeed, any mean-reverting
model in discrete or continuous time can be taken as a model for stochastic volatil-
ity. Let us mention some important results in this field where the volatility exhibits
long-memory, which means that the volatility today is correlated to past volatility
values with a dependence that decays very slowly. The authors of [6, 7] considered
the problem of option pricing under a stochastic volatility model that exhibits long-
range dependence. More precisely they assumed that the dynamics of the volatility
are described by the equation (2), where the driving process Ba,b is a standard frac-
tional Brownian motion (corresponding to a = 0) with the Hurst parameter H = b+1

2
greater than 1/2. On the other hand, the paper [16] on rough volatility contends that
the short-time behavior indicates that the Hurst parameter H in the volatility is less
than 1/2.

An example of interesting problem related to (2) is the statistical estimation of μ

and θ when one observes the whole trajectory of X. In order to estimate the unknown
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parameters θ and μ when the whole trajectory of X defined in (2) is observed, we
will consider the following least squares estimators (LSEs) proposed in [14]:

θ̃T =
1
2T X2

T − XT

∫ T

0 Xsds

T
∫ T

0 X2
s ds −

(∫ T

0 Xsds
)2 (3)

and

α̃T = XT

∫ T

0 X2
s ds − 1

2X2
T

∫ T

0 Xsds

T
∫ T

0 X2
s ds −

(∫ T

0 Xsds
)2 , (4)

as statistics to estimate θ and α := μθ , respectively. Furthermore, we can obtain a
least squares-type estimator μ̃T for μ, that is, the statistic

μ̃T = α̃T /θ̃T =
∫ T

0 X2
s ds − 1

2XT

∫ T

0 Xsds

1
2T XT − ∫ T

0 Xsds
. (5)

Let us mention that similar drift statistical problems for nonergodic Vasicek mod-
els were recently studied. The work [14] studied the case when the process Ba,b in (2)
is replaced by a Gaussian process, and provided sufficient conditions on the driving
Gaussian process in order to ensure the strong consistency and the asymptotic distri-
bution of the estimators given by (3), (4) and (5). Note that we cannot apply directly
this result here, because Ba,b verifies properties different of those given in [14].

Let us also describe what is known about the parameter estimation for the model
(2) when Ba,b is a fBm, i.e., a = 0, with the Hurst parameter H = b+1

2 . Let
BH := {

BH
t , t ≥ 0

}
denote a fBm with the Hurst parameter H ∈ (0, 1). Consider

the following fractional Vasicek model driven by BH ,

dXt = θ (μ + Xt) dt + dBH
t , X0 = 0, (6)

where θ, μ ∈ R are unknown parameters. Notice that the process (6) is ergodic if
θ < 0, μ = 0 and X0 = ∫ 0

−∞ e−θsdBH
s . Otherwise, the process (6) is nonergodic if

θ > 0.
Now we recall several approaches to estimate the parameters of (6). For the max-

imum likelihood estimation approach, in general the techniques used to construct
maximum likelihood estimators (MLEs) for the drift parameters of (6) are based on
Girsanov transforms for fBm and depend on the properties of the deterministic frac-
tional operators (determined by the Hurst parameter) related to the fBm. In general,
the MLE is not easily computable. In particular, it relies on being able to consti-
tute a discretization of an MLE. For a more recent comprehensive discussion via this
method, we refer to [18].

A least squares approach has been also considered by several researchers to study
statistical estimation problems for (6). Let us mention some works in this direction:
in the case when θ < 0, the statistical estimation for the parameters μ and θ based
on continuous-time observations of {Xt, t ∈ [0, T ]} as T → ∞, has been studied
by several papers, for instance [8, 3] and the references therein. When μ = 0 in (6),
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the estimation of θ has been investigated by using least squares method as follows:
the case of ergodic-type fractional Ornstein–Uhlenbeck processes, corresponding to
θ < 0, has been considered in [11, 15], and the case nonergodic fractional Ornstein–
Uhlenbeck processes has been studied in [10, 12].

The paper is organized as follows. In Section 2 we analyze some pathwise prop-
erties of the Vasicek model (2). In Section 3 we prove the strong consistency of the
estimators θ̃T , μ̃T and α̃T as T → ∞. Section 4 is devoted to analyze the joint
asymptotic distribution of the LSEs (θ̃T , μ̃T ) and (θ̃T , α̃T ) as T → ∞.

Throughout the paper, we shall use notation C for various constants whose value
is not important and may change from line to line and even in the same line.

2 Notations and auxiliary results

This section is devoted to study pathwise properties of the nonergodic weighted frac-
tional Vasicek model (2). These properties will be needed in order to analyze the
asymptotic behavior of the LSEs (θ̃T , μ̃T ) and (θ̃T , α̃T ).

Because (2) is linear, it is immediate to solve it explicitly; one then gets the fol-
lowing formula

Xt = μ
(
eθt − 1

) + eθt

∫ t

0
e−θsdBa,b

s , t ≥ 0, (7)

where the integral with respect to Ba,b is understood in the Young sense (see Ap-
pendix).

Let us introduce the following processes, for every t ≥ 0:

ζt :=
∫ t

0
e−θsdBa,b

s , Zt :=
∫ t

0
e−θsBa,b

s ds, �t :=
∫ t

0
Xsds. (8)

Thus, using (7), we can write

Xt = μ
(
eθt − 1

) + eθt ζt . (9)

Furthermore, by (2),

Xt = μθt + θ�t + B
a,b
t . (10)

Moreover, applying the formula (49), we have

ζt = e−θtB
a,b
t + θ

∫ t

0
e−θsBa,b

s ds = e−θtB
a,b
t + θZt . (11)

Lemma 1 ([1]). Suppose that a > −1, |b| < 1 and |b| < a+1. Then, we can rewrite
the covariance Ra,b(t, s) of Ba,b, given in (1), as follows:

Ra,b(t, s) = β (a + 1, b + 1)
[
ta+b+1 + sa+b+1

]
− m(t, s), (12)

where β(c, d) = ∫ 1
0 xc−1(1−x)d−1dx, c > 0, d > 0, denotes the usual Beta function,

and the function m(t, s) is defined by

m(t, s) :=
∫ s∨t

s∧t

ua(t ∨ s − u)bdu.
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There exists a constant C depending only on a, b, such that for every s, t ≥ 0,

E

[(
B

a,b
t − Ba,b

s

)2
]

≤ C(s ∨ t)a|t − s|b+1. (13)

Since the process Ba,b has ((a + b + 1) ∧ (b + 1) − ε)-Hölder continuous paths

for all ε ∈ (0, (a + b + 1) ∧ (b + 1)), and E
[
(B

a,b
t )2

]
= 2β (a + 1, b + 1) ta+b+1,

we can deduce from [10, Lemma 2.1] and [10, Lemma 2.2] the following result.

Lemma 2. Assume that a > −1, |b| < 1 and |b| < a + 1. Let Z and ζ be given
by (8). Then for all ε ∈ (0, (a + b + 1)∧ (b + 1)) the process ζ admits a modification
with ((a+b+1)∧(b+1)−ε)-Hölder continuous paths, still denoted ζ in the sequel.

Moreover,

ZT −→ Z∞ :=
∫ ∞

0
e−θsBa,b

s ds, ζT −→ ζ∞ := θZ∞ (14)

almost surely and in L2(�) as T → ∞.
Also,

lim
T →∞ e−2θT

∫ T

0
e2θsζ 2

s ds = 1

2θ
ζ 2∞ almost surely. (15)

We will make use of the following two technical lemmas.

Lemma 3. Suppose that a > −1, |b| < 1 and |b| < a + 1. Then, almost surely, as
T → ∞,

B
a,b
T

T δ
−→ 0 for all δ >

a + b + 1

2
, (16)

e−θT XT −→ μ + ζ∞, (17)

e−θT

∫ T

0
Xsds −→ 1

θ
(μ + ζ∞) , (18)

e−θT

T

∫ T

0
sXsds −→ 1

θ
(μ + ζ∞) , (19)

e−2θT

∫ T

0
X2

s ds −→ 1

2θ
(μ + ζ∞)2 , (20)

e−θT

T δ

∫ T

0
|Xs |ds −→ 0 for any δ > 0, (21)

e−θT

T

∫ T

0
|Ba,b

t Xt |dt −→ 0 if a + b < 1, (22)

where ζ∞ is defined in Lemma 2.

Proof. Let us prove (16). Let δ > a+b+1
2 . By the Borel–Cantelli lemma, it is suffi-

cient to prove that, for any ε > 0,

∑
n≥0

P

(
sup

n≤T ≤n+1

∣∣∣∣∣B
a,b
T

T δ

∣∣∣∣∣ > ε

)
< ∞.
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Let q > 0 such that q(δ− a+b+1
2 ) > 1 and q(b+1)

2 > 1. Applying Markov’s inequality,
we obtain

P

(
sup

n≤T ≤n+1

∣∣∣∣∣B
a,b
T

T δ

∣∣∣∣∣ > ε

)
≤ 1

εq
E

[
sup

n≤T ≤n+1

∣∣∣∣∣B
a,b
T

T δ

∣∣∣∣∣
q]

≤ 1

εqnqδ
E

[
sup

n≤T ≤n+1

∣∣∣Ba,b
T

∣∣∣q]
.

Further, applying the Garsia–Rodemich–Rumsey Lemma (see [21, Lemma A.3.1])

for ψ(x) = xq , p(x) = x
m+2

q , with 0 < m <
q(b+1)

2 − 1, we get for every n ≤ s, t ≤
n + 1,

∣∣∣Ba,b
t − Ba,b

s

∣∣∣q ≤ C |t − s|m
∫ n+1

n

∫ n+1

n

∣∣∣Ba,b
u − Ba,b

v

∣∣∣q
|u − v|m+2 dudv.

This together with (13) implies

E

[
sup

n≤s,t≤n+1

∣∣∣Ba,b
t − Ba,b

s

∣∣∣q]
≤ C

∫ n+1

n

∫ n+1

n

(u ∨ v)
qa
2

|u − v| q(b+1)
2

|u − v|m+2 dudv

≤ Cn
qa
2

∫ 1

0

∫ 1

0
|x − y| q(b+1)

2 −m−2 dxdy

≤ Cn
qa
2 .

Hence,

E

[
sup

n≤T ≤n+1

∣∣∣Ba,b
T

∣∣∣q]
≤ C

(
E

[
sup

n≤T ≤n+1

∣∣∣Ba,b
T − Ba,b

n

∣∣∣q]
+ E

∣∣∣Ba,b
n

∣∣∣q)

≤ C

(
E

[
sup

n≤s,t≤n+1

∣∣∣Ba,b
t − Ba,b

s

∣∣∣q]
+ n

q(a+b+1)
2

)
≤ C

(
n

qa
2 + n

q(a+b+1)
2

)
≤ Cn

q(a+b+1)
2 .

Then,

P

(
sup

n≤T ≤n+1

∣∣∣∣∣B
a,b
T

T δ

∣∣∣∣∣ > ε

)
≤ C

εqnq(δ− a+b+1
2 )

.

As a consequence, since q(δ− a+b+1
2 ) > 1, the above series converges, which proves

(16).
Notice that the convergence (17) is a direct consequence of (9) and (14).
On the other hand, using (49), (14) and (16) we have almost surely as T → ∞,

e−θT

∫ T

0
eθsZsds = ZT

θ
− e−θT

θ

∫ T

0
Ba,b

s ds −→ ζ∞
θ2 . (23)
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Combining (9), (11) and (23), we get almost surely as T → ∞,

e−θT

∫ T

0
Xsds = e−θT

∫ T

0

(
μ(eθs − 1) + Ba,b

s + θeθsZs

)
ds −→ 1

θ
(μ + ζ∞) ,

which proves (18). Similarly, (49), (14), (16) and (23) imply that almost surely as
T → ∞,

e−θT

T

∫ T

0
seθsZsds = ZT

θ
− e−θT

θT

∫ T

0
sBa,b

s ds − e−θT

θT

∫ T

0
eθsZsds −→ ζ∞

θ2 .

Combined with (9) and (11), a straightforward calculation as above, leads to (19).
Using similar arguments as in (23), we deduce that almost surely as T → ∞,

e−2θT

∫ T

0
e2θsZsds −→ ζ∞

2θ2 .

Combining this latter convergence together with (9), (14), (15) and (16), we can de-
duce (20).

Using (17), we have almost surely as T → ∞,

e−θT

T δ

∫ T

0
|Xs |ds ≤ sup

t≥0

∣∣∣∣ Xt

eθt

∣∣∣∣ e−θT

T δ

∫ T

0
eθsds −→ 0,

which implies (21).
Now we prove (22). Let a+b+1

2 < δ < 1,

e−θT

T

∫ T

0
|Ba,b

t Xt |dt ≤ sup
t≥0

∣∣∣∣∣Ba,b
t Xt

tδeθt

∣∣∣∣∣ e−θT

T

∫ T

0
tδeθt dt

≤ sup
t≥0

∣∣∣∣∣Ba,b
t Xt

tδeθt

∣∣∣∣∣ e−θT

T 1−δ

∫ T

0
eθtdt

≤ sup
t≥0

∣∣∣∣∣Ba,b
t Xt

tδeθt

∣∣∣∣∣ 1

θT 1−δ

−→ 0

almost surely as T → ∞, where we used that supt≥0

∣∣∣∣B
a,b
t Xt

tδeθt

∣∣∣∣ < ∞ almost surely,

thanks to (16) and (17). Thus the proof of (22) is done.

3 Strong consistency

In this section we will prove the strong consistency of the estimators θ̃T , μ̃T and α̃T .

Theorem 1. Suppose that a > −1, |b| < 1 and |b| < a + 1. Let θ̃T , α̃T and μ̃T be
given by (3), (4) and (5), respectively. Then, almost surely, as T → ∞,

θ̃T −→ θ. (24)
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Moreover, if a + b < 1,

μ̃T −→ μ, (25)

and consequently,

α̃T = μ̃T θ̃T −→ α = μθ

almost surely, as T → ∞.

Proof. Combining (3) and the convergences (17), (20) and (21), we obtain

θ̃T =
1
2

(
e−θT XT

)2 − e−θT XT
e−θT

T

∫ T

0 Xsds

e−2θT
∫ T

0 X2
s ds −

(
e−θT√

T

∫ T

0 Xsds
)2

−→ θ, almost surely, as T → ∞.

Thus the convergence (24) is obtained.
Now we prove (25). It follows from (5) that μ̃T can be written as follows:

μ̃T = e−θT

T

[∫ T

0
X2

s ds − XT

2

∫ T

0
Xsds

]
× 1

1
2e−θT XT − e−θT

T

∫ T

0 Xsds
.

According to the convergences (17) and (21) we have, almost surely, as T → ∞,

1
1
2e−θT XT − e−θT

T

∫ T

0 Xsds
−→ 2

μ + ζ∞
.

Therefore, it remains to prove

e−θT

T

[∫ T

0
X2

s ds − XT

2

∫ T

0
Xsds

]
−→ μ

2
(μ + ζ∞) (26)

almost surely, as T → ∞.
Using the formula (49) and the equation (2), we have∫ T

0
X2

s ds − XT

2

∫ T

0
Xsds

=
∫ T

0
Xsd�s − 1

2

(
μθT + θ�T + B

a,b
T

)
�T

=
∫ T

0

(
μθs + θ�s + Ba,b

s

)
d�s − μθ

2
T �T − θ

2
�2

T − 1

2
B

a,b
T �T

= μθ

∫ T

0
sXsds + θ

2
�2

T +
∫ T

0
Ba,b

s d�s − μθ

2
T �T − θ

2
�2

T − 1

2
B

a,b
T �T

=
(

μθ

∫ T

0
sXsds − μθ

2
T �T

)
+

(∫ T

0
Ba,b

s d�s − 1

2
B

a,b
T �T

)
=: IT + JT .
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Moreover, by L’Hôpital’s rule and (17) we have

e−θT

T
IT = e−θT

T

(
μθ

∫ T

0
sXsds − μθ

2
T �T

)
−→ μ

2
(μ + ζ∞)

almost surely, as T → ∞.
On the other hand, taking a+b+1

2 < δ < 1,

e−θT

T
|JT | = e−θT

T

∣∣∣∣∫ T

0
Ba,b

s d�s − 1

2
B

a,b
T �T

∣∣∣∣
= e−θT

T

∣∣∣∣∫ T

0
Ba,b

s Xsds − 1

2
B

a,b
T �T

∣∣∣∣
≤ 3

2

(
sup
s≥0

∣∣∣∣∣Ba,b
s

sδ

∣∣∣∣∣
)

e−θT

T 1−δ

∫ T

0
|Xs |ds

−→ 0

almost surely, as T → ∞, where we used (16) and (21).
Consequently, the convergence (26) is proved. Thus the desired results are ob-

tained.

4 Joint asymptotic distribution

In this section we analyze the joint asymptotic distribution of the LSEs (θ̃T , μ̃T ) and
(θ̃T , α̃T ).

Lemma 4. Suppose that a > −1, |b| < 1 and |b| < a + 1. Then

1) The limit of the variance of T − a
2 e−θT

∫ T

0 eθsdB
a,b
s exists as T → ∞. More

precisely,

lim
T →∞ E

[(
T − a

2 e−θT

∫ T

0
eθsdBa,b

s

)2]
−→ �(b + 1)

θb+1 . (27)

2) For all fixed s ≥ 0,

lim
T →∞ E

(
Ba,b

s T − a
2 e−θT

∫ T

0
eθrdBa,b

r

)
= 0. (28)

3) For all fixed s ≥ 0, as T −→ ∞

E
[
B

a,b
s B

a,b
T

]
T

a+b+1
2

−→ 0, E

[
B

a,b
T

T
a+b+1

2

T − a
2 e−θT

∫ T

0
eθrdBa,b

r

]
−→ 0. (29)
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Proof. Both convergences (27) and (28) are proved in [1]. Let us now prove the
convergences given in (29). Fix s ≥ 0. Using (12), and b − a − 1 < 0 and change of
variables x = u/T , we get

lim
T →∞

E
[
B

a,b
s B

a,b
T

]
T

a+b+1
2

= lim
T →∞ T

−a−b−1
2

[
β (a + 1, b + 1)

[
sa+b+1 + T a+b+1

]
− m(s, T )

]
= lim

T →∞ T
−a−b−1

2

[
β (a + 1, b + 1) T a+b+1 −

∫ T

s

ua(T − u)bdu

]
= lim

T →∞ T
−a−b−1

2

[
−

∫ T

0
ua(T − u)bdu +

∫ s

0
ua(T − u)bdu

]
= lim

T →∞ T
−a−b−1

2

[
−T a+b+1

∫ 1

0
xa(1 − x)bdx +

∫ s

0
ua(T − u)bdu

]
= lim

T →∞ T
−a−b−1

2

∫ s

0
ua(T − u)bdu.

Furthermore,

T
−a−b−1

2

∫ s

0
ua(T − u)bdu = T

b−a−1
2

∫ s

0
ua

(
1 − u

T

)b

du

≤
{

T
b−a−1

2
∫ s

0 uadu if b ≥ 0,

T
b−a−1

2
∫ s

0 ua
(
1 − s

T

)b
du if b < 0

−→ 0.

Thus, we deduce that, for all fixed s ≥ 0,

lim
T →∞

E
[
B

a,b
s B

a,b
T

]
T

a+b+1
2

= 0.

In order to complete the proof, we show that

lim
T →∞ E

[
B

a,b
T

T
a+b+1

2

T − a
2 e−θT

∫ T

0
eθrdBa,b

r

]
= 0. (30)

Applying twice (49), we can write

E

[
B

a,b
T

T
a+b+1

2

T − a
2 e−θT

∫ T

0
eθrdBa,b

r

]
(31)

= T −a− b+1
2

[
Ra,b(T , T ) − θe−θT

∫ T

0
eθrRa,b(T , r)dr

]
= T −a− b+1

2 e−θT

∫ T

0
eθrβ(a + 1, b + 1)(a + b + 1)ra+bdr
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−T −a− b+1
2 e−θT

∫ T

0
eθr ∂m(T , r)

∂r
dr

= (a + b + 1)β(a + 1, b + 1)T −a− b+1
2 e−θT

∫ T

0
eθr ra+bdr

+T −a− b+1
2 e−θT

∫ T

0
eθr ra(T − r)bdr. (32)

Moreover, applying L’Hôspital’s rule, we get

lim
T →∞ T −a− b+1

2 e−θT

∫ T

0
eθr ra+bdr (33)

= lim
T →∞

eθT T a+b

eθT
[
(a + b+1

2 )T a+ b−1
2 + θT a+ b+1

2

]
= lim

T →∞
1

(a + b+1
2 )T

−b−1
2 + θT

1−b
2

= 0, (34)

since |b| < 1. Also, using change of variables x = r/T and y = T − r , we have

T −a− b+1
2 e−θT

∫ T

0
eθr ra(T − r)bdr

= T −a− b+1
2 e−θT

[∫ T/2

0
eθr ra(T − r)bdr +

∫ T

T/2
eθr ra(T − r)bdr

]
≤ T −a− b+1

2 e−θT /2
∫ T/2

0
ra(T − r)bdr + CT − b+1

2 e−θT

∫ T

T/2
eθr (T − r)bdr

= T
b+1

2 e−θT /2
∫ 1/2

0
xa(1 − x)bdr + CT − b+1

2

∫ T/2

0
e−θyybdy

≤ T
b+1

2 e−θT /2β(a + 1, b + 1) + CT − b+1
2 �(b + 1)

−→ 0 (35)

as T → ∞, thanks to a + 1 > 0 and b + 1 > 0.
Consequently, combining (32), (34) and (35), we obtain (30).

In order to investigate the asymptotic behavior in distribution of the estimators
(θ̃T , μ̃T ) and (θ̃T , α̃T ), as T → ∞, we will also need the following lemmas.

Lemma 5. Suppose that a > −1, |b| < 1 and |b| < a + 1. Let X be the process
given by (2). Then we have for every T > 0,

1

2
X2

T − XT

T

∫ T

0
Xtdt = θ

(∫ T

0
X2

t dt − 1

T

(∫ T

0
Xtdt

)2)

+ (μ + θZT )

∫ T

0
eθtdB

a,b
t + RT , (36)
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where ZT is given in (8), and the process RT is defined by

RT := 1

2
(μθT )2 + 1

2
(B

a,b
T )2 − μB

a,b
T − (μθ)2T 2

2
− B

a,b
T

T

∫ T

0
Xtdt

−θ

∫ T

0
(B

a,b
t )2dt + θ2

∫ T

0
e−θtB

a,b
t

∫ t

0
eθsBa,b

s dsdt.

Moreover, as T −→ ∞,

T − a
2 e−θT RT −→ 0 (37)

almost surely.

Proof. Using similar arguments as in [14, Lemma 3.1] we obtain (36). On the other
hand, the convergence (37) is a direct consequence of (16), (18) and |b| < 1.

Lemma 6. Suppose that a > −1, |b| < 1 and |b| < a + 1. Let F be any σ {Ba,b
t , t ≥

0}-measurable random variable such that P(F < ∞) = 1. Then as T → ∞,(
F, T − a

2 e−θT

∫ T

0
eθtdB

a,b
t

)
Law−→

(
F,

√
�(b + 1)

θb+1 N2

)
, (38)

and (
B

a,b
T

T
a+b+1

2

, F, T − a
2 e−θT

∫ T

0
eθtdB

a,b
t

)
Law−→

(√
2β(a + 1, b + 1)N1, F,

√
�(b + 1)

θb+1 N2

)
, (39)

where N1 ∼ N (0, 1), N2 ∼ N (0, 1) and Ba,b are independent.

Proof. The convergence (38) is proved in [10, Lemma 2.4]. Now we prove (39).
Using similar arguments as in the proof of [13, Lemma 7] it suffices to prove that for

every positive integer d , and for all fixed s1, . . . , sd ≥ 0,
(

B
a,b
T

T
a+b+1

2
, B

a,b
s1 , . . . , B

a,b
sd ,

T − a
2 e−θT

∫ T

0 eθtdB
a,b
t

)
converges in distribution to(√

2β(a + 1, b + 1)N1, B
a,b
s1

, . . . , Ba,b
sd

,

√
�(b + 1)

θb+1 N2

)
as T → ∞. Moreover, since the left-hand side in this latter convergence is a Gaussian
vector, it is sufficient to establish the convergence of its covariance matrix. Combining
this with Lemma 4, the desired result is obtained.

Recall that if X ∼ N (m1, σ1) and Y ∼ N (m2, σ2) are two independent random
variables, then X/Y follows a Cauchy-type distribution. For a motivation and further
references, we refer the reader to [22], as well as [19]. Notice also that if N ∼ N (0, 1)

is independent of Ba,b, then N is independent of ζ∞, since ζ∞ = θ
∫ ∞

0 e−θsB
a,b
s ds

is a functional of Ba,b.
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Theorem 2. Suppose that a > −1, |b| < 1 and |b| < a + 1. Suppose that N1 ∼
N (0, 1), N2 ∼ N (0, 1) and Ba,b are independent. Then as T → ∞,

eθT (θ̃T − θ)
Law−→

2
√

�(b+1)

θb−1 N2

μ + ζ∞
. (40)

Moreover, if a + b < 1, then as T → ∞,

T
1−a−b

2 (μ̃T − μ)
Law−→

√
2β(a + 1, b + 1)

θ
N1, (41)

T
1−a−b

2 (̃αT − α)
Law−→ √

2β(a + 1, b + 1)N1. (42)

Also, as T → ∞,

(
eθT (θ̃T − θ), T

1−a−b
2 (μ̃T − μ)

)
Law−→

⎛⎝2
√

�(b+1)

θb−1 N2

μ + ζ∞
,

√
2β(a + 1, b + 1)

θ
N1

⎞⎠ ,

(43)

(
eθT (θ̃T − θ), T

1−a−b
2 (̃αT − α)

)
Law−→

⎛⎝2
√

�(b+1)

θb−1 N2

μ + ζ∞
,
√

2β(a + 1, b + 1)N1

⎞⎠ .

(44)

Proof. First we prove (40). From (3) and (36) we can write

T − a
2 eθT

(
θ̃T − θ

)
= (μ + θZT ) T − a

2 e−θT
∫ T

0 eθtdB
a,b
t + T − a

2 e−θT RT

e−2θT

(∫ T

0 X2
t dt − 1

T

(∫ T

0 Xtdt
)2

)
= T − a

2 e−θT
∫ T

0 eθtdB
a,b
t

(μ + ζ∞)
× (μ + ζ∞) (μ + θZT )

e−2θT

(∫ T

0 X2
t dt − 1

T

(∫ T

0 Xtdt
)2

)
+ T − a

2 e−θT RT

e−2θT

(∫ T

0 X2
t dt − 1

T

(∫ T

0 Xtdt
)2

)
=: aT × bT + cT . (45)

Lemma 6 yields, as T → ∞,

aT
Law−→

√
�(b+1)

θb+1 N2

μ + ζ∞
,

whereas (20), (21) and (14) imply that bT −→ 2θ almost surely as T → ∞. On the
other hand, by (20), (21) and (37), we obtain that cT −→ 0 almost surely as T → ∞.
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Combining all these facts together with (38), we get (40).
Using (3) and (5), a straightforward calculation shows that θ̃T and μ̃T verify

θ̃T μ̃T T = θ̃T

μ̃T

XT

XT T = XT − θ̃T

∫ T

0
Xtdt. (46)

Combining (46) with (2), we obtain

T
1−a−b

2 (μ̃T − μ) (47)

= 1

θ̃T

[
−eθT

(
θ̃T − θ

) e−θT

T
a+b+1

2

∫ T

0
Xtdt − μ

T
1−a−b

2

eθT
eθT

(
θ̃T − θ

) + B
a,b
T

T
a+b+1

2

]

=: 1

θ̃T

[
DT + B

a,b
T

T
a+b+1

2

]
. (48)

Using (21), (24), (40) and Slutsky’s theorem, we obtain DT −→ 0 in probability as
T → ∞. This together with (24) implies (41).

Further, according to (46) and (2) we can write

T
1−a−b

2 (̃αT − α) = −eθT
(
θ̃T − θ

) e−θT

T
a+b+1

2

∫ T

0
Xtdt + B

a,b
T

T
a+b+1

2

,

which proves (42), by using (21), (24), (40), and Slutsky’s theorem.
Let us now prove (43). By (45) and (48) we have(

eθT (θ̃T − θ), T
1−a−b

2 (μ̃T − μ)
)

=
(

aT × bT + cT ,
1

θ̃T

[
DT + B

a,b
T

T
a+b+1

2

])

=
(

aT × bT ,
1

θ̃T

B
a,b
T

T
a+b+1

2

)
+

(
cT ,

1

θ̃T

DT

)

= 1

θ̃T

(
2θ2aT ,

B
a,b
T

T
a+b+1

2

)
+ 1

θ̃T

(
aT × (bT × θ̃T − 2θ2), 0

)
+

(
cT ,

1

θ̃T

DT

)
.

By the above convergences and Slutsky’s theorem we deduce, as T → ∞,

1

θ̃T

(
aT × (bT × θ̃T − 2θ2), 0

)
−→ 0,

(
cT ,

1

θ̃T

DT

)
−→ 0 in probability.

Therefore, using (39), we obtain as T → ∞,

1

θ̃T

(
2θ2aT ,

B
a,b
T

T
a+b+1

2

)
= 1

θ̃T

(
2θ2 e−θT

∫ T

0 eθtdB
a,b
t

(μ + ζ∞)
,

B
a,b
T

T
a+b+1

2

)
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Law−→
⎛⎝2

√
�(b+1)

θb−1 N2

μ + ζ∞
,

√
2β(a + 1, b + 1)

θ
N1

⎞⎠ ,

which completes the proof of (43). Finally, following the same arguments as in the
proof of (43) we obtain (44).

A Appendix: Young integral

In this section, we briefly recall some basic elements of the Young integral (see [25]),
which are helpful for some of the arguments we use. For any α ∈ [0, 1], we denote
by Hα([0, T ]) the set of α-Hölder continuous functions, that is, the set of functions
f : [0, T ] → R such that

|f |α := sup
0≤s<t≤T

|f (t) − f (s)|
(t − s)α

< ∞.

We also set |f |∞ = supt∈[0,T ] |f (t)|, and we equip Hα([0, T ]) with the norm

‖f ‖α := |f |α + |f |∞.

Let f ∈ Hα([0, T ]), and consider the operator Tf : C1([0, T ]) → C0([0, T ]) defined
as

Tf (g)(t) =
∫ t

0
f (u)g′(u)du, t ∈ [0, T ].

It can be shown (see, e.g., [20, Section 3.1]) that, for any β ∈ (1−α, 1), there exists a
constant Cα,β,T > 0 depending only on α, β and T such that, for any g ∈ C1([0, T ]),∥∥∥∥∫ ·

0
f (u)g′(u)du

∥∥∥∥
β

≤ Cα,β,T ‖f ‖α‖g‖β.

We deduce that, for any α ∈ (0, 1), any f ∈ Hα([0, T ]) and any β ∈ (1 − α, 1), the
linear operator Tf : C1([0, T ]) ⊂ Hβ([0, T ]) → Hβ([0, T ]), defined as Tf (g) =∫ ·

0 f (u)g′(u)du, is continuous. By density, it extends (in a unique way) to an operator
defined on Hβ . As a consequence, if f ∈ Hα([0, T ]), if g ∈ Hβ([0, T ]) and if
α + β > 1, then the (so-called) Young integral

∫ ·
0 f (u)dg(u) is (well) defined as

being Tf (g).
The Young integral obeys the following formula. Let f ∈ Hα([0, T ]) with α ∈

(0, 1), and g ∈ Hβ([0, T ]) with β ∈ (0, 1). If α+β > 1, then
∫ .

0 gudfu and
∫ .

0 fudgu

are well-defined as Young integrals, and for all t ∈ [0, T ],

ftgt = f0g0 +
∫ t

0
gudfu +

∫ t

0
fudgu. (49)
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