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Abstract This paper investigates sample paths properties of ϕ-sub-Gaussian processes by
means of entropy methods. Basing on a particular entropy integral, we treat the questions on
continuity and the rate of growth of sample paths. The obtained results are then used to in-
vestigate the sample paths properties for a particular class of ϕ-sub-Gaussian processes related
to the random heat equation. We derive the estimates for the distribution of suprema of such
processes and evaluate their rate of growth.
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1 Introduction

This paper is devoted to the investigation of important classes of exponential type
Orlicz spaces of random variables, namely, ϕ-sub-Gaussian random variables. Such
spaces of random variables and corresponding stochastic proceses provide general-
izations of Gaussian and sub-Gaussian random variables and processes and are im-
portant for various applications.
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The main theory for the spaces of ϕ-sub-Gaussian random variables and stochas-
tic processes was elaborated and presented in [4, 5, 15, 29] and has gained numerous
further developments in the recent literature.

Recall that a random variable ξ is sub-Gaussian if its moment generating function
(Laplace transform) is majorized by that of a Gaussian centered random variable
η ∼ N(0, σ 2), that is, E exp(λξ) ≤ E exp(λη) = exp(σ 2λ2/2).

The generalization of this notion to the classes of ϕ-sub-Gaussian random vari-
ables is introduced as follows (see [4, Ch. 2]).

Definition 1 ([4, 15]). A continuous even convex function ϕ is called an Orlicz N-
function if ϕ(0) = 0, ϕ(x) > 0 as x �= 0 and limx→0

ϕ(x)
x

= 0, limx→∞ ϕ(x)
x

= ∞.

Condition Q. Let ϕ be an N-function which satisfies lim infx→0
ϕ(x)

x2 = c > 0, where
the case c = ∞ is possible.

Definition 2 ([5, 15]). Let ϕ be an N -function satisfying condition Q and {�,L, P}
be a standard probability space. The random variable ζ is ϕ-sub-Gaussian, or belongs
to the space Subϕ(�), if Eζ = 0, E exp{λζ } exists for all λ ∈ R and there exists a
constant a > 0 such that the following inequality holds for all λ ∈ R

E exp{λζ } ≤ exp{ϕ(λa)}.
The random process ζ = {ζ(t), t ∈ T } is called ϕ-sub-Gaussian if the random vari-
ables {ζ(t), t ∈ T } are ϕ-sub-Gaussian.

The space Subϕ(�) is a Banach space with respect to the norm (see [5, 15]):

τϕ(ζ ) = inf{a > 0 : E exp{λζ } ≤ exp{ϕ(aλ)}.
Definition 3 ([4, 15]). The function ϕ∗ defined by

ϕ∗(x) = sup
y∈R

(xy − ϕ(y))

is called the Young–Fenchel transform (or convex conjugate) of the function ϕ.

The Young–Fenchel transform is also known as the Legendre (or Legendre–Fen-
chel) transform, especially in the convex analysis and in the theory of large deviations.

The function ϕ∗ plays an important role in the theory of ϕ-sub-Gaussian random
variables and processes.

It is known that one can estimate the ‘tail’ distribution of a centered random vari-
able by using the convex conjugate of its cumulant generating function.

For a ϕ-sub-Gaussian random variable ξ the following important estimate for its
‘tail’ probability holds ([15]):

P {|ζ | > u} ≤ 2 exp

{
−ϕ∗

(
u

τϕ(ζ )

)}
, (1)

thus, the estimate can be written in terms of the convex conjugate of the function ϕ.
The property of ϕ-sub-Gaussianity for stochastic processes allows to evaluate the

behavior of their suprema, to derive estimates for various functionals of such pro-
cesses, to treat their sample paths properties.
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The classical monograph [4] contains the detailed account of conditions for ϕ-
sub-Gaussian processes X(t), t ∈ T , to have bounded and continuous sample paths,
and also presents estimates for modulii of continuity and distribution of supremum
for such processes. For derivation of these results the entropy approach is used, which
is based on evaluation of entropy characteristics of the parameter set T with respect
to a particular metrics generated by the process X. Conditions needed to state the
results are formulated in terms of the so-called entropy integrals.

The origins of entropy methods can be traced back to the paper [7] where suffi-
cient conditions for the boundedness of Gaussian processes were stated in terms of the
corresponding entropy integrals. Further these ideas were extended in [9, 21] using
the majorizing measures methods. A thorough presentation of the results on sample
paths properties stated via the entropy approach for Gaussian and related processes
can be found, for example, in the classical monographs [8, 22, 27, 28], and others.

The questions of applicability of entropy based methods for general classes of
processes from Orlicz spaces were treated in the monograph [4]. The power of en-
tropy methods was combined with the fine structure of Orlicz spaces, which are
Banach spaces with special properties. In such a way the substantial progress was
achived in studing sample paths properties of stochastich prosesses more general than
Gaussian ones, and strong and attractive theory was developed, which is of great im-
portance for various applications.

One of possible applications of this theory is in the study of partial differential
equations with random factors. The important practical demand in this field is in
relating the behavior of solutions to the correspoding initial conditions.

Partial differential equations with random initial conditions have been intensively
studied, especially, starting from the papers by J. Kampé de Feriet [10] and M. Rosen-
blatt [26] who introduced rigorous probabilistic tools in this area. In particular, the
paper [26] considers the heat equation with stationary initial conditions and presents
the spectral representation of the spatially stationary solutions in the form of stochas-
tic integrals.

Much attention in the literature has been devoted to the study of rescaling pro-
cedures for partial differential equations with random data. Limiting behavior of
rescaled solutions have been investigated for the heat, fractional heat, Burgers and
some other equations with Gaussian and non-Gaussian initial conditions possessing
weak or strong dependence. In particular, the Gaussian and non-Gaussian limiting
distributions for the heat equations with singular data are presented in [1, 23], which
can be considered as the starting point for numerous further studies in this area.

In another series of papers, solutions to partial differential equations subject to
random initial conditions were investigated by means of Fourier methods, represen-
tations of solutions by uniformly convergent series and their approximations in dif-
ferent functional spaces were developed (see, for example, [11, 19, 20] among many
others).

We cite some publications the most closely related to our study. In [13, 14] the
heat equations with sub-Gaussian stationary initial conditions were studied, exponen-
tial bounds for the distribution of supremum of the solution were presented. Higher-
order heat-type equations with ϕ-sub-Gaussian harmonizable initial conditins were
investigated in [2, 16, 17].
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In this paper our interest is focused on further investigation of sample paths prop-
erties of ϕ-sub-Gaussian processes related to the heat equation with random initial
condition.

The structure of the paper is as follows. Section 2 contains some definitions and
preliminary results which will be used further in the paper. In Section 3 we treat the
questions on continuity and the rate of growth of trajectories of ϕ-sub-Gaussian pro-
cesses. The conditions are stated in terms of a particular entropy integral. The results
of Sections 2 and 3 are then used in Section 4 to investigate the sample paths prop-
erties for a particular class of ϕ-sub-Gaussian processes related to the random heat
equation. We derive the estimates for the distribution of suprema of such processes
and evaluate their rate of growth. Section 5 outlines some directions for future studies.

We can compare our study with some close publications on this topic. Results
presented in our Section 3 extend and generalize the results on asymptotic bounds
with probability 1 for the rate of growth of Gaussian and ϕ-sub-Gaussian processes
stated in [6, 12] and in [20] correspondingly. The questions of continuity of sample
paths are treated in the similar way as in [29], but basing on different conditions.
Within a similar approach, estimates for the distribution of increments were derived in
[18] for square-Gaussian processes. The results obtained in Section 4 concerning the
distribution of supremum for the processes related to the heat equations with ϕ-sub-
Gaussian initial conditions provide the generalization and extension of results from
papers [13, 14] where the cases of Gaussian and sub-Gaussian initial conditions were
considered. In [16, 17] similar results were obtained for the case of higher order heat-
type equations, but under the conditions stated in terms of a different entropy integral
(see also [16] for more references on the theory of ϕ-sub-Gaussian processes and
additional references on partial differential equations with random initial conditions).

2 Preliminaries

In this section we present some results for ϕ-sub-Gaussian processes which will be
used to obtain the results in Section 3.

Let (T, ρ) be a metric (pseudometric) space and X = {X(t), t ∈ T} be a ϕ-sub-
Gaussian process. Introduce the following conditions.

A.1 ε0 = supt∈T τϕ(X(t)) < ∞.

A.2 The space (T, ρ) is separable and the process X is separable on this space.

A.3 There exists a strictly increasing continuous function σ = {σ(h), h ≥ 0} such
that σ(0) = 0 and

sup
ρ(t,s)<h

τϕ(X(t) − X(s)) ≤ σ(h).

A.4 Let the function r = {r(x), x ≥ 1} be such that

(i) r is nonnegative and nondecreasing;

(ii) r(ey), y ≥ 0 is a convex function.

Let N(u) = NT(u), u > 0, be the metric massiveness of the space (T, ρ), that is,
N(u) is the number of elements in the minimal u-covering of (T, ρ).
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Denote

Ir (δ) =
∫ δ

0
r(N(σ (−1)(u)))du, δ > 0. (2)

For a function f (t), t ≥ 0, we will denote by f (−1)(u), u ≥ 0, the inverse function.
Denote γ0 = σ(supt,s∈T ρ(t, s)).

Theorem 1 below is a variant of the result stated in [4, Theorem 4.4, p. 107] (see
also [17, Theorem 2.3]). The analogous result for a Gaussian process is presented in
[6].

Theorem 1. Let X = {X(t), t ∈ T} be a ϕ-sub-Gaussian process and Conditions
A.1–A.4 hold. Suppose Ir(γ0) < ∞.

Then for all 0 < θ < 1 such that θε0 < γ0 and u > 0, λ > 0

E exp
{
λ sup

t∈T
|X(t)|

}
≤ 2Q(λ, θ), (3)

and
P

{
sup
t∈T

|X(t)| ≥ u
}

≤ 2A(θ, u), (4)

where

Q(λ, θ) = exp
{
ϕ
( λε0

1 − θ

)}
r(−1)

(Ir(θε0)

θε0

)
, (5)

A(θ, u) = exp
{

− ϕ∗(u(1 − θ)

ε0

)}
r(−1)

(Ir(θε0)

θε0

)
. (6)

Corollary 1. Let us consider a separable metric space (T, d), T = {ai ≤ ti ≤
bi, i = 1, 2}, d(t, s) = maxi=1,2 |ti − si |. Then

Ir (ε) ≤ Îr (ε) =
∫ ε

0
r
(( b1 − a1

2σ (−1)(u)
+ 1

)( b2 − a2

2σ (−1)(u)
+ 1

))
du.

If Îr (ε) < ∞, then estimates (3) and (4) hold with Q(λ, θ) and A(θ, u) given by
Formulas (5) and (6), where Ir(·) is replaced by Îr (·).
Proof. The statement follows due to the inequality (see [4]):

N(σ (−1)(u)) ≤
( b1 − a1

2σ (−1)(u)
+ 1

)( b2 − a2

2σ (−1)(u)
+ 1

)
.

For a particular form of σ , by choosing an appropriate function r , the expres-

sion r(−1)
(

Ir (θε0)
θε0

)
can be calculated in the closed form, and we obtain the next two

corollaries.

Corollary 2. Let in Corollary 1 σ(h) = c1h
β with c1 > 0, 0 < β ≤ 1. Let κ =

max{bi − ai, i = 1, 2}. Then for any θ ∈ (0, 1) such that θε0 < σ(κ) and any
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u > 0, λ > 0

E exp
{
λ sup

t∈T
|X(t)|

}
≤ 2 exp

{
ϕ
( λε0

1 − θ

)}
A1(θε0),

P
{

sup
t∈T

|X(t)| ≥ u
}

≤ 2 exp
{

− ϕ∗(u(1 − θ)

ε0

)}
A1(θε0),

where

A1(θε0) = 2
4
β
−1

(
κ

2c
2/β
1 22(2/β−1)

(θε0)2/β
+ 1

)
.

Corollary 3. Let in Corollary 1 σ(h) = c2

(
ln(eβ + 1

u
)
)−β

, β > 1, c2 > 0. Let

κ = max{bi − ai, i = 1, 2}. Then for any θ ∈ (0, 1) such that θε0 < σ(κ) and any
u > 0, λ > 0

E exp
{
λ sup

t∈T
|X(t)|

}
≤ 2 exp

{
ϕ
( λε0

1 − θ

)}
A2(θε0),

P
{

sup
t∈T

|X(t)| ≥ u
}

≤ 2 exp
{

− ϕ∗(u(1 − θ)

ε0

)}
A2(θε0),

where

A2(θε0) = κ
2

4
exp

{ 2βc
1/β

2

(β − 1)(θε0)1/β

}
.

Proof. To prove Corollaries 2 and 3 we calculate the expression r(−1)
(

Îr (θε0)
θε0

)
for

two different forms of σ , choosing an appropriate function r for each case.
For the case σ(h) = c1h

β with c > 0, 0 < β ≤ 1, we choose r(x) = xα − 1,
0 < α < β/2.

We have σ (−1)(h) =
(

h
c1

)1/β

and r(−1)(x) = (x + 1)1/α .

Denote κ = max{bi − ai, i = 1, 2}.
By using calculations similar to those for Corollary 2.3 in [6], we obtain the esti-

mate

Îr (δ) ≤
∫ δ

0

((
κ

2σ (−1)(u)
+ 1

)2α − 1
)
du ≤

(
κc

1/β
1

2

)2α δ1−2α/β

1 − 2α
β

and

r(−1)
( Îr (δ)

δ

)
≤

((
κc

1/β

1

2

)2α δ−2α/β

1 − 2α
β

+ 1
)1/α

.

Applying then the inequality (a + b)p ≤ 2p−1(ap + bp); p ≥ 1, and choosing
α = β/4 we get

r(−1)
( Îr (δ)

δ

)
≤ 2

4
β
−1

( (κc
1/β
1 )22

4
β
−2

δ2/β
+ 1

)
.
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Consider now the case σ(h) = c(ln(eβ + 1
h
))−β with c > 0, β > 0. Let us choose

r(x) = ln x.

We have σ (−1)(h) =
(

exp
{(

c
h

)1/β}
− eβ

)−1
and r(−1)(x) = exp{x}.

We can estimate Îr (δ) as follows. We have

Îr (δ) =
∫ δ

0
r
((b1 − a1

2

(
exp

{( c

u

)1/β}
− eβ

)
+ 1

)
×

(b2 − a2

2

(
exp

{( c

u

)1/β}
− eβ

)
+ 1

))
du.

Let β > max
{

1, ln
(

2
b1−a1

)
, ln

(
2

b2−a2

)}
, then

Îr (δ) ≤
∫ δ

0
r
( (b1 − a1)(b2 − a2)

4
exp

{
2
( c

u

)1/β})
du

=
∫ δ

0
ln

( (b1 − a1)(b2 − a2)

4
exp

{
2
( c

u

)1/β})
du

= δ ln
(b1 − a1)(b2 − a2)

4
+

∫ δ

0
2
( c

u

)1/β

du

= δ ln
(b1 − a1)(b2 − a2)

4
+ 2c1/βδ1−1/β

1 − 1
β

≤ δ ln
κ

2

4
+ 2c1/βδ1−1/β

1 − 1
β

.

Therefore, we can write the estimate

r(−1)

(
Îr (δ)

δ

)
≤ exp

{
ln

κ
2

4
+ 2c1/βδ−1/β

1 − 1
β

}
= κ

2

4
exp

{ 2βc1/β

(β − 1)δ1/β

}
.

The above calculations are also used to prove Corollaries 5 and 6 in the next
section.

We will need some additional definitions and facts on ϕ-sub-Gaussian variables
and processes.

Definition 4 ([11]). A family � of random variables ζ ∈ Subϕ(�) is called strictly
ϕ-sub-Gaussian if there exists a constant C� such that for all countable sets I of
random variables ζi ∈ �, i ∈ I , the following inequality holds:

τϕ

(∑
i∈I

λiζi

)
≤ C�

⎛⎝E

(∑
i∈I

λiζi

)2
⎞⎠1/2

. (7)

The constant C� is called the determining constant of the family �.

The linear closure of a strictly ϕ-sub-Gaussian family � in the space L2(�) is the
strictly ϕ-sub-Gaussian with the same determining constant ([11]).

Definition 5 ([11]). Random process ζ = {ζ(t), t ∈ T } is called strictly ϕ-sub-
Gaussian if the family of random variables {ζ(t), t ∈ T } is strictly ϕ-sub-Gaussian
with a determining constant Cζ .
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Let K be a deterministic kernel and suppose that the process X(t), t ∈ T , can
be represented in the form X(t) = ∫

T
K(t, s) dξ(s), where ξ(t), t ∈ T , is a strictly

ϕ-sub-Gaussian random process and the integral above is defined in the mean-square
sense. Then the process X(t), t ∈ T , is strictly ϕ-sub-Gaussian random process with
the same determining constant (see [11]).

3 Properties of sample paths of ϕ-sub-Gaussian processes

Let (T, ρ) be a metric space and X = {X(t), t ∈ T} be a ϕ-sub-Gaussian process.
In the next two theorems we evaluate the increments of the process X in terms of the
integral Ir (·) given by (2).

Theorem 2. Let X = {X(t), t ∈ T} be a ϕ-sub-Gaussian process, Conditions A.1–
A.4 hold and Ir(γ0) < ∞. Then for any p ∈ (0, 1) and any ε > 0, λ > 0

E exp
{
λ sup

ρ(t,s)<ε

|X(t) − X(s)|
}

≤ 2 exp
{
(1 − p)ϕ

(λσ(ε)(3 − p)

(1 − p)2

)
+ pϕ

(2λσ(ε)

1 − p

)}
r(−1)

(Ir(σ (ε))

pσ(ε)

)
≤ 2 exp

{
ϕ
(λσ(ε)(3 − p)

(1 − p)2

)}
r(−1)

(Ir (σ (ε))

pσ(ε)

)
.

Proof. The scheme of the proof is analogous to that used in [29], however, with some
modifications, since the condition of convergence of another entropy integral is used.
Note also that the same method was applied in [18] to prove a similar result for the
case of square-Gaussian stochastic processes. In view of this, we present only the
main steps.

Let α = σ(infs∈T supt∈T ρ(t, s)), εk = σ (−1)(αpk), k = 1, 2, . . . .
Consider a minimal εk-covering of T, formed by closed balls of the radius εk and

denote by Vεk
the set of centers of these balls. The number of points in Vεk

is equal
to NT (εk).

For the points t, s ∈ T such that ρ(t, s) < ε, we choose k: εk < ε < εk−1, that is
σ(εk) < σ(ε) < σ(εk−1) or, in other words, αpk < σ(ε) < αpk−1.

Denote Vk = ∪∞
j=kVεj

. The set Vk is a ρ-separability set for the process X and
supt,s∈T |X(t) − X(s)| = supt,s∈Vk

|X(t) − X(s)|.
Define functions αn: Vk → Vεn, n ≥ 0 as αn(t) = t if t ∈ Vεn , and if t /∈ Vεn ,

then αn(t) is the point of Vεn such that ρ(t, αn(t)) < εn. If there is more than one of
such points, then we choose any of them (see [29], p. 74).

Note that the family of maps {αn, n ≥ 0} is called the α-procedure for choosing
points in Vk (see [4, Definition 2.5, p. 94]).

We will use the following inequality from [29] (see Formula (2.76)):

sup
ρ(t,s)<ε

|X(t) − X(s)| ≤2
∞∑
l=k

max
u∈Vεl+1

|X(u) − X(αl(u))|

+ max
u,v∈Vεk

;
τϕ(X(u)−X(v))≤σ(ε)

3−p
1−p

|X(u) − X(v)|.
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(We omit here the details, but note that the derivation of the similar formula for
the case of square-Gaussian processes can be found also in [18], see Formula (10)
therein.)

Then for all λ > 0

I := E exp
{
λ sup

ρ(t,s)<ε

|X(t) − X(s)|
}

≤ E exp
{
λ
(

2
∞∑
l=k

max
u∈Vεl+1

|X(u) − X(αl(u))|

+ max
u,v∈Vεk

;
τϕ(X(u)−X(v))≤σ(ε)

3−p
1−p

|X(u) − X(v)|
)}

.

Using the Hölder inequality ([4], p. 220) we can write

I ≤
(
E exp

{
λqk max

u,v∈Vεk

|X(u) − X(v)|
}) 1

qk

×
∞∏

l=k+1

(
E exp

{
λql2 max

u∈Vεl

|X(u) − X(αl(u))|
}) 1

ql ,

where {ql, l = k, k + 1, . . . } is a sequence satisfying
∑∞

l=k
1
ql

= 1.
We can write the following inequalities:

E exp
{
λql2 max

u∈Vεl

|X(u) − X(αl(u))|
}

≤ N(εl) max
u∈Vεl

E exp
{
λql2|X(u) − X(αl(u))|

}
≤ N(εl) max

u∈Vεl

exp
{
ϕ
(
λql2τϕ(X(u) − X(αl(u)))

)}
≤ N(εl)2 exp

{
ϕ
(
λql2σ(εl)

)}
,

where we used the inequlity τϕ(X(u) − X(αl(u)) ≤ σ(εl), since for u ∈ Vεl
we have

ρ(u, αl(u)) ≤ εl . For more details on the last chain of inequalities we can refer to the
book [4] (see, for example, the proof of Theorem 4.1, p. 102 therein). Analogously
we obtain

E exp
{
λqk max

u,v∈Vεk

|X(u) − X(v)|
}

≤ N(εk)2 max
u,v∈Vεk

exp
{
ϕ
(
λqkτϕ(X(u) − X(v))

)}
≤ N(εk)2 exp

{
ϕ
(
λqk

(
σ(ε) + 2α

pk

1 − p

))}
,

where for the last inequality we used the following estimate: for u, v ∈ Vεk
,

τϕ(X(u) − X(v)) ≤ σ(ε) + 2α
pk

1 − p
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(see Formula (2.74) in [29], or Formula (7) in [18], where a quite similar derivation
is given for the case of a square-Gaussian process).

We obtain

I ≤
(
N(εk)

) 1
qk 2

1
qk exp

{ 1

qk

ϕ
(
λqk

(
σ(ε) + 2α

pk

1 − p

))}
×

∞∏
l=k+1

(
N(εl)

) 1
ql 2

1
ql exp

{ 1

ql

ϕ
(
λql2σ(εl)

)}
= 2 exp

{ ∞∑
l=k

H(εl)

ql

+ 1

qk

ϕ
(
λqk

(
σ(ε) + 2α

pk

1 − p

))
+

∞∑
l=k+1

1

ql

ϕ
(
λql2σ(εl)

)
.

Let ql = 1
pl−k(1−p)

, l = k, k + 1, . . . . Then
∑∞

l=k
1
ql

= 1,
∑∞

l=k+1
1
ql

= p. We

have also ϕ
(
λql2σ(εl)

)
= ϕ

(
2λαpk

1−p

)
, ϕ

(
λqk(σ (ε) + 2α

pk

1−p
)
)

≤ ϕ
(

λσ(ε)(3−p)

(1−p)2

)
.

Using convexity of r(ex) we can write:

exp
{ ∞∑

l=k

H(εl)

ql

}
= exp

{ ∞∑
l=k

pl−k(1 − p)H(σ (−1)(αpl))
}

= r(−1)
(
r
(

exp
{ ∞∑

l=k

pl−k(1 − p)H(σ (−1)(αpl))
}))

≤ r(−1)
( ∞∑

l=k

pl−k(1 − p)r
(
N(σ (−1)(αpl))

))
≤ r(−1)

( 1

αpk

∫ αpk

0
r
(
N(σ (−1)(u))

))
du

≤ r(−1)
( 1

pσ(ε)

∫ σ(ε)

0
r
(
N(σ (−1)(u))

)
du

)
.

(Omitted intermediary steps can be checked, for example, in [18], see the derivation
of Formula (23).) Finally, we obtain:

I ≤2 exp
{
pϕ

(2λσ(ε)

1 − p

)
+ (1 − p)ϕ

(λσ(ε)(3 − p)

(1 − p)2

)}
× r(−1)

( 1

pσ(ε)

∫ σ(ε)

0
r
(
N(σ (−1)(u))

)
du

)
.

Theorem 3. Let X = {X(t), t ∈ T} be a ϕ-sub-Gaussian process, Conditions A.1–
A.4 hold and Ir(γ0) < ∞. Then for any p ∈ (0, 1) and any ε > 0

P
{

sup
ρ(t,s)<ε

|X(t) − X(s)| > x
}

≤ 2 exp
{

− ϕ∗( x(1 − p)2

σ(ε)(3 − p)

)}
r(−1)

(Ir (σ (ε))

pσ(ε)

)
.

(8)
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Proof. Using Theorem 2 and Chebyshev’s inequality, we obtain for any λ > 0

P
{

sup
ρ(t,s)<ε

|X(t) − X(s)| > x
}

≤ E exp
{
λ sup

ρ(t,s)<ε

|X(t) − X(s)|
}

exp{−λx}

≤ 2 exp
{
ϕ
(λσ(ε)(3 − p)

(1 − p)2

)
− λx

}
r(−1)

( 1

pσ(ε)

∫ σ(ε)

0
r(N(σ (−1)(u)))du

)
.

It remains to note that

inf
λ>0

(
− λx + ϕ

(λσ(ε)(3 − p)

(1 − p)2

))
= − sup

λ>0

(λσ(ε)(3 − p)

(1 − p)2

x(1 − p)2

σ(ε)(3 − p)
− ϕ

(λσ(ε)(3 − p)

(1 − p)2

))
= −ϕ∗( x(1 − p)2

σ(ε)(3 − p)

)
.

Remark 1. The most general results on the behavior of increments of stochastic
processes in Orlicz spaces are presented in [4] (see, e.g., Theorems 5.1, 5.2, pp. 109–
112). Specifications of these results for ϕ-sub-Gaussian processes are given in [29],
with conditions stated in terms of the entropy integrals I (ε) = ∫ ε

0 �(ln(v)) dv, ε >

0, with �(v) = v

ϕ(−1)(v)
, v > 0. In Theorems 2, 3 we state the results analogous

to Lemma 2.8, Theorem 2.9 ([29]), but under the conditions given in terms of the
entropy integral (2). We use the α-procedure technique, which is a usual approach to
derive results of this kind (see [4]). Similar results are stated in [18] for increments of
square-Gaussian processes, with conditions given in terms of the integral (2).

Remark 2. Theorem 3 suggests a way to check if a given ϕ-sub-Gaussian process is
sample continuous. Indeed, under the conditions of Theorem 3, if the right hand side

of Formula (8) tends to 0 for ε → 0, then P
{

supρ(t,s)<ε |X(t) − X(s)| > x
}

→ 0.

Therefore, as ε → 0, supρ(t,s)<ε |X(t) − X(s)| → 0 in probability, but also (due to
the monotonicity of the supremum) with probability 1. This would entail the sample
continuity of the process X = {X(t), t ∈ T} with probability 1. Theorem 3 is speci-
fied below for particular cases of σ . For example, from Corollary 5 below we can see
that for σ(h) = chβ with c > 0, 0 < β ≤ 1, and ϕ(x) = |x|α

α
, 1 < α ≤ 2 (in which

case ϕ∗(x) = |x|γ
γ

, γ ≥ 2 and 1
α

+ 1
γ

= 1), the convergence to zero of the right hand
side of Formula (8) holds. Therefore, in this case one can conclude that the process is
sample continuous with probability 1.

Corollary 4. Let under the conditions of Theorem 3, T = {ai ≤ ti ≤ bi, i =
1, 2}, ρ(t, s) = maxi=1,2 |ti − si |. Then

P
{

sup
ρ(t,s)<ε

|X(t) − X(s)| > x
}

≤ 2 exp
{

− ϕ∗( x(1 − p)2

σ(ε)(3 − p)

)}
×r(−1)

( 1

pσ(ε)

∫ σ(ε)

0
r
(( b1 − a1

2σ (−1)(u)
+ 1

)( b2 − a2

2σ (−1)(u)
+ 1

))
du

)
.
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Corollary 5. Let under the conditions of Theorem 3 and Corollary 4, T = {t =
(t1, t2) : ai ≤ ti ≤ bi, i = 1, 2}, σ(h) = chβ with c > 0, 0 < β ≤ 1. Let
κ = max{bi − ai, i = 1, 2}.

Then

P
{

sup
ρ(t,s)<ε

|X(t) − X(s)| > x
}

≤ 24/β exp
{

− ϕ∗( x(1 − p)2

cεβ(3 − p)

)}[24/β−2
κ

2

pε2 + 1
]
.

Corollary 6. Let under the conditions of Theorem 3 and Corollary 4, T = {t =
(t1, t2) : ai ≤ ti ≤ bi, i = 1, 2}, σ(h) = c(ln(eβ + 1

h
))−β with c > 0, β > 0. Let

κ = max{bi − ai, i = 1, 2}.
Then

P
{

sup
ρ(t,s)<ε

|X(t) − X(s)| > x
}

≤2 exp
{

− ϕ∗(x(1 − p)2

c(3 − p)

(
ln

(
eβ + 1

ε

))β)}
×

(
κ

2

4

)1/p(
eβ + 1

ε

) 2β
β−1

.

Proofs for Corollaries 5 and 6 are based on the same calculations as those for
Corollaries 2 and 3.

Now we investigate the rate of growth of ϕ-sub-Gaussian processes. Namely, we
present exponential upper bounds for the weighted ϕ-sub-Gaussian process defined
on the half-axis X = {X(t), t ≥ 0}.

Let us introduce the following condition.

A.5 Let a(t), t ≥ 0, be a continuous strictly increasing function such that a(t) > 0
and a(t) → ∞ as t → ∞. Introduce the sequence b0 = 0, bk+1 > bk, bk →
∞, k → ∞. Denote Bk = [bk, bk+1], k = 0, 1, . . . , ak = a(bk), εk =
supt∈Bk

τϕ(X(t)), and suppose that 0 < εk < ∞.

Denote γk = σk(bk+1 − bk), where σk are defined below in the condition (i) of
Theorem 4, and θ̃ = infk

γk

εk
.

Theorem 4. Let X = {X(t), t ≥ 0} be a ϕ-sub-Gaussian separable process and
Conditions A.4 and A.5 hold.

Suppose further that the following conditions are satisfied.

(i) There exist increasing continuous functions σk(h), h> 0, such that σk(h)→
0 as h → 0,

sup
t,s∈Bk,|t−s|≤h

τϕ(X(t) − X(s)) ≤ σk(h)

and for k = 0, 1, . . .

Ir,k(γk) =
∫ γk

0
r(NBk

(σ
(−1)
k (u)))du < ∞;

(ii) A = ∑∞
k=0

εk

ak
< ∞;



Investigation of sample paths properties for some classes of ϕ-sub-Gaussian stochastic processes 53

(iii) For any θ ∈ (0, min(1, θ̃ ))

S(θ, r) =
∞∑

k=0

εk

ak

log
(
r(−1)

(Ir,k(θεk)

θεk

))
< ∞.

Then

(i) for any θ ∈ (0, min(1, θ̃ )) and any λ > 0

E exp
{
λ sup

t>0

|X(t)|
a(t)

}
≤ 2 exp

{
ϕ
( λA

1 − θ

)}
exp

{S(θ, r)

A

}
; (9)

(ii) for any θ ∈ (0, min(1, θ̃ )) and any u > 0

P
{

sup
t>0

|X(t)|
a(t)

> u
}

≤ 2 exp
{

− ϕ∗(u(1 − θ)

A

)}
exp

{S(θ, r)

A

}
. (10)

Proof. Let rk > 0, k = 0, 1, . . . and
∑∞

k=0
1
rk

= 1. Then for any λ > 0

I (λ) = E exp
{
λ sup

t>0

|X(t)|
a(t)

}
≤ E exp

{
λ

∞∑
k=0

sup
t∈Bk

|X(t)|
ak

}
≤

∞∏
k=0

(
E exp

{
λrk sup

t∈Bk

|X(t)|
ak

}) 1
rk .

By using Theorem 1 we obtain

I (λ) ≤
∞∏

k=0

21/rk
(

exp
{
ϕ
( λrkεk

(1 − θ)ak

)}) 1
rk

(
r(−1)

(Ir,k(θεk)

θεk

)) 1
rk

= exp
{ ∞∑

k=0

ϕ
( λrkεk

(1 − θ)ak

) 1

rk

} ∞∏
k=0

21/rk
(
r(−1)

(Ir,k(θεk)

θεk

)) 1
rk

= 2 exp
{ ∞∑

k=0

ϕ
( λrkεk

(1 − θ)ak

) 1

rk

}
exp

{ ∞∑
k=0

1

rk
log

(
r(−1)

(Ir,k(θεk)

θεk

))}
.

Let rk = Aak

εk
. Then we obtain the claimed bound (9):

I (λ) ≤ 2 exp
{
ϕ
( λA

1 − θ

)}
exp

{ 1

A

∞∑
k=0

εk

ak

log
(
r(−1)

(Ir,k(θεk)

θεk

))}
.

We obtain the second bound (10) by applying Chebyshev’s inequality.

Note that under the conditions of Theorem 4 we have the estimate

Ir,k(γk) ≤ Îr,k(γk) =
∫ γk

0
r
(bk+1 − bk

2σ
(−1)
k (u)

+ 1
)
du.

Therefore, we can state Theorem 4 in terms of the integral Îr,k .
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Corollary 7. Let conditions of Theorem 4 hold with σk(h) = ckh
β , ck > 0, 0 < β ≤

1, but condition (iii) be replaced by the following one:

(iv) There exists 0 < γ ≤ 1 such that

S1 =
∞∑

k=0

ε
1− γ

β

k (bk+1 − bk)
γ c

γ
β

k

ak

< ∞.

Then

(i) for any θ ∈ (0, min(1, θ̃ )) and any λ > 0

E exp
{
λ sup

t>0

|X(t)|
a(t)

}
≤ 2

2
β
−1 exp

{
ϕ
( λA

1 − θ

)}
A1(θ);

(ii) for any θ ∈ (0, min(1, θ̃ )) and any u > 0

P
{

sup
t>0

|X(t)|
a(t)

> u
}

≤ 2
2
β
−1 exp

{
− ϕ∗(u(1 − θ)

A

)}
A1(θ),

where

A1(θ) = exp
{ S1

γA

(2
2
β
−1

θ
1
β

)γ }
.

Proof. We estimate the expression for S(θ, r) given in condition (iii) of Theorem 4
for the case when σk(h) = ckh

β , ck > 0, 0 < β ≤ 1, choosing r(x) = xα − 1, x ≥
1, 0 < α < β. We obtain

r(−1)
( Îr,k(θεk)

θεk

)
≤ 2

2
β
−1

(
1 + bk+1 − bk

θ
1
β

(ck

εk

) 1
β

2
2
β
−1

)
.

Let us use the inequality: for 0 < γ ≤ 1 and x ≥ 0, log(1 + x) ≤ xγ

γ
. Then

log
(

1 + bk+1 − bk

θ
1
β

(ck

εk

) 1
β

2
2
β
−1

)
≤ 1

γ

(bk+1 − bk

θ
1
β

(ck

εk

) 1
β

2
2
β
−1

)γ

,

and we can write the estimate for S(θ, r):

S(θ, r) ≤ log(2
2
β
−1

) + 1

γ

∞∑
k=0

ε
1− γ

β

k

ak

(bk+1 − bk)
γ
(c

1
β

k 2
2
β
−1

θ
1
β

)γ

,

from which we obtain the expression for A1(θ).
Statement (ii) follows from (i) in view of Chebyshev’s inequality.

Corollary 8. Let conditions of Theorem 4 hold with σk(h) = ck(ln(eα + 1
h
))−α ,

ck > 0, α > 1, but condition (iii) be replaced by the following one:
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(v) S2(θ) = ∑∞
k=0

εk

ak

(
ln

(
bk+1−bk

2

)
+ αc

1
α
k

(α−1)(θεk)
1
α

)
< ∞.

Then

(i) for any θ ∈ (0, min(1, θ̃ )) and any λ > 0

E exp
{
λ sup

t>0

|X(t)|
a(t)

}
≤ 2 exp

{
ϕ
( λA

1 − θ

)}
exp

{S2(θ)

A

}
;

(ii) for any θ ∈ (0, min(1, θ̃ )) and any u > 0

P
{

sup
t>0

|X(t)|
a(t)

> u
}

≤ 2 exp
{

− ϕ∗(u(1 − θ)

A

)}
exp

{S2(θ)

A

}
.

Proof. The proof is analogous to the proof of Corollary 7. With the given σk(h) and
the choice r(x) = ln(x), we obtain:

r(−1)
( Îr,k(θεk)

θεk

)
= exp

{
ln

(bk+1 − bk

2

)
+ αc

1
α

k

(α − 1)(θεk)
1
α

}
and then we estimate the expression for S(θ, r) given in condition (iii) of Theorem 4.

4 Stochastic processes related to the heat equation

In this section we consider the Cauchy problem for the heat equation

∂u

∂t
= μ

∂2u

∂2x
, t > 0, x ∈ R, μ > 0, (11)

subject to the random initial condition

u(0, x) = η(x), x ∈ R, (12)

where η(x), x ∈ R, is a stochastic process.
We will follow the approach used in the paper [14] for the case where η is a

sub-Gaussian process. Here instead we suppose that η is a ϕ-sub-Gaussian process.
Introduce the following assumption.

H.1 η(x), x ∈ R, is a real, measurable, mean-square continuous stationary (in wide
sense) stochastic process, which is strictly ϕ-sub-Gaussian with the determin-
ing constant cη (see Definition 4).

Recall that Eη(x) = 0, x ∈ R, since the process η is ϕ-sub-Gaussian.
Let B(x), x ∈ R, be a covariance function of our stationary process η(x), x ∈ R,

therefore, we have the representation

B(x) =
∫
R

cos(λx)dF (λ), (13)
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where F(λ) is a spectral measure, and for the process itself we can write the spectral
representation

η(x) =
∫
R

eiλxZ(dλ). (14)

The stochastic integral (14) is considered as L2(�) integral. The orthogonal com-
plex-valued random measure Z is such that E|Z(dλ)|2 = F(dλ).

Consider the process {u(t, x), t > 0, x ∈ R} defined by

u(t, x) =
∫
R

g(t, x − y)η(y)dy, (15)

where

g(t, x) = 1

(4πμt)1/2 exp
{

− x2

4μt

}
, t > 0, x ∈ R, (16)

is the fundamental solution to the heat equation (11).
In view of the representation (14), the process given by (15) can be written in the

form

u(t, x) =
∫
R

exp
{
iλx − μtλ2

}
Z(dλ). (17)

The process (17) can be interpreted as the mean-square or L2(�) solution to the
Cauchy problem (11)–(12), as justified in [14]. Note that the random solution in the
form (17) to the heat equation with stationary initial condition appears already in the
paper by Rosenblatt [26] (see Formula (1.11) therein).

Theorem 5. Let u(t, x), t > 0, x ∈ R, be the stochastic process given by (17) and
Assumption H.1 hold. Then the following statements hold:

1) if fore some ε ∈ (0, 1] ∫
R

λ4εF (dλ) < ∞, (18)

then

σ(h) := sup
t,t1∈[a,b]:|t−t1|≤h;
x,x1∈[c,d]:|x−x1|≤h

τϕ(u(t, x) − u(t1, x1)) ≤ σ1(h) = cηc1(ε)h
ε, (19)

where

c1(ε) =
( ∫

R

(μ2ελ4ε + 4λ2ε)F (dλ)
)1/2; (20)

2) if for some α > 0 ∫
R

(
ln(1 + |λ|)

)2α

F (dλ) < ∞, (21)

then

σ(h) ≤ σ2(h) = cηc2(α)
(

ln
(
eα + 1

h

))−α

, (22)

where

c2(α) =
( ∫

R

([
ln(eα + μλ2)

]2α + 4
[

ln(eα + 1

2
|λ|)

]2α)
F(dλ)

)1/2
. (23)
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Proof. The process u(t, x) is strictly ϕ-sub-Gaussian with the determining constant
cη. Therefore, we can write

sup
|t−t1|≤h;
|x−x1|≤h

τϕ(u(t, x) − u(t1, x1)) ≤ cη sup
|t−t1|≤h;
|x−x1|≤h

(
E(u(t, x) − u(t1, x1))

2
)1/2

. (24)

We need to evaluate the expression in the right hand side of Formula (24). From
this point the proof is the same as that of Theorem 3.1 in [14]. So, we just present the
main steps.

We will use below some calculations from [14].
The covariance function of the process (17) is of the form

Cov
(
u(t, x), u(t1, x1)

)
=

∫
R

exp
{
iλ(x − x1) − μλ2(t + t1)

}
F(dλ)

and

E

(
u(t, x) − u(t1, x1)

)2 =
∫
R

|b(λ)|2F(dλ), (25)

where
b(λ) = exp{iλx} exp{−μλ2t} − exp{iλx1} exp{−μλ2t1}.

From Formula (3.11) from [14] we have:

|b(λ)| ≤
(

1 − exp
{

− μλ2|t − t1|
})2 + 4 sin2(

1

2
λ(x − x1)).

For |t − t1| ≤ h and |x − x1| ≤ h we can write for any ε ∈ (0, 1] (see [14]):

4 sin2(
1

2
λ(x − x1)) ≤ 4 min

(h

2
|λ|, 1

)2ε

(26)

and (
1 − exp

{
− μλ2|t − t1|

})2 ≤
(

min(μλ2h, 1)
)2ε

(27)

(taking into account that |x| ≤ |x|ε for |x| < 1, ε ∈ (0, 1]).
Using (26)–(27) we estimate the integral in the right hand side (25) for |t−t1| ≤ h

and |x − x1| ≤ h.
Therefore, under Condition (18) we can write the bound (19).
For the second statement we use the bound

min
(u

v
, 1

)
<

( ln(eα + u)

ln(eα + v)

)α

(28)

for u > 0, v > 0, α > 0 (see, for example, [14, Lemma 3.1], [17, Lemma 2.1]).
We estimate (25) by using (26)–(28). Then under Assumption (21) we obtain the

bound (22).

From Theorem 5 and Corollaries 2 and 3 we derive now the estimate for the
distribution of supremum of the field u(t, x) considered in the domain {a ≤ t ≤
b, c ≤ x ≤ d}.

Denote ε̃0 = supa≤t≤b;
c≤x≤d

τϕ(u(t, x)), κ = max(b − a, d − c), θ̃i = σi(κ)/̃ε0,

i = 1, 2, where σ1 and σ2 are defined in (19) and (22) respectively.



58 O. Hopkalo, L. Sakhno

Theorem 6. Let u(t, x), a ≤ t ≤ b, c ≤ x ≤ d , be a separable modification of the
stochastic process given by (17) and Assumption H.1 hold. Then the following bounds
for the distribution of supremum hold:

1) if for some β ∈ (0, 1] ∫
R

λ4βF (dλ) < ∞,

then for all 0 < θ < min(1, θ̃1) and u > 0

P
{

sup
a≤t≤b;
c≤x≤d

|u(t, x)| > u
}

≤ 2 exp
{

− ϕ∗(u(1 − θ)

ε̃0

)}
Ã1(θ ε̃0),

where

Ã1(θ ε̃0) = 2
4
β
−1

( (κcηc
1/β

1 )222(2/β−1)

(θ ε̃0)2/β
+ 1

)
,

c1 = c1(β) is given by Formula (20);
2) if for some β > 1 ∫

R

(
ln(1 + |λ|)

)2β

F (dλ) < ∞,

then for all 0 < θ < min(1, θ̃2) and u > 0

P
{

sup
a≤t≤b;
c≤x≤d

|u(t, x)| > u
}

≤ 2 exp
{

− ϕ∗(u(1 − θ)

ε̃0

)}
Ã2(θ ε̃0),

where

Ã2(θ ε̃0) = κ
2

4
exp

{ 2βcηc
1/β
2

(θ ε̃0)1/β(β − 1)

}
,

c2 = c2(β) is given by (23).

Proof. The assertion of this theorem follows directly from Theorem 5 and Corollaries
2 and 3. We need only to check that ε̃0 = supa≤t≤b;

c≤x≤d

τϕ(u(t, x)) < ∞. We have indeed

ε̃0 ≤ cη sup
a≤t≤b;
c≤x≤d

(
E|u(t, x)|2

)1/2

≤ cη sup
a≤t≤b;
c≤x≤d

( ∫
R

exp{−2μλ2t}F(dλ)
)1/2 ≤ cη

( ∫
R

F(dλ)
)1/2

< ∞.

Consider now the process u(t, x), (t, x) ∈ V , defined on the unbounded domain
of the form V = [0,∞) × [−A,A].

Define the sets Vk = [bk, bk+1] × [−A,A], k = 0, 1, . . . , where a family {[bk,

bk+1], k = 0, 1, . . . } is introduced in Condition A.5, here we suppose additionally
bk+1 − bk ≥ 2A, and V = ∪∞

k=0Vk . Denote εk = sup(t,x)∈Vk
τϕ(u(t, x)), θ̂i =

infk {σi(bk+1 − bk)/εk}, i = 1, 2, where σ1 and σ2 are defined in (19) and (22)
respectively.
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Theorem 7. Let {u(t, x), (t, x) ∈ V } be a separable modification of the stochas-
tic process given by (17), Condition H.1 hold, and Condition A.5 hold with εk =
sup(t,x)∈Vk

τϕ(u(t, x)). Suppose that for some β ∈ (0, 1]∫
R

λ4βF (dλ) < ∞;

A =
∞∑

k=0

εk

ak

< ∞;

and there exists 0 < γ ≤ 1 such that

Ŝ1 =
∞∑

k=0

ε
1−2γ /β

k (bk+1 − bk)
2γ

ak

< ∞.

Then for any θ ∈ (0, min(1, θ̂1)) and any u > 0

P
{

sup
(x,t)∈V

|u(t, x)|
a(t)

> u
}

≤ 24/β−1 exp
{

− ϕ∗(u(1 − θ)

A

)}
Â1(θ),

where

Â1(θ) = exp
{ (cηc1(β))2γ /β Ŝ1

γA

(24/β−2

θ2/β

)γ }
,

and c1(β) is given by Formula (20).

Theorem 8. Let {u(t, x), (t, x) ∈ V } be a separable modification of the stochas-
tic process given by (17), Condition H.1 hold, and Condition A.5 hold with εk =
sup(t,x)∈Vk

τϕ(u(t, x)). Suppose that for some β > 1 and any θ ∈ (0, min(1, θ̂2))∫
R

(
ln(1 + |λ|)

)2β

F (dλ) < ∞;

A =
∞∑

k=0

εk

ak

< ∞;

Ŝ2(θ) =
∞∑

k=0

εk

ak

{
ln

(bk+1 − bk

2

)
+ β

β − 1

(cηc2(β)

θεk

)1/β}
< ∞,

where c2(β) is given by Formula (23).
Then for any u > 0

P
{

sup
(x,t)∈V

|u(t, x)|
a(t)

> u
}

≤ 2 exp
{

− ϕ∗(u(1 − θ)

A

)}
exp

{2Ŝ2(θ)

A

}
.

For the proof we note that Theorem 4 and Corollaries 7 and 8 can be straight-
forwardly extended to the stochastic processes u(t, x) defined on the domains of the
form {(t, x) ∈ [0,∞) × [−A,A]} with corresponding definition of εk and σk .

Then Theorems 7 and 8 can be derived from such generalization of Corollaries 7
and 8 and Theorem 6.
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5 Conclusions and future studies

The upper bounds for the distribution of increments for ϕ-sub-Gaussian processes
are stated in Theorems 2, 3 in the forms different than those obtained previously in
[4, 29] and other literature on the topic. This form of bounds can be more useful in
particular situations, as one can calculate the bounds explicitly. We address to the
future research the investigation of their exact expressions for different functions ϕ,
in particular, by graphical methods.

Theorem 4 and Corollaries 7, 8 on the rate of growth of ϕ-sub-Gaussian processes
generalize Theorem 2.4 [6] (which is stated for Gaussian case) and are different from
the analogous results in [20] stated for ϕ-sub-Gaussian processes. The use of the
integral (2) allows to simplify some expressions in the statements of the results, and,
correspondingly, to simplify their application for study of solutions to the random
heat equation.

The results on the distribution of supremum for the processes related to the heat
equations with ϕ-sub-Gaussian initial conditions generalize the corresponding results
from papers [13, 14] where sub-Gaussian initial conditions were considered. The
results on the rate of growth under this setting was not stated before. Note that the
results obtained in Section 4 hold also for Gaussian and sub-Gaussian case, with
substitution ϕ(x) = x2

2 in the corresponding bounds. Due to the use of Theorem 1,
which is based on the entropy integral (2), for the Gaussian and sub-Gaussian case
our bounds appear in the form which is simpler but somewhat different from the
corresponding bounds in [13, 14]. We postpone for the future research the accurate
comparison of these bounds, in particular, by simulation studies.

In the future studies it would be also interesting to study the cases of generalized
heat equations with random initial conditions, in particular, equations of fractional
order (for possible models of equations we address, for example, to papers [3, 24, 25]
among many others). One can also consider some other classes of equations with
fundamental solutions being of the form which allows to construct and investigate
random solutions by the methods of the present paper.
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