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Abstract In a continuous time nonlinear regression model the residual correlogram is con-
sidered as an estimator of the stationary Gaussian random noise covariance function. For this
estimator the functional central limit theorem is proved in the space of continuous functions.
The result obtained shows that the limiting sample continuous Gaussian random process co-
incides with the limiting process in the central limit theorem for standard correlogram of the
random noise in the specified regression model.
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1 Introduction

Estimation of the signal parameters in the “signal+noise” observation model is a clas-
sic problem of statistics of stochastic processes. If the signal (regression function)
nonlinearly depends on parameters, then this is a problem of nonlinear time-series
regression analysis. Another problems arise when there is a need to estimate the func-
tional characteristics of the correlated random noise in the given functional regression
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model. For the stationary noise it can be estimation of the noise spectral density or co-
variance function. Asymptotic properties of the Whittle and Ibragimov estimators of
spectral density parameters in the continuous time nonlinear regression model were
considered in Ivanov and Prykhod’ko [16, 15], Ivanov et al. [17]. Exponential bounds
for the probabilities of large deviations of the stationary Gaussian noise covariance
function in the similar regression model are obtained in Ivanov et al. [11]. Stochas-
tic asymptotic expansion and asymptotic expansions of the bias and variance of the
residual correlogram in the same setting were derived in Ivanov and Moskvychova
[21, 19]. In both cases it is first necessary to estimate the parameters of the regres-
sion function to neutralize it influence, and then use residual periodogram to estimate
spectrum parameters and residual correlogram to estimate covariance function. The
residual correlogram generalizes the notion of the averaged residual sum of squares
in classical regression analysis.

However, unlike the residual sum of squares and usual correlogram, the results on
the residual correlogram are not sufficiently represented in statistical literature except
for a few theorems for discrete time linear regression with stationary correlated obser-
vation errors (see Anderson [1], Hannan [8]). These statements were obtained using
explicit expressions for the least squares estimator (LSE) of unknown regression pa-
rameters. In the multitude of works dealing with stationary stochastic processes in the
correlograms the values of the processes are centered by their sample means that are
the LSE of their expectations. Some field generalizations of such a centering can be
found in Leonenko [22].

In this paper we prove the functional central limit theorem (CLT) in the space
of continuous functions for the normed residual correlogram as an estimator of the
stationary Gaussian random noise covariance function in continuous time nonlinear
regression model. The first result of such a kind has been obtained in Ivanov and
Moskvychova [20]. In current paper we significantly weakened the requirements to
the regression function under which the indicated CLT is true, namely: brought them
closer to the conditions of the LSE asymptotic normality [18]. In addition we replaced
the condition for the existence of a certain moment of the noise spectral density by
much weaker condition on the weighted spectral density admissibility with respect
to regression function spectral measure. In the last section of the paper we apply our
result to the trigonometric regression.

2 Setting

Suppose the observations are of the form

X(t) = g(t, θ0) + ε(t), t ∈ [0,+∞), (1)

where g : (−γ,+∞) × �γ → R is a continuous function depending on unknown
parameter θ0 = (θ0

1 , . . . , θ0
q ) ∈ � ⊂ R

q , � is an open convex set, �γ = ⋃
‖e‖≤1(�+

γ e), γ is some positive number, and ε is a random noise described below.

Remark 1. The assumption about domain (−γ,+∞) for function g in t is of techni-
cal nature and does not affect possible applications. This assumption makes it possible
to formulate the condition RN1(i) which is used in the proof of Lemma 3.
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N1. (i) ε = {ε(t), t ∈ R} is a real sample continuous stationary Gaussian process
defined on a complete probability space (�,F, P ), Eε(0) = 0;

(ii) covariance function B = {B(t), t ∈ R} of the process ε is absolutely inte-
grable.

Obviously, if B ∈ L1(R), then the process ε has a bounded and continuous spec-
tral density f = {f (λ), λ ∈ R}.
Definition 1. LSE of unknown parameter θ0 ∈ � obtained by observations of the
process {X(t), t ∈ [0, T ]} is said to be any random vector θ̂T = (θ̂1T , . . . , θ̂qT ) ∈ �c

(�c is the closure of � in R
q ) such that

QT (θ̂T ) = min
τ∈�c

QT (τ), QT (τ) =
T∫

0

[X(t) − g(t, τ )]2 dt, (2)

provided that the minimum in (2) is attained a.s.

The existence of at least one such a vector follows from the Pfanzagl results [23].
As an estimator of B we take the residual correlogram built by residuals

X̂(t) = X(t) − g(t, θ̂T ), t ∈ [0, T + H ],
namely:

BT (z, θ̂T ) = T −1

T∫
0

X̂(t + z)X̂(t)dt, z ∈ [0,H ], (3)

H > 0 is some fixed number. In particular BT (0, θ̂T ) = T −1QT (θ̂T ) is LSE of the
variance B(0) of stochastic process ε. On the other hand

BT (z, θ0) = BT (z) = T −1

T∫
0

ε(t + z)ε(t)dt, z ∈ [0,H ], (4)

is the correlogram of the process ε.
From the condition N1 it follows that integrals (3) and (4) can be considered

as Riemann integrals based on single paths of the corresponding processes and
BT (z, θ̂T ), BT (z), z ∈ [0,H ], are sample continuous stochastic processes.

Consider the normalized residual correlogram

XT (z) = T 1/2 (BT (z, θ̂T ) − B(z)
) = YT (z) + RT (z), z ∈ [0,H ],

YT (z) = T 1/2 (BT (z) − B(z)) , z ∈ [0,H ],
RT (z) = T −1/2I1T (z) + T −1/2I2T (z) + T −1/2I3T (z), z ∈ [0,H ], (5)

with

I1T (z) =
T∫

0

(g(t + z, θ̂T ) − g(t + z, θ))(g(t, θ̂T ) − g(t, θ))dt, (6)
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I2T (z) =
T∫

0

ε(t + z)(g(t, θ̂T ) − g(t, θ))dt, (7)

I3T (z) =
T∫

0

ε(t)(g(t + z, θ̂T ) − g(t + z, θ))dt. (8)

We will consider the processes XT , YT , and RT as random elements in the mea-
surable space (C([0,H ]),B) of continuous functions on [0,H ] with Borel σ -algebra
B.

Let Z be a random element in the indicated space. The distribution of Z is the
probability measure PZ−1 on (C([0,H ]),B).

Definition 2. A family {UT } of random elements converges in distribution, as T →
∞, to a random element U in the space C([0,H ]) (we write UT

D−→ U ), if the
distributions PU−1

T of elements UT converge weakly, as T → ∞, to the distribution
PU−1 of the element U .

Since f ∈ L2(R) under assumption N1(ii), as it is well known, for any z1, z2 ∈
[0,H ], as T → ∞,

EYT (z1)YT (z2) −→ b(z1, z2) = 4π

∫
R

f 2(λ) cos λz1 cos λz2 dλ. (9)

and (see, e.g., Buldygin [3]) all the finite-dimensional distributions of the processes
YT weakly converge, as T → ∞, to the Gaussian process Y with zero mean and
covariance function (9).

We assume that the process Y is separable.
Introduce the function (see section 6.4 of the chapter 6 in Buldygin and Kozachen-

ko [4])

q(z) =
⎛⎝∫

R

f 2(λ) sin2 λz

2
dλ

⎞⎠1/2

, h ≥ 0.

If f ∈ L2(R), the function q generates pseudometrics

ρ(z1, z2) = q(|z1 − z2|), √
ρ(z1, z2) = √

ρ(z1, z2), z1, z2 ∈ R.

Denote by H√
ρ(ε) = H√

ρ([0, 1], ε), ε > 0, the metric entropy of the interval [0, 1]
generated by the pseudometric

√
ρ,
∫

0+ the integral over an arbitrary neighborhood
of zero (0, δ), δ > 0.

Below we are going to formulate a theorem obtained in Buldygin and Kozachenko
[4] (Theorem 6.4.1) under milder conditions than ours. In the absence of assumption
on sample continuity of the process ε from the condition f ∈ L2(R) it follows that
correlograms can be understood, as continuous in probability with respect to the pa-
rameter z Riemann meansquare integrals. Due to Lemma 6.4.1 in [4] we can conclude
that processes YT , T > 0, are likewise continuous in probability. Thus, it can be as-
sumed that the processes YT , T > 0, are separable.
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Theorem 1. Let f ∈ L2(R) and

N2.

∫
0+

H√
ρ(ε)dε < ∞.

Then for any H > 0 I) Y ∈ C([0,H ]) a.s.; II) YT ∈ C([0,H ]) a.s., T > 0;

III) YT
D−→ Y , as T → ∞, in the space C([0,H ]).

In particular, for any x > 0

lim
T →∞ P

{
sup

z∈[0,H ]
|YT (z)| > x

}
= P

{
sup

z∈[0,H ]
|Y(z)| > x

}
.

Corollary 1. The conclusion of the Theorem 1 is true under conditions N1 and N2.
(see Theorem 6.4.1 in [11]).

As it is shown in the Remark 6.4.1 in [4] the condition N2 is satisfied if for some
δ > 0

∞∫
0

f 2(λ) ln4+δ(1 + λ)dλ < ∞. (10)

In turn (10) follows from the condition f ∈ L2(R) under natural restrictions on the
decreasing of the spectral density f at infinity (see Theorem 6.4.2 in [4])

Taking into account the Theorem 1, we state a simple but important fact that is a
rephrasing for C([0,H ]) of the Theorem 3.1 in Billingsley [2], p. 27. For functions
a(z), z ∈ [0,H ], we will write ‖a‖ = supz∈[0,H ] |a(z)|.
Lemma 1. If YT

D−→ Y and

‖RT ‖ P−→ 0, as T → ∞, (11)

then XT
D−→ Y , as T → ∞.

Thus, to obtain a functional theorem in C([0,H ]) on asymptotic normality of the
normalized residual correlogram XT it is required to prove (11).

3 Conditions

To prove (11) we need some regularity conditions imposed on the regression function
g, spectral density f and LSE θ̂T .

Assume that for any t > −γ the function g(t, θ) is twice continuously differen-
tiable with respect to θ ∈ �γ , and moreover, the derivatives gi(t, θ) = ∂/∂θig(t, θ),
gij (t, θ) = (

∂2/∂θi∂θj

)
g(t, θ), i, j = 1, q, are continuous in the totality of vari-

ables. Denote

dT (θ) = diag
(
diT (θ), i = 1, q

)
, d2

iT (θ) =
T∫

0

g2
i (t, θ)dt, θ ∈ �, i = 1, q,
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and suppose that

lim inf
T →∞ T −1d2

iT (θ) > 0, θ ∈ �, i = 1, q,

in particular, these limits can be infinite. Let also

dij,T (θ) =
T∫

0

g2
ij (t, θ)dt, θ ∈ �, i, j = 1, q.

Introduce now the normalized LSE ûT = dT (θ0)
(
θ̂T − θ0

)
, θ0 ∈ �, and the

notation h(t, u) = g(t, θ0 + d−1
T (θ0)u), hi(t, u) = gi(t, θ

0 + d−1
T (θ0)u), hij (t, u) =

gij (t, θ
0 + d−1

T (θ0)u), u ∈ UT (θ0) = dT (θ0)
(
�c − θ0

)
, i, j = 1, q; v(r) =

{u ∈ R
q : ‖u‖ < r};

�T (θ1, θ2) =
T∫

0

(g(t, θ1) − g(t, θ2))
2 dt, θ1, θ2 ∈ �c;

�iT (z1, z2; θ) =
T∫

0

(gi(t + z1, θ) − gi(t + z2, θ))2 dt,

z1, z2 ≥ 0, θ ∈ �c, i = 1, q. (12)

Instead of the words “for all sufficiently large T ” we will write below “for T >

T0”. Assume that the following conditions are satisfied.
R1. There exists a constant k0 < ∞ such that for any θ0 ∈ � and T > T0, where

k0 and T0 may depend on θ0,

�T (θ, θ0) ≤ k0‖dT (θ0)(θ − θ0)‖2, θ ∈ �c. (13)

R2. For any r ≥ 0 θ0 ∈ �, and T > T0(r)

(i) d−1
iT (θ0) supt∈[0,T ],u∈V c(r)∩UT (θ0) |hi(t, u)| ≤ ki(r)T −1/2, i = 1, q;

(ii) d−1
ij,T (θ0) supt∈[0,T ],u∈V c(r)∩UT (θ0) |hij (t, u)| ≤ kij (r)T −1/2, i, j = 1, q;

(iii) d−1
iT (θ0)d−1

jT (θ0)d−1
ij,T (θ0) ≤ k̃ij T −1/2, i, j = 1, q, with constants ki , kij ,

k̃ij , possibly, depending on θ0.
R3. There exist constants ki < ∞, i = 1, q, such that for any θ0 ∈ � and T > T0,

where ki and T0 may depend on θ0,

d−2
iT (θ0)�iT (z1, z2; θ0) ≤ ki |z1 − z2|2, z1, z2 ∈ [0,H ]. (14)

Lemma 2. If condition R2(i) is fulfilled for r = 0, then for any fixed H > 0 and
θ0 ∈ �

di,T +H (θ0)d−1
iT (θ0) −→ 1, as T → ∞, i = 1, q.
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Proof. We have

qi = d2
i,T +H (θ0)d−2

iT (θ0) = 1 +
⎛⎝ T +H∫

T

g2
i (t, θ

0)dt

⎞⎠ d−2
iT (θ0) ≤

≤ 1 + H sup
0≤t≤T +H

|gi(t, θ
0)|2d−2

i,T +H (θ0)qi ≤ 1 + k2
i (0)

H

T + H
qi.

Then for T > T0

1 ≤ qi ≤ 1

1 − k2
i (0)H(T + H)−1

, and qi → 1, as T → ∞, i = 1, q.

For basic observation model (1), we introduce a family of matrix-valued mea-
sures μT (dλ; θ), θ ∈ �, T > 0, on (R,L(R)), L(R) is the σ -algebra of Lebesgue
measurable subsets of R, with matrix densities with respect to Lebesgue measure(
μ

jl
T (λ, θ)

)q
j,l=1, θ ∈ �,

μ
jl
T (λ, θ) = g

j
T (λ, θ)gl

T (λ, θ)

⎛⎝∫
R

∣∣∣gj
T (λ, θ)

∣∣∣2 dλ

∫
R

∣∣∣gl
T (λ, θ)

∣∣∣2 dλ

⎞⎠−1/2

,

g
j
T (λ, θ) =

T∫
0

eiλtgj (t, θ)dt, j, l = 1, q. (15)

by Plancherel identity

∫
R

g
j
T (λ, θ)gl

T (λ, θ)dλ = 2π

T∫
0

gj (t, θ)gl(t, θ)dt, (16)

in particular,

d2
jT (θ) = (2π)−1

∫
R

∣∣∣gj
T (λ, θ)

∣∣∣2 dλ, j, l = 1, q. (17)

R4. The family of measures μT (dλ; θ) converges weakly to a positive definite
matrix measure μ(dλ; θ) = (

μjl(dλ; θ)
)q
j,l=1, as T → ∞, θ ∈ �.

Condition R4 means that the elements μjl(dλ; θ) of the matrix measure μ(dλ; θ)

are complex signed measures of bounded variation and the matrix μ(A; θ) is positive
semi-definite for any A ∈ L, and μ(R; θ) is a positive definite matrix, θ ∈ �.

Definition 3. The measure μ(dλ; θ), θ ∈ �, is called the spectral measure of the
regression function g(t, θ), or, more precisely, the spectral measure of the gradient
∇g(t, θ), θ ∈ �, see Grenander [6], Holevo [9], Ibragimov and Rozanov [10], and
Ivanov and Leonenko [14].
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Taking into account (16), (17) and condition R4 we get

μT (R; θ) =
∫
R

μT (dλ; θ) =
⎛⎝d−1

jT (θ)d−1
lT (θ)

T∫
0

gj (t, θ)gl(t, θ)dt

⎞⎠q

j,l=1

=

= JT (θ) −→ J (θ) =
∫
R

μ(dλ; θ) > 0, as T → ∞, θ ∈ �.

AN. The random vector dT (θ0)(θ̂T − θ0) is asymptotically, as T → ∞, normal
with zero mean and covariance matrix

�LSE = 2π

⎛⎝∫
R

μ(dλ; θ0)

⎞⎠−1 ∫
R

f (λ)μ(dλ; θ0)

⎛⎝∫
R

μ(dλ; θ0)

⎞⎠−1

.

Sufficient conditions of the assumption AN fulfillment are bulky. These condi-
tions are given in [14] and, for example, in Ivanov et al. [18]. At least, conditions R2
and R4 form the part of these conditions in [18].

Consider the diagonal elements (measures) μjj , j = 1, q, of the matrix spectral
measure μ.

Definition 4 (Billingsley [2], Ibragimov and Rozanov [10]). A function b(λ), λ ∈ R,
is called μjj -admissible, if it is integrable with respect to μjj and∫

R

b(λ)μ
jj
T (dλ; θ) −→

∫
R

b(λ)μjj (dλ; θ), as T → ∞, θ ∈ �. (18)

RN. For some δ ∈ (0, 1] the function b(λ) = |λ|1+δf (λ), λ ∈ R, is μjj -
admissible, j = 1, q.

Consider some sufficient conditions on μjj -admissibility of the function b from
assumption RN under condition N1(ii).

N3. sup
λ∈R

|λ|1+δ f (λ) < ∞.

Under condition N3 the relation (18) follows from N1(ii) and definition of weak con-
vergence. Denote

(∂/∂t)gj (t, θ) = g′
j (t, θ), g̃

j
T (λ, θ) =

T∫
0

eiλtg′
j (t, θ)dt (19)

and introduce the next condition
RN1. (i) The functions gj (t, θ), θ ∈ �, are continuously differentiable with

respect to t > −γ , and there exists λ0 = λ0(θ) > 0 such that for T > T0(θ)

sup
|λ|>λ0

d−2
jT (θ)|g̃j

T (λ, θ)|2 ≤ hj (θ) < ∞, j = 1, q, θ ∈ �. (20)
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(ii) There exists λ1 > 0 such that for λ > λ1 the function λ1+δf (λ) strictly
increases, and

|λ|1+δf (λ) −→ ∞, as λ → ∞.

(iii)
∫
R

|λ|1+δf (λ)μjj (dλ; θ) < ∞, j = 1, q, θ ∈ �.

Lemma 3. Conditions N1(ii), RN1, R2(i) fulfilled for r = 0, and R4 imply the con-
ditions RN.

Proof. For M > 0 consider the cut-off function

bM(λ) = b(λ)χ{λ : b(λ) ≤ M} + Mχ{λ : b(λ) > M},∣∣∣∣∣∣
∫
R

b(λ)μ
jj
T (dλ; θ) −

∫
R

b(λ)μjj (dλ; θ)

∣∣∣∣∣∣ ≤

≤
∣∣∣∣∣∣
∫
R

b(λ)μ
jj
T (dλ; θ) −

∫
R

bM(λ)μ
jj
T (dλ; θ)

∣∣∣∣∣∣+
+
∣∣∣∣∣∣
∫
R

bM(λ)μ
jj
T (dλ; θ) −

∫
R

bM(λ)μjj (dλ; θ)

∣∣∣∣∣∣+
+
∣∣∣∣∣∣
∫
R

bM(λ)μjj (dλ; θ) −
∫
R

b(λ)μjj (dλ; θ)

∣∣∣∣∣∣ =

= K1j (T ,M) + K2j (T ,M) + K3j (M), j = 1, q.

By Lebesgue monotonic convergence theorem from RN1(iii) we get

K3j (M) −→ 0, as M → ∞. (21)

Under conditions N1(ii) and R4 for any fixed M > 0

K2j (T ,M) −→ 0, as T → ∞. (22)

On the other hand,

K1j (T ,M) = (2π)−1
∫

{λ:b(λ)>M}
(b(λ) − M)d−2

jT (θ)|gj
T (λ, θ)|2dλ ≤

≤ (2π)−1
∫

{λ:b(λ)>M}
b(λ)d−2

jT (θ)|gj
T (λ, θ)|2dλ.

Integrating by parts we obtain (see (15) and RN1(i))

|gj
T (λ, θ)| = |λ|−1

∣∣∣eiλT gj (T , θ) − gj (0, θ) − g̃
j
T (λ, θ)

∣∣∣ ≤
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≤ |λ|−1

(
2 sup

t∈[0,T ]
|gj (t, θ)| + |g̃j

T (λ, θ)|
)

.

Thus under condition R2(i) with r = 0

d−2
jT (θ)

∣∣∣gj
T (λ, θ)

∣∣∣2 ≤ λ−2

(
4d−2

jT (θ) sup
t∈[0,T ]

∣∣gj (λ, θ)
∣∣2 + 2d−2

T (θ)

∣∣∣g̃j
T (λ, θ)

∣∣∣2)

K1j (T ,M) ≤ 2k2
j (0)π−1T −1

∫
{λ:b(λ)>M}

|λ|−1+δf (λ)dλ+

+π−1
∫

{λ:b(λ)>M}
|λ|−1+δf (λ)d−2

jT (θ)

∣∣∣̃gj
T (λ, θ)

∣∣∣2 dλ =

= K
(1)
1j (T ,M) + K

(2)
1j (T ,M).

Let ε > 0 be an arbitrary fixed number. Since integral in K
(1)
1j (T ,M) is majorized by

the spectral moment
∫
R

|λ|−1+δf (λ)dλ < ∞, then for T > T0 we have K
(1)
1j (T ,M) ≤

ε/4.
Put maxλ∈[0,λ1] b(λ) = b(λ̄1) for some λ̄1 ≥ λ1, where λ1 is the number from the

condition RN1(ii). Let also � > 0 is such a number that b(λ) > M = b(�) > b(λ̄1).
In this case {λ : b(λ) > M} = {λ : |λ| > �}, and if � ≥ λ0, then for T > T0 from
the condition RN1(i) we get

K
(2)
1j (T ,M) = π−1

∫
{λ:|λ|>�}

|λ|−1+δf (λ)d−2
jT (θ)|g̃j

T (λ, θ)|2dλ ≤

≤ π−1hj (θ)

∫
{λ:|λ|>�}

|λ|−1+δf (λ)dλ.

Now by the choice of �, that is by the choice of cut-off level M = b(�), we
get the inequality K

(2)
1j (T ,M) < ε/4. Increasing � if necessary, from (21) we ob-

tain K3j (T ,M) < ε/4. As well increasing T0 if necessary, we receive from (22)
K2j (T ,M) < ε/4.

4 Asymptotic normality of the residual correlogram

In this section, we formulate and prove the CLT for the normalized residual correl-
ogram {XT (z), z ∈ [0,H ]} in the Banach space of continuous functions C ([0,H ])
with uniform norm.

Theorem 2. If the conditions N1, N2, R1–R4, AN, and RN are satisfied, then

XT (·) = T 1/2 (BT

(·, θ̂T

)− B(·)) D−→ Y, as T → ∞. (23)

In view of the Theorem 1 and Lemma 1 of Section 2, to obtain (23) it is suffi-
cient to prove (11). So, taking into account the expressions (5)–(8), the proof of the
Theorem 2 consists of 3 lemmas.
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Lemma 4. If conditions R1, R2(i) for r = 0, and AN are fulfilled, then

T −1/2 ‖I1T ‖ P−→ 0, as T → ∞.

Proof. Obviously, by conditions R1, Lemma 2

T −1/2 ‖I1T ‖ ≤ T −1/2�
1/2
T (θ̂T , θ0)�

1/2
T +H (θ̂T , θ0) ≤

≤ k0

(
max

1≤j≤q
di,T +H (θ0)d−1

i,T (θ0)

)∥∥∥T −1/2dT (θ0)(θ̂T − θ0)

∥∥∥ ·
∥∥∥dT (θ0)(θ̂T − θ0)

∥∥∥ ,

and T −1/2 ‖I1T ‖ P−→ 0, as T → ∞, due to the condition AN.

We will use the notation αiT = diT (θ0)(θ̂iT − θ0
i ), i = 1, q.

Lemma 5. Under conditions N1, R2(ii), R2(iii), R4, RN, and AN

T −1/2 ‖I2T ‖ P−→ 0, as T → ∞.

Proof. Apply the Taylor formula to the integral T −1/2I2T and write

T −1/2I2T =
q∑

j=1

d−1
jT (θ0)

T∫
0

ε(t + z)gj (t, θ
0)dt

(
T −1/2αjT

)
+

+1

2

q∑
i,j=1

d−1
iT (θ0)d−1

jT (θ0)

⎛⎝ T∫
0

ε(t + z)gij (t, θ
∗
T )dt

⎞⎠αiT

(
T −1/2αjT

)
=

=
∑

1,T
(z) + 1

2

∑
2,T

(z), θ∗
T = θ + η

(
θ̂T − θ0

)
, η ∈ (0, 1) a.s. (24)

Consider sample continuous Gaussian stochastic processes

ξjT (z) = d−1
jT (θ0)

T∫
0

ε(t + z)gj (t, θ
0)dt, z ∈ [0,H ], T > 0, j = 1, q.

Subject R4, as T → ∞,

BjT (z1 − z2) = EξjT (z1)ξjT (z2) =

= d−2
jT (θ0)

T∫
0

T∫
0

B(t − s + z1 − z2)gj (t, θ
0)gj (s, θ

0)dtds =

= 2π

∫
R

eiλ(z1−z2)f (λ)μ
jj
T (dλ, θ0) −→ 2π

∫
R

cos λ(z1 − z2)f (λ)μjj (dλ, θ0) =

= Bj (z1 − z2), z1, z2 ∈ [0,H ]. (25)

Thus all finite-dimensional distributions of the stationary Gaussian processes{
ξjT (z), z ∈ [0,H ]} converge to the corresponding finite-dimensional distributions
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of the stationary Gaussian processes ξj = {
ξj (z), z ∈ [0,H ]} with covariance func-

tions Bj (z), z ∈ [0,H ], j = 1, q. We assume, that the processes ξj , j = 1, q, are
separable.

Since by condition RN for some δ ∈ (0, 1]

kj (δ, θ
0) =

∫
R

|λ|1+δf (λ)μjj (λ, θ0) < ∞, j = 1, q,

then

E
(
ξj (z1) − ξj (z2)

)2 = 2
(
Bj (0) − Bj (z1 − z2)

) ≤
≤ 22−δπkj (δ, θ

0)|z1 − z2|1+δ, z1, z2 ∈ [0,H ].
According to the Kolmogorov theorem (see, for example, Gikhman and Sko-

rokhod [5]) the processes ξj are sample continuous. Moreover, under condition RN
for T > T0

E
(
ξjT (z1) − ξjT (z2)

)2 = 2
(
BjT (0) − BjT (z1 − z2)

) ≤
≤ 22−δπ

(
kj (δ, θ

0) + 1
)

|z1 − z2|1−δ.

So, ξjT
D−→ ξj , as T → ∞ j = 1, q, in the space C([0,H ]) and (see again [5])

for all continuous on C([0,H ]) functionals � the distribution of �(ξjT ) converges, as
T → ∞, to the distribution of �(ξj ). Using the same notation for weak convergence

of random variables, in particular, we obtain
∥∥ξjT

∥∥ D−→ ∥∥ξj

∥∥ , j = 1, q, and (see
(24))

‖
∑

1T
‖ ≤

q∑
j=1

∥∥ξjT

∥∥ (T −1/2|αjT |
)

P−→ 0, as T → ∞.

Let s∗
T = T −1

∫ T

0 ε2(t)dt . Then

2T∫
0

|ε(t)|dt ≤ T (1 + s∗
2T ). (26)

Note that ‖dT (θ)(θ∗
T − θ0)‖ ≤ ‖dT (θ0)(θ̂T − θ0)‖, and if the events

AT (r) =
{
dT (θ0)(θ̂T − θ0) ≤ r

}
, A∗

T = {
s∗

2T ≤ 1 + B(0)
}

occur, then

sup
t∈[0,T ]

∣∣gij (t, θ
∗
T )
∣∣ ≤ sup

t∈[0,T ],u∈V c(r)∩UT (θ0)

∣∣hij (t, u)
∣∣ ,

and by the conditions R2(ii), R2(iii) for the norm of any term
∑ij

2,T of the sum
∑

2,T

we get the upper bound∥∥∥∥∑ij

2,T

∥∥∥∥ ≤
(
T 1/2d−1

iT (θ0)d−1
jT (θ0)dij,T (θ0)

)
(1 + s∗

2T )×
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×
(

T 1/2d−1
ij,T (θ0) sup

t∈[0,T ],u∈V c(r)∩UT (θ0)

∣∣hij (t, u)
∣∣ |αiT |(T −1/2|αjT |)

)
≤

≤ r2kij (r)̃kij (r)(2 + B(0))T −1/2. (27)

Under condition AN for any δ > 0 it is possible to find r > 0 such that for T > T0(δ)

P
{
AT (r)

}
< δ. (28)

On the other hand, by Isserlis’ theorem (see, for example, [14])

P
{
A∗

T

}
≤ E

(
s∗

2T − B(0)
)2 = 2(2T )−2

2T∫
0

2T∫
0

B2(t − s)dtds ≤

≤ ‖B‖2
2T

−1, ‖B‖2 =
⎛⎝∫

R

B2(t)dt

⎞⎠1/2

< ∞. (29)

From the inequalities (27)–(29) it follows∥∥∥∑
2,T

∥∥∥ P−→ 0, as T → ∞.

Lemma 6. Under conditions N1, R2–R4, RN, and AN

T −1/2 ‖I3T ‖ P−→ 0, T → ∞.

Proof. We write

T −1/2I3T (z) =
q∑

j=1

d−1
jT (θ0)

T∫
0

ε(t)gj (t + z, θ0)dt
(
T −1/2αjT

)
+

+1

2

q∑
i,j=1

d−1
iT (θ0)d−1

jT (θ0)

⎛⎝ T∫
0

ε(t)gij (t + z, θ∗
T )dt

⎞⎠αiT

(
T −1/2αjT

)
=

=
∑

3,T
(z) +

∑
4,T

(z),

where the random vector θ∗
T is of the form (24).

Consider sample continuous Gaussian processes

ηjT (z) = d−1
jT (θ0)

T∫
0

ε(t)gj (t + z, θ0)dt, z ∈ [0,H ], T > 0, j = 1, q.
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For z1, z2 ∈ [0,H ] we have

EηjT (z1)ηjT (z2) = d−2
jT (θ0)

T∫
0

T∫
0

B(t − s)gj (t + z1, θ
0)gj (s + z2, θ

0)dtds =

= d−2
jT (θ0)

T +z1∫
z1

T +z2∫
z2

B(t − s + z2 − z1)gj (t, θ
0)gj (s, θ

0)dtds, (30)

and the double integral in (30) can be symbolically written as

T +z1∫
z1

T +z2∫
z2

=
⎛⎝ T∫

0

+
T +z1∫
T

−
z1∫

0

⎞⎠⎛⎝ T∫
0

+
T +z2∫
T

−
z2∫

0

⎞⎠ .

Bound the integral∣∣∣∣∣∣d−2
jT (θ0)

T∫
0

T +z2∫
T

∣∣∣∣∣∣ ≤
⎛⎝ T +z2∫

T

T∫
0

B2(t − s + z2 − z1)dtds

⎞⎠1/2

×

×
⎛⎝d−2

jT (θ0)

T +z2∫
T

g2
j (s, θ

0)ds

⎞⎠1/2

≤

≤ H 1/2‖B‖2

(
d−2
jT (θ0)

(
d2
j,T +H (θ0) − d2

jT (θ0)
))1/2 −→ 0, as T → ∞,

due to Lemma 2. Similarly d−2
jT (θ0)

∫ T +z1
0

∫ T

0 −→ 0, as T → ∞. Also it is easy to
see that∣∣∣∣∣∣d−2

jT (θ0)

T∫
0

z2∫
0

∣∣∣∣∣∣ ≤ H 1/2‖B‖2 djH (θ0)d−1
jT (θ0) −→ 0, d−2

jT

z1∫
0

T∫
0

−→ 0,

∣∣∣∣∣∣d−2
jT (θ0)

T +z1∫
T

T +z2∫
T

∣∣∣∣∣∣ ≤ HB(0)d−2
jT (θ0)

T +H∫
T

g2
j (t, θ

0)dt −→ 0,

∣∣∣∣∣∣d−2
jT (θ0)

z1∫
0

T +z2∫
T

∣∣∣∣∣∣ ≤ HB(0)djH (θ0)d−1
jT (θ0)

⎛⎝d−2
jT (θ0)

T +H∫
T

g2
j (s, θ

0)ds

⎞⎠1/2

−→ 0,

d−2
jT (θ0)

T +z1∫
0

z2∫
0

−→ 0, d−2
jT (θ0)

z1∫
0

z2∫
0

−→ 0, as T → ∞.

Thus for any z1, z2 ∈ [0,H ] and j = 1, q.

EηjT (z1)ηjT (z2) = BjT (z1 − z2) + ojT (1), ojT (1) −→ 0, as T → ∞,
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and all finite-dimensional distributions of the Gaussian processes {ηjT (z), z ∈ [0,H ]},
j = 1, q, converge, as T → ∞, to the corresponding finite-dimensional distributions
of the stationary Gaussian processes ξj , j = 1, q, with covariance functions (25).

Besides, under conditions N1(ii) and R3

E
(
ηjT (z1) − ηjT (z2)

)2 = d−2
jT (θ0)

T∫
0

T∫
0

B(t − s)
(
gj (t + z1, θ

0) − gj (t + z2, θ
0)
)
×

×
(
gj (s + z1, θ

0) − gj (s + z2, θ
0)
)

dtds ≤

≤ d−2
jT (θ0)

T∫
0

T∫
0

|B(t − s)|
(
gj (t + z1, θ

0) − gj (t + z2, θ
0)
)2

dtds ≤

≤ ‖B‖1d
−2
jT (θ0)�jT (z1, z2; θ0) ≤ kj‖B‖1|z1 − z2|2,

z1, z2 ∈ [0,H ], j = 1, q, ‖B‖1 = ∫
R

|B(t)|dt < ∞.

We have proved that ‖ηjT ‖ D−→ ‖ξj‖, j = 1, q, and from the condition AN it
follows ∑

3,T
‖ P−→ 0, as T → ∞.

Note further that similarly to (26)
∫ T

0 |ε(t)|dt ≤ T
2 (1 + s∗

T ), and if the events

AT (r), B∗
T = {

s∗
T ≤ 1 + B(0)

}
occur, then the norm of any term

∑ij

4,T , of the sum∑
4,T can be dominated in the following way (compare with (27)):∥∥∥∥∑ij

4,T

∥∥∥∥ ≤ 1

2

(
(T + H)1/2d−1

i,T +H (θ0)d−1
j,T +H (θ0)dij,T +H (θ0)

)
×

×
(
d−1
iT (θ0)di,T +H (θ0)

) (
d−1
jT (θ0)dj,T +H (θ0)

)
×

×(T + H)1/2d−1
ij,T +H (θ0) sup

t∈[0,T +H ],u∈V c(r)∩UT (θ0)

∣∣hij (t, u)
∣∣×

×T (T + H)−1(1 + s∗
T ) |αiT |

(
T −1/2

∣∣αjT

∣∣) ≤

≤ 1

2
(1 + β)2r2kij (r)̃kij (r)(2 + B(0))T −1/2 (31)

for any β > 0 and T > T0. In addition (compare with (29)),

P
{

B∗
T

}
≤ 2‖B‖2

2T
−1, (32)

and from (28), (31), and (32) we obtain

‖
∑

4,T
‖ P−→ 0, as T → ∞.

Theorem 2 is proved as well.
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Remark 2. In the proofs of the sections 3 and 4 the condition R2(i) has been used
just for r = 0. However this condition is used for any r ≥ 0 in the proof of LSE θ̂T

asymptotic normality: see explanation in the example below.

5 Trigonometric regression function

In this section, we consider the example of trigonometric regression function

g(t, θ0) =
N∑

k=1

(
A0

k cos ϕ0
k t + B0

k sin ϕ0
k t
)

, (33)

where

θ0 = (θ0
1 , θ0

2 , θ0
3 , . . . , θ0

3N−2, θ
0
3N−1, θ

0
3N) =

(
A0

1, B
0
1 , ϕ0

1 , . . . , A0
N,B0

N, ϕ0
N

)
,

(34)

(
C0

k

)2 = (
A0

k

)2 + (
B0

k

)2
> 0, k = 1, N , ϕ0 = (

ϕ0
1 , . . . , ϕ0

N

) ∈ �(ϕ, ϕ),

�(ϕ, ϕ) =
{
ϕ = (ϕ1, . . . , ϕN) ∈ R

N : 0 ≤ ϕ < ϕ1 < · · · < ϕN < ϕ < +∞
}

.

To apply the results obtained in the paper to the function (33), we have to change
a bit the Definition 1 of the LSE. We will use the following modification of LSE
proposed by Walker [24], see also Ivanov [12, 13]. Consider non-decreasing system
of open convex sets ST ⊂ �(ϕ, ϕ), T > T0 > 0, given by the condition that the true
value of unknown parameter ϕ0 ∈ ST , limT →∞ ST = �(ϕ, ϕ), and

lim
T →∞ inf

1≤j<k≤N,ϕ∈ST

T (ϕk − ϕj ) = +∞, lim
T →∞ inf

ϕ∈ST

T ϕ1 = +∞. (35)

Definition 5. The LSE in the Walker sense of unknown parameter (34) in the model
(1) with regression function (33) is said to be any random vector

θ̂T = (
Â1T , B̂1T , ϕ̂1T , . . . , ÂNT , B̂NT , ϕ̂NT

) ∈ �c
T (36)

having the property

QT (θ̂T ) = min
τ∈�c

T

QT (τ),

where QT (τ) is defined in (2) and �T ⊂ R
3N is such that Ak ∈ R, Bk ∈ R, k = 1, N ,

and ϕ ∈ ST .

The relations (35) allows to distinguish the parameters ϕk , k = 1, N , and prove
the consistency of the LSE θ̂T in the Walker sense, see [24, 12, 13], and [18].

Corollary 2. Suppose the assumption (35) is satisfied for the LSE in the Walker
sense of the parameters (33). Then under conditions N1 and N2 the relation (23) of
Theorem 2 holds true.
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Proof. Due to the smoothness of function (33) with respect to the totality of vari-
ables, there is no need to introduce conditions for the differentiability of the function
g by the variables θ in the set �γ and by the variable t in the set (−γ,+∞), as it was
done in the main part of the paper for technical necessity.

To check the fulfillment of the condition R1 for regression function (33) we get∣∣∣Ak cos ϕkt + Bk sin ϕkt − A0
k cos ϕ0

k t − B0
k sin ϕ0

k t

∣∣∣ ≤
≤
∣∣∣Ak − A0

k

∣∣∣+ ∣∣∣Bk − B0
k

∣∣∣+ (∣∣∣A0
k

∣∣∣+ ∣∣∣B0
k

∣∣∣) t

∣∣∣ϕk − ϕ0
k

∣∣∣ , k = 1, N,

and therefore

�T (θ, θ0) ≤ 3N

N∑
k=0

(
T
(
Ak − A0

k

)2 + T
(
Bk − B0

k

)2 +

+1

3

(∣∣∣A0
k

∣∣∣+ ∣∣∣B0
k

∣∣∣)2
T 3
(
ϕk − ϕ0

k

)2
)

. (37)

Note that for k = 1, N

T −1d2
3k−2,T (θ0), T −1d2

3k−1,T (θ0) −→ 1

2
, T −3d2

3k,T (θ0) −→ 1

6
C0

k

2
, as T → ∞.

(38)

Thus for any ε > 0 and T > T0 = T0(ε) from (38) it follows

T d−2
3k−2,T (θ0) < 2 + ε, T d−2

3k−1,T (θ0) < 2 + ε, T 3d−2
3k,T (θ0) < 6(C0

k )−2 + ε.

(39)

Increasing T0, if necessary, we obtained from (37) and (39)

�T (θ, θ0) ≤ 3N

N∑
1

(
(2 + ε)d2

3k−2,T (θ0)
(
Ak − A0

k

)2 +

+(2 + ε)d2
3k−1,T (θ0)

(
Bk − B0

k

)2 +

+
(

2
(∣∣A0

k

∣∣+ ∣∣B0
k

∣∣)2
C0

k

2 + ε

)
d2

3k,T (θ0)
(
ϕk − ϕ0

k

)2
)

. (40)

So, as it follows from (40), for any θ0 ∈ � and ε > 0 there exists T0 > 0 such
that for T > T0 the inequality (13) of the condition R1 is satisfied with constant
k0 ≥ 12N + ε.

In the conditions R2(i) and R2(ii), instead of sets UT (θ0), one should take sets
ŨT (θ0) = dT (θ0)

(
�c

T − θ0
)
, and verification of conditions R2 for function (33) is

routine.
Check condition R3 (see (12), (14)). Obviously, for k = 1, N

g′
3k−2(t, θ) = −ϕk sin ϕkt, g′

3k−1(t, θ) = ϕk cos ϕkt,

g′
3k(t, θ) = −Ak sin ϕkt − Aktϕk sin ϕkt + Bk cos ϕkt − Bktϕk sin ϕkt.

(41)
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Let z1 < z2, then

|g3k(t + z1, θ) − g3k(t + z2, θ)| = ∣∣g′
3k(t

∗, θ)
∣∣ |z1 − z2|,

where t∗ = t + z1 + ν(z2 − z1) ≤ t + H , ν ∈ (0, 1) is some number.
Using formula (41), we obtain∣∣∣g′

3k(t
∗, θ0)

∣∣∣2 ≤ 2A0
k

2
∣∣∣sin ϕ0

k t
∗ + ϕ0

k t
∗ sin ϕ0

k t∗
∣∣∣2 +

+2B0
k

2
∣∣∣cos ϕ0

k t∗ − ϕ0
k t∗ sin ϕ0

k t
∗
∣∣∣2 ≤ 2C0

k

2
(1 + ϕ(H + t))2 . (42)

From (39) and (42) it follows for any ε > 0, θ0 ∈ �, and T > T0 the inequalities (14)
are correct with constants ki ≥ 4ϕ2 + ε, if i = 3k, k = 1, N . Similarly we obtain the
inequalities (14) with constants ki ≥ 2ϕ2 + ε, if i = 3k − 2, 3k − 1, k = 1, N .

Passing to condition R4, we note that the spectral measures of the trigonometric
regression were studied by Whittle [25], Walker [24], Hannan [7], Ivanov [12], Ivanov
et al. [18]. For regression function (33) spectral measure μ(dλ; θ0), θ0 ∈ �, is a
block-diagonal matrix diag

(
Mk(θ

0), k = 1, N
)
, where

Mk(θ
0) =

⎡⎣ δk iρk βk

−iρk δk γ k

βk γk δk

⎤⎦ , (43)

βk =
√

3

2C0
k

(B0
k δk + iA0

kρk), γk =
√

3

2C0
k

(−A0
kδk + iB0

k ρk),

with δk = δk(dλ), and the signed measure ρk = ρk(dλ) being located at the points

±ϕ0
k , k = 1, N . Moreover, δk

({±ϕ0
k

}) = 1

2
, ρk ({±ϕk}) = ±1

2
, k = 1, N . On the

other hand,

μT (R; θ0) =
∞∫

−∞
μ(dλ; θ0) = J (θ0) = diag

(
Jk(θ

0), k = 1, N
)

, (44)

Jk(θ
0) =

⎡⎢⎣ 1 0
√

3
2 B0

k (C0
k )−1

0 1 −
√

3
2 A0

k(C
0
k )−1

√
3

2 B0
k (C0

k )−1 −
√

3
2 A0

k(C
0
k )−1 1

⎤⎥⎦ .

Since det Jk = 1

4
, the matrix (44) is positive definite. Practically the components

of the matrix-valued measure μ(dλ; θ) = (
μjl(dλ; θ)

)q
j,l=1, q = 3N in our example,

are determined from relations

Rjl(h, θ) = lim
T →∞ d−1

jT (θ0)d−1
lT (θ0)

T∫
0

gj (t + h, θ)gl(t, θ)dt =
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=
∫
R

eiλhμjl(dλ; θ), h ∈ R,

where it is supposed that the matrix function
(
Rjl(h; θ)

)q
j,l=1 is continuous at h = 0.

As to the condition AN fulfillment for trigonometric regression function (33) in
the paper Ivanov et al. [18], it is shown using relations (38) that normalized LSE in
the Walker sense(

T 1/2
(
Â1T − A0

1

)
, T 1/2

(
B̂1T − B0

1

)
, T 3/2

(
ϕ̂1T − ϕ0

1

)
, . . . ,

T 1/2
(
ÂNT − A0

N

)
, T 1/2

(
B̂NT − B0

N

)
, T 3/2

(
ϕ̂NT − ϕ0

N

))
is asymptotically, as T → ∞, normal N

(
0,
∑

T RIG

)
, where

∑
T RIG is a block-

diagonal matrix with blocks

4πf (ϕ0
k )

(C0
k )2

⎡⎣ (A0
k)

2 + 4(B0
k )2 −3A0

kB
0
k −6B0

k−3A0
kB

0
k (A0

k)
2 + 4(B0

k )2 6A0
k−6B0

k 6A0
k (A0

k)
2 + 4(B0

k )2

⎤⎦ , k = 1, N.

To obtain such a result, it was first proved in [18] that the normalized estimator
(36) is weakly consistent, that is, for any r > 0

P
{∥∥∥T −1/2dT (θ0)(θ̂T − θ0)

∥∥∥ ≥ r
}

−→ 0, as T → ∞.

Then, under a complex set of conditions for general regression function asymptotic
normality of the LSE of its parameters was proved. And finally, it was verified that
the trigonometric regression function satisfies the specified set of conditions. It is
important to note that the proofs of the asymptotic normality of the LSE complying
with Definition 1 and Definition 5 are the same.

It remains to check the last condition RN associated with the regression function
(33). As mentioned above under assumptions N1 and N3 the condition RN follows
from N1, R4. If the function b(λ), λ ∈ R, is not bounded, then we verify the conver-
gence (18) using Lemma 3.

First of all for θ0 ∈ � in view of (43)∫
R

|λ|1+δf (λ)μ3k−i,3k−i (dλ; θ0) = (ϕ0
k )1+δf (ϕ0

k ) < ∞, i = 0, 1, 2, k = 1, N,

and RN1(iii) is true. Suppose that the condition RN(ii) is also satisfied. It can, for
example, happen when outside of some neighborhood of zero the spectral density

f (λ), λ ∈ R, will behave as a function
C

|λ| lna(1 + |λ|) , a > 1.

Using formulas (41) and the fact that it can be taken, for example, |λ| > ϕ + 1 =
λ0 in calculating the integrals (19), there are no non-integrable singularities of the

form
1

λ ± ϕ0
k

, k = 1, N . Moreover, in the considered example a sharpened version of

inequalities (20) of the condition RN(i) holds:

sup
|λ|>λ0

d−2
jT (θ0)

∣∣∣̃gj
T (λ, θ0)

∣∣∣2 ≤ hj (θ
0)T −1, j = 1, 3N, θ0 ∈ �.
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