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Abstract We consider the cable equation in the mild form driven by a general stochastic
measure. The averaging principle for the equation is established. The rate of convergence is
estimated. The regularity of the mild solution is also studied. The orders in time and space
variables in the Holder condition for the solution are improved in comparison with previous
results in the literature on this topic.
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1 Introduction

Averaging methods are important for describing and investigating the asymptotic be-
havior of dynamical systems. Therefore, the theory of the averaging principle for
stochastic differential equations is a fascinating modern topic and many mathemati-
cians work quite actively within this field. For instance, a weak order in averaging
for wave equations with L2-valued Wiener processes is studied in [14]. Bao et al. [3]
considered two-time-scale equations with α-stable noises. Strong and weak orders in
averaging for stochastic partial differential equations with Wiener processes are given
in [10, 11, 13].

The averaging principle for fractional differential equations driven by Lévy noise
is established by Shen et al. [31]. Wang and Xu [34] investigated the stochastic av-
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eraging method for neutral stochastic delay equations driven by fractional Brownian
motion with Hurst parameter H ∈ (1/2, 1). Other interesting examples of studying of
averaging for stochastic differential equations can be found in papers [1, 12, 15, 18].

The averaging principle for equations driven by general stochastic measures is
considered in [6, 22, 23, 26, 30].

Our aim here is to establish the averaging principle for the cable equation driven
by stochastic measure studied in [25]. For this purpose we also improve the orders of
the Hölder condition for the mild solution with respect to space and time variables
obtained in [25, Theorem 5.1] (see Theorem 1 below).

Properties of the mild solutions to stochastic partial differential equations are
studied in a number of papers. In particular, the existence and uniqueness of a solution
for the class of non-autonomous parabolic stochastic partial differential equations de-
fined on a bounded open subset D ⊂ R

d and driven by an L2(D)-valued fractional
Brownian motion with the Hurst index H > 1/2 are proved in [28]. In [2] the ergodic
property of the solution to a fractional stochastic heat equation is established. Wave
equations with general stochastic measures and α-stable distributions are investigated
in the papers [5, 7, 8, 24] and [20, 29, 19], respectively.

Let L0(�,F , P) be the set of all real-valued random variables defined on a com-
plete probability space (�,F , P), X be an arbitrary set and B(X) be a σ -algebra of
Borel subsets of X. Let μ be a stochastic measure on B(X), i.e. a σ -additive map-
ping μ : B(X) → L0(�,F , P). Such μ is also called a general stochastic measure
(see, for example, [17, Section 7]). Examples of stochastic measures can be found in
[17, 21, 30].

Consider the mild solution to the following equation:⎧⎪⎨⎪⎩
∂uε(t, x)

∂t
= ∂2uε(t, x)

∂x2 − uε(t, x) + σ(t/ε, x) μ̇(x),

uε(0, x) = u0(x),
∂uε(t, 0)

∂x
= ∂uε(t, L)

∂x
= 0,

(1)

where (t, x) ∈ [0, T ] × [0, L], T > 0, L > 0, ε > 0, and μ is a stochastic measure
defined on the Borel σ -algebra B([0, L]).

Let G be the fundamental solution of the homogeneous cable equation, that is

G(t, x, y) = e−t

√
4πt

∞∑
n=−∞

(
e− (y−x−2nL)2

4t + e− (y+x−2nL)2

4t

)
(2)

(see, for example, [33, p. 312] or [32, equality (5.69B)]). Then the mild solution of
problem (1) is given by the formula

uε(t, x) =
∫ L

0
G(t, x, y)u0(y) dy +

∫
[0,L]

dμ(y)

∫ t

0
G(t − s, x, y)σ (s/ε, y) ds . (3)

We study the convergence

uε(t, x) → ū(t, x) , ε → 0 ,
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where ū(t, x) is the mild solution of the averaged equation, that is,

ū(t, x) =
∫ L

0
G(t, x, y)u0(y) dy +

∫
[0,L]

dμ(y)

∫ t

0
G(t − s, x, y)σ̄ (y) ds , (4)

and

σ̄ (x) = lim
t→∞

1

t

∫ t

0
σ(s, x) ds . (5)

The rest of the paper is organized as follows. Section 2 contains some basic facts
concerning the estimates of stochastic integrals with respect to general stochastic
measures. In Section 3, we study the Hölder regularity of the mild solution of the
cable equation with respect to the set of all variables. The averaging principle for the
cable equation is established in Section 4.

2 Preliminaries

To prove the convergence of solutions, we will apply an estimate of a stochastic in-
tegral using the norm of the Besov space Bα

22([b, c]), α ∈ (1/2, 1), b, c ∈ R (see,
for example, [16]). Bα

22([b, c]) is the space of functions g : [b, c] → R such that the
norm

‖g‖Bα
22([b,c]) = ‖g‖L2([b,c]) +

(∫ c−b

0

(
w2,[b,c](g, r)

)2
r−2α−1 dr

)1/2
, (6)

is finite. Here

w2,[b,c](g, r) = sup
0≤h≤r

(∫ c−h

b

|g(s + h) − g(s)|2 ds

)1/2

.

Denote

�
(L)
kn = ((k − 1)2−nL, k2−nL], n ≥ 0, 1 ≤ k ≤ 2n.

Let Z be an arbitrary set and a function g(y, z) : [0, L] × Z → R be such that
g(·, z) is continuous on [0, L] for all z ∈ Z. Put

gn(y, z) = g(0, z)1{0}(y) +
∑

1≤k≤2n

g((k − 1)2−nL, z)1
�

(L)
kn

(y).

By [27, Lemma 3], the random function

η(z) =
∫

[0,L]
g(y, z)dμ(y), z ∈ Z,

has a version

η̃(z) =
∫

[0,L]
g0(y, z)dμ(y)

+
∑
n≥1

(∫
[0,L]

gn(y, z)dμ(y) −
∫

[0,L]
gn−1(y, z)dμ(y)

)
,
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such that, for all ε > 0, ω ∈ �, z ∈ Z,

|̃η(z)| ≤ |g(0, z)μ([0, L])|

+
⎧⎨⎩∑

n≥1

2nε
∑

1≤k≤2n

∣∣g(k2−nL, z) − g((k − 1)2−nL, z)
∣∣2⎫⎬⎭

1
2

×
⎧⎨⎩∑

n≥1

2−nε
∑

1≤k≤2n

∣∣∣μ (�(L)
kn

)∣∣∣2
⎫⎬⎭

1
2

.

This version is the same for all z ∈ Z.
According to [16, Theorem 1.2], [21, Lemma 3.2] and [9, inequality (6)], we have

|̃η(z)| ≤ |g(0, z)μ([0, L])|

+ C‖g(·, z)‖Bα
22([0,L])

⎧⎨⎩∑
n≥1

2−nε
∑

1≤k≤2n

∣∣∣μ (�(L)
kn

)∣∣∣2
⎫⎬⎭

1
2

,
(7)

where α = ε/2 + 1/2, the constant C depends on α, t and does not depend on z, ω.
Here and in what follows the same symbol C denotes some positive constants that

may be different in different places of the paper. The precise values of these constants
are not important for our purposes.

3 Regularity of the mild solution of a cable equation

Regularity of the mild solution

u(t, x) =
∫ L

0
G(t, x, y)u0(y) dy +

∫
[0,L]

dμ(y)

∫ t

0
G(t − s, x, y)σ (s, y) ds , (8)

of a cable equation driven by a general stochastic measure is studied in [25]. It was
proved there that the paths of the solution are Hölder continuous. The following con-
ditions was considered.

Condition 1. The function σ(s, y) : [0, T ] × [0, L] → R has the derivative ∂2σ
∂t∂x

,
which is continuous with respect to the pair of arguments.

Condition 2. The function u0(y) = u0(y, ω) : [0, L] × � → R is measurable
and has the derivative ∂u0

∂y
, which is continuous with respect to y and bounded for all

fixed ω ∈ �.
By [25, Theorem 5.1], if Conditions 1–2 hold, then for all fixed δ > 0, γ2 < 1/18,

and γ1 < 1/6, function (8) has a version ũ(t, x) such that

|ũ(t1, x1) − ũ(t2, x2)| ≤ Lũ(ω)
(|t1 − t2|γ2 + |x1 − x2|γ1

)
, (9)

for all t1, t2 ∈ [δ, T ], x1, x2 ∈ [0, L] and for some Lũ(ω) > 0.
The proof of Theorem 5.1 ([25]) uses the Hölder regularity of the mild solution

of a heat equation that is established in [21]. Restrictions γ1 < 1/6 and γ2 < 1/18
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for relation (9) are due to the restrictions for the corresponding orders of the Hölder
condition for the stochastic integrals from the heat equation (see [21, Lemma 5.1 and
Lemma 6.1]). But now we can use the results of [4], which improve Hölder continuity
orders obtained in [21]. Namely, the Hölder regularity with γ1 < 1/2 and γ2 < 1/4
for the mild solution of a parabolic equation with a stochastic measure is proved in
[4, Lemma 1 and Lemma 2].

The following assumptions are used in the rest of the paper.
A1. The function u0(y) = u0(y, ω) : [0, L] × � → R is measurable and Hölder

continuous, that is

|u0(y1) − u0(y2)| ≤ Lu0(ω)|y1 − y2|β(u0) , β(u0) > 0.

A2. σ(s, y) : R+ × [0, L] → R is measurable, bounded and Hölder continuous
in s ∈ R+, y ∈ [0, L], that is

|σ(s, y)| ≤ Cσ ,

|σ(s1, y1) − σ(s2, y2)| ≤ Lσ

(
|s1 − s2|β(σ ) + |y1 − y2|β(σ )

)
, 1/2 < β(σ) < 1.

A3. Limit (5) exists and �(r, y) = ∫ t

0 [σ(s, y) − σ̄ (y)] ds is bounded for all
t ∈ R+, y ∈ [0, L].
Theorem 1. Let Assumptions A1–A2 hold. Then there exists a version ũ(t, x) of the
random function u(t, x) defined by (8) such that for all fixed δ > 0, γ̃2 < 1/4 ∧
(β(σ ) − 1/2) and γ̃1 < 1 − 1/(2β(σ)), γ̃1 ≤ β(u0), we have

|ũ(t1, x1) − ũ(t2, x2)| ≤ Cũ(ω)
(|t1 − t2|γ̃2 + |x1 − x2|γ̃1

)
, (10)

for all t1, t2 ∈ [δ, T ] and x1, x2 ∈ [0, L] and for some constant Cũ(ω) > 0.

Proof. The reasoning is the same as that used in [25] with some differences. We
have divided the proof into 3 steps: the Hölder continuity of the stochastic integral
with respect to the space variable; the Hölder continuity of the stochastic integral with
respect to the time variable and the Hölder continuity of the function u(t, x).

Step 1. By obtaining the Hölder condition for the stochastic integral with respect
to the space variable we get the analogues of [25, inequalities (3.1) and (3.2)]. We use
Assumption A2 instead of Condition 1.

For any fixed x1, x2 ∈ [0, L], and for y ∈ [0, L], h ∈ [0, L − y], put

F = |fn(s, x2, y + h) − fn(s, x1, y + h) − fn(s, x2, y) + fn(s, x1, y)|
≤ |fn(s, x2, y + h) − fn(s, x1, y + h)| + |fn(s, x2, y) − fn(s, x1, y)|
= F1 + F2,

where notation

fn(s, x, y) = e−(t−s)

√
4π(t − s)

e
− (y−x−2nL)2

4(t−s) σ (s, y)

is used (see [25]).
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Consider n �= 0, 1. By A2, we have

F2 ≤ Cσ√
π(4(t − s))3/2

|x1 − x2|2(|n| + 1)Le
− min{(y−x1−2n)2,(y−x2−2n)2}L2

4(t−s)

≤ C

(t − s)3/2 |x1 − x2| · |n|e− (2|n|−1)2L2

4(t−s) .

For details see the method used for obtaining bound (35) below. The same estimation
holds for term F1. Therefore,

F ≤ C

(t − s)3/2 |x1 − x2| · |n|e− (2|n|−1)2L2

4(t−s) . (11)

On the other hand,

F ≤ |fn(s, x1, y + h) − fn(s, x1, y)| + |fn(s, x2, y + h) − fn(s, x2, y)|
= F̃1 + F̃2.

Since the function σ is bounded and Hölder continuous (by Assumption A2), and
(t − s)−1/2 ≤ T (t − s)−3/2, we obtain

F̃1 ≤ 1√
4π(t − s)

e
− (y−x1−2nL)2

4(t−s) |σ(s, y + h) − σ(s, y)|

+ 1√
4π(t − s)

∣∣∣∣e− (y+h−x1−2nL)2

4(t−s) − e
− (y−x1−2nL)2

4(t−s)

∣∣∣∣ |σ(s, y + h)|

≤ C

(t − s)3/2

(
Lσ hβ(σ)+ Cσ h2(|n| + 1)Le

− min{(y−x1−2n)2,(y+h−x1−2n)2}L2

4(t−s)

)

≤ C

(t − s)3/2 hβ(σ) · |n|e− (2|n|−1)2L2

4(t−s) .

The same estimate holds for term F̃2. Hence,

F ≤ C

(t − s)3/2 hβ(σ) · |n|e− (2|n|−1)2L2

4(t−s) . (12)

Raise the inequality (12) to the power θ1 and multiply by inequality (11) raised to
the power 1 − θ1, for an arbitrary θ1 ∈ (0, 1). We have

F ≤ C

(t − s)3/2 |x1 − x2|1−θ1hθ1β(σ ) · |n|e− (2|n|−1)2L2

4(t−s) , (13)

for all n �= 0.
For the same reason,

|fn(s,−x2, y + h) − fn(s,−x1, y + h) − fn(s,−x2, y) + fn(s,−x1, y)|

≤ C

(t − s)3/2 |x1 − x2|1−θ1hθ1β(σ ) · |n|e− min{(2n)2,(2n−2)2}L2

4(t−s) ,
(14)

for all n �= 0, 1.
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Further, we can repeat the proof of Theorem 3.1 ([25]). Instead of using bounds
(3.1) and (3.2) of [25], we can use inequalities (13) and (14) above. The integral from
(6) is finite if θ1β(σ) > 1/2. Thus we get the Hölder condition with respect to the
space variable of the order

γ̃1 = 1 − θ1 < 1 − 1

2β(σ)
<

1

2
.

Besides, as mentioned above, we use [4, Lemma 1 and Lemma 2] instead of [21,
Lemma 5.1 and Lemma 6.1] in the case of n = 0, 1.

Step 2. The reasoning is the same in the case of the Hölder property with respect
to the time variable. Given x and t1 < t2 use the notation of paper [25], that is

f̄n(t, s, y) = e−(t−s)

√
4π(t − s)

(
e
− (y−x−2nL)2

4(t−s) + e
− (y+x−2nL)2

4(t−s)

)
σ(s, y), n ∈ Z,

Ḡ(1)(t, s, y) =
∑

n�=0,1

f̄n(t, s, y),

and

ḡ(y) =
∫ t2

0
Ḡ(1)(t2, s, y)ds −

∫ t1

0
Ḡ(1)(t1, s, y)ds. (15)

Moreover, denote

Ḡ1(t, s, y) =
∑

n�=0,1

e−(t−s)

√
4π(t − s)

(
e
− (y−x−2nL)2

4(t−s) + e
− (y+x−2nL)2

4(t−s)

)
.

Now we consider the case of n �= 0, 1, since the case of n = 0, 1 is the same as
in the [25] with reference to [4, Lemma 1 and Lemma 2] instead of [21, Lemma 5.1
and Lemma 6.1] respectively. Namely, we get Hölder continuity of the order 1/4 for
these terms.

We use the change of variables s → s + t2 − t1 in the first integral of (15) and
obtain

ḡ(y) =
∫ t1

t1−t2

Ḡ1(t1, s, y)σ (s + t2 − t1, y)ds −
∫ t1

0
Ḡ1(t1, s, y)σ (s, y)ds

=
∫ 0

t1−t2

Ḡ(1)(t2, s + t2 − t1, y)σ (s + t2 − t1, y)ds

+
∫ t1

0
Ḡ1(t1, s, y) (σ (s + t2 − t1, y) − σ(s, y)) ds

= ḡ1(y) + ḡ2(y).

Similarly to (12), by A2, we have

|f̄n(t, s, y + h) − f̄n(t, s, y)| ≤ C

(t − s)3/2 hβ(σ) · |n|e− min{(2n+1)2,(2n−2)2}L2

4(t−s) , (16)



456 I. Bodnarchuk

and

|Ḡ(1)(t2, s + t2 − t1, y + h) − Ḡ(1)(t2, s + t2 − t1, y)| ≤ Chβ(σ)

(t1 − s)3/2 e
− L2

4(t1−s) .

Therefore,

|ḡ1(y + h) − ḡ1(y)| ≤ Chβ(σ)

∣∣∣∣∣∣
∫ 0

t1−t2

e
− L2

4(t1−s)

(t1 − s)3/2 ds

∣∣∣∣∣∣ ≤ Chβ(σ)|t2 − t1|, (17)

where we used the estimate

e
− L2

4(t1−s)

(t1 − s)3/2 ≤ 1

t
3/2
1

≤ 1

δ3/2 ≤ C,

for s in the domain of integration.
Then, by assumption A2, we get

|ḡ2(y)| ≤
∣∣∣∣∫ t1

0
Ḡ1(t1, s, y) (σ (s + t2 − t1, y) − σ(s, y)) ds

∣∣∣∣
≤ C|t2 − t1|β(σ ).

(18)

On the other hand, the same reasoning as that used in obtaining bound (12) proves

|ḡ2(y + h) − ḡ2(y)| ≤ Chβ(σ). (19)

Now we raise the inequality (19) to the power θ2 and multiply by inequality (18)
raised to the power 1 − θ2, for an arbitrary θ2 ∈ (0, 1). Thus we see that

|ḡ(y + h) − ḡ(y)| ≤ C|t2 − t1|1−θ2hθ2β(σ ). (20)

Consequently, taking to consideration (17),

w2(ḡ, r) ≤ C|t2 − t1|(1−θ2)β(σ )rθ2β(σ ). (21)

From this point we can repeat the proof of Theorem 4.1 ([25]). Instead of using
(4.2) of [25], we use bounds (20) and (21) above. Since the integral from (6) is finite
for θ2β(σ) > 1/2,

0 < 1 − θ2 < 1 − 1

2β(σ)
<

1

2
.

Therefore, we obtain the Hölder condition with respect to the time variable of the
order

γ̃2 = min

{
β(σ) − 1

2
,

1

4

}
,

where we also count the case n = 0, 1.



Averaging principle for a stochastic cable equation 457

Step 3. The last part of the proof is analogous to the proof of Theorem 5.1 in [25].
The integral ∫ L

0
G(t, x, y)u0(y) dy

satisfies condition (10). To prove the Hölder regularity with respect to the space vari-
able we consider x1 < x2 and denote

G±(t, x, y) = e−t

√
4πt

∞∑
n=−∞

e− (y±x−2nL)2

4t .

Then we use the change of variables y → y + x2 − x1 and y → y − x2 + x1 in
the integrals involving x2 and G−(t, x, y), G+(t, x, y) respectively. Thus∣∣∣∣ ∫ L

0
G(t, x1, y)u0(y) dy −

∫ L

0
G(t, x2, y)u0(y) dy

∣∣∣∣
=
∣∣∣∣∫ L−x2+x1

0
G−(t, x1, y)

(
u0(y) − u0(y + x2 − x1)

)
dy

+
∫ L

x2−x1

G+(t, x1, y)
(
u0(y) − u0(y − x2 + x1)

)
dy

−
∫ 0

−x2+x1

G−(t, x1, y)u0(y + x2 − x1) dy +
∫ L

L−x2+x1

G−(t, x1, y)u0(y) dy

−
∫ L+x2−x1

L

G+(t, x1, y)u0(y − x2 + x1) dy +
∫ x2−x1

0
G+(t, x1, y)u0(y) dy

∣∣∣∣
≤ Lu0(ω)|x1 − x2|β(u0)

(∫ L−x2+x1

0
|G−(t, x1, y)|dy +

∫ L

x2−x1

|G+(t, x1, y)|dy

)
+ C(ω)|x1 − x2| sup

t∈[δ,L], x1,y∈[0,L]
|G(t, x, y)| ≤ C(ω)|x1 − x2|β(u0),

where we use the boundedness of the function u0 due to its Hölder continuity on
[0, L].

To prove the Hölder regularity with respect to the time variable we consider δ ≤
t1 < t2 ≤ T . We get

∣∣G+(t1, x, y) − G+(t2, x, y)
∣∣ = ∣∣∣∣ e−t1

√
4πt1

∞∑
n=−∞

e
− (y+x−2nL)2

4t1

+ e−t2

√
4πt2

∞∑
n=−∞

e
− (y+x−2nL)2

4t2

∣∣∣∣
≤ e−t1 − e−t2

√
4πt1

∞∑
n=−∞

e
− (y+x−2nL)2

4t1
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+ e−t2

√
4πt1

∞∑
n=−∞

∣∣∣∣e− (y+x−2nL)2

4t1 − e
− (y+x−2nL)2

4t2

∣∣∣∣
+ e−t2

(
1√

4πt1
− 1√

4πt2

) ∞∑
n=−∞

e
− (y+x−2nL)2

4t2

= J1 + J2 + J3.

According to estimates (34), (25) and (27) from Section 4,

J1 ≤ |t1 − t2|√
4πt1

∞∑
n=−∞

e
− (y+x−2nL)2

4t1

≤ |t1 − t2|√
4πδ

⎛⎝∑
n�=0

e
− min{(2n)2, (2n−2)2}L2

4t1 + 1

⎞⎠
≤ C|t1 − t2|.

The similar arguments yield

J2 ≤ 1√
4πt1

∞∑
n=−∞

∣∣∣∣ (y + x − 2nL)2

4t1
− (y + x − 2nL)2

4t2

∣∣∣∣ e− (y+x−2nL)2

4t1

≤ C|t1 − t2|
∞∑

n=−∞

(y + x − 2nL)2

4t1
e
− (y+x−2nL)2

4t1

≤ C|t1 − t2|,
where we use bound (30) (see Section 4 below).

Finally,

J3 ≤ C√
4πt1t2

(√
t2 − √

t1
) ∞∑
n=−∞

e
− (y+x−2nL)2

4t2 ≤ C

δ
√

4π

√
t2 − t1 ≤ C

√
t2 − t1.

In consequence, ∣∣G+(t1, x, y) − G+(t2, x, y)
∣∣ ≤ C

√
t2 − t1.

Likewise, we get the same estimate for
∣∣G+(t1, x, y) − G+(t2, x, y)

∣∣. Hence,∣∣∣∣∫ L

0
G(t1, x, y)u0(y) dy −

∫ L

0
G(t2, x, y)u0(y) dy

∣∣∣∣ ≤ C(ω)
√

t2 − t1.

The rest of the proof runs as respective part of the proof of Theorem 5.1 in [25]
with the use of Steps 1 and 2 instead of [25, Theorems 3.1 and 4.1].

4 Averaging principle

In this section we consider the random functions uε and ū given by equations (3) and
(4).
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Theorem 2. Assume that Assumptions A1–A3 hold. Then there exist versions of uε

and ū such that for any γ < 1
2

(
1 − 1

2β(σ )

)
, we have

sup
ε∈(0,T ], t∈[0,T ], x∈[0,L]

ε−γ |uε(t, x) − ū(t, x)| < +∞ a. s.

Proof. By Theorem 1, if Assumptions A1–A2 hold, functions (3) and (4) have con-
tinuous in (t, x) versions. We consider these versions.

Let ε > 0, t ∈ [0, T ], x ∈ [0, L] be fixed. Put

g(t, x, y) =
∫ t

0
G(t − s, x, y)[σ(s/ε, y) − σ̄ (y)] ds , (22)

where the fundamental solution G(t, x, y) is given by (2).
Then

|uε(t, x) − ū(t, x)| =
∣∣∣∣∫[0,L]

g(t, x, y)dμ(y)

∣∣∣∣ .

With the aim of using inequality (7), we estimate |g(t, x, y)|, y ∈ [0, L], and
|g(t, x, y + h) − g(t, x, y)|, h ∈ [0, L − y], in terms of some positive powers of
h and ε.

Denote

Dn± = (y ± x − 2nL)2

4

and

�ε(r) =
∫ r

0
[σ(t/ε − τ, y) − σ̄ (y)] dτ , 0 ≤ r ≤ t/ε .

Then |�ε(r)| ≤ C� , where C� does not depend on ε, while
∫ t

0 [σ(s, y) − σ̄ (y)] ds is
bounded by A3.

In the integral from (22) we substitute τ = (t − s)/ε and obtain

|g(t, x, y)| = ε

∣∣∣∣∫ t/ε

0
G(τε, x, y)[σ(t/ε − τ, y) − σ̄ (y)] dτ

∣∣∣∣
= √

ε

∣∣∣∣ ∫ t/ε

0

e−τε

√
4πτ

∞∑
n=−∞

(
e− (y−x−2nL)2

4τε + e− (y+x−2nL)2

4τε

)
× [σ(t/ε − τ, y) − σ̄ (y)] dτ

∣∣∣∣
≤

√
ε√

4π

∣∣∣∣∣∣
∞∑

n=−∞

∫ t/ε

0

e− Dn−
τε√
τ

[σ(t/ε − τ, y) − σ̄ (y)] dτ

+
∞∑

n=−∞

∫ t/ε

0

e− Dn+
τε√
τ

[σ(t/ε − τ, y) − σ̄ (y)] dτ

∣∣∣∣∣∣ .
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We have∣∣∣∣∣∣
∞∑

n=−∞

∫ 1

0

e− Dn±
τε√
τ

[σ(t/ε − τ, y) − σ̄ (y)] dτ | ≤ 2Cσ

∫ 1

0

∞∑
n=−∞

e− Dn±
τε√
τ

dτ

≤ 4Cσ sup
τ≤1

∞∑
n=−∞

e− Dn±
τε = 4Cσ

∞∑
n=−∞

e− Dn±
ε

(23)

and∣∣∣∣ ∞∑
n=−∞

∫ t/ε

1

e− Dn±
τε√
τ

[σ(t/ε − τ, y) − σ̄ (y)] dτ

∣∣∣∣∣∣ =
∣∣∣∣∣∣

∞∑
n=−∞

∫ t/ε

1

e− Dn±
τε√
τ

d�ε(τ)

∣∣∣∣∣∣
=
∣∣∣∣∣∣

∞∑
n=−∞

e− Dn±
τε√
τ

�ε(τ)

∣∣∣t/ε
1

−
∞∑

n=−∞

∫ t/ε

1
�ε(τ)e− Dn±

τε

(
Dn±
ε
√

τ 5
− 1

2
√

τ 3

)
dτ

∣∣∣∣∣∣
≤ 2C� sup

1≤τ≤t/ε

∞∑
n=−∞

e− Dn±
τε + C�

∞∑
n=−∞

∫ t/ε

1

Dn±e− Dn±
τε

ε
√

τ 5
dτ

≤ 2C�

∞∑
n=−∞

e− Dn±
T + C�

∫ t/ε

1

∑∞
n=−∞ Dn±e− Dn±

τε

ε
√

τ 5
dτ .

(24)

Now we estimate e− Dn±
s , s ∈ [0, T ]. For n = 0,

e− Dn±
s = e− (y±x)2

4s ≤ 1.

Consider n �= 0. In this case

e− Dn−
s ≤ e− (2|n|−1)2L2

4s and e− Dn+
s ≤ e− min{(2n)2, (2n−2)2}L2

4s . (25)

Since∑
n≥0

e−n2a ≤
∑
n≥0

e−na = (1 − e−a)−1 ≤ (1 − e−b)−1, a ≥ b > 0, (26)

and ∑
n≥1

e−n2a ≤ e−a(1 − e−a)−1 ≤ e−b(1 − e−b)−1, a ≥ b > 0,

we conclude that, for s ∈ [0, T ],
∞∑

n�=0,n=−∞
e− Dn−

s ≤
∞∑

n�=0,n=−∞
e− (2|n|−1)2L2

4s ≤ 2e− L2
4s

∑
n≥0

e− n2L2
s

≤ 2e− L2
4s

(
1 − e− L2

s

)−1

≤ 2

(
1 − e− L2

T

)−1

.
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Analogously,

∞∑
n�=0,n=−∞

e− Dn+
s ≤

∞∑
n�=0,n=−∞

e− min{(2n)2, (2n−2)2}L2

4s

=
∑
n≥1

e− (2n)2L2
4s +

∑
n≥1

e− (2n−2)2L2
4s ≤ 2

(
1 − e− L2

T

)−1

.

(27)

Substitute obtained bounds to (23) and (24). We thus get∣∣∣∣∣∣
∞∑

n=−∞

∫ 1

0

e− Dn±
τε√
τ

[σ(t/ε − τ, y) − σ̄ (y)] dτ

∣∣∣∣∣∣ ≤ 4Cσ

(
1 + 2

(
1 − e− L2

T

)−1
)

and∣∣∣∣∣
∞∑

n=−∞

∫ t/ε

1

e− Dn±
τε√
τ

[σ(t/ε − τ, y) − σ̄ (y)] dτ

∣∣∣∣∣∣
≤ 2C�

(
1 + 2

(
1 − e− L2

T

)−1
)

+ C�

∫ t/ε

1

∑∞
n=−∞ Dn±e− Dn±

τε

ε
√

τ 5
dτ .

Hence,

|g(t, x, y)|

≤ C
√

ε

[
C+

∣∣∣∣∫ t/ε

1

∑∞
n=−∞ Dn−e− Dn−

τε

ε
√

τ 5
dτ

∣∣∣∣+∣∣∣∣∫ t/ε

1

∑∞
n=−∞ Dn+e− Dn+

τε

ε
√

τ 5
dτ

∣∣∣∣].
Next we estimate the integrals from the last relation. For |y| ≤ L and |x| ≤ L it

is clear that

Dn± ≤ (1 + |n|)2L2. (28)

Therefore,

∞∑
n=−∞

Dn−e− Dn−
τε = D0−e− D0−

τε +
∞∑

n�=0,n=−∞
Dn−e− Dn−

τε

≤ D0−e− D0−
τε + 2L2e− L2

4τε

∑
n≥0

(n + 2)2e− nL2
τε

≤ D0−e− D0−
τε + CL2e− L2

4τε (1 − e− L2
T )−1.

where we use the relations∑
n≥1

n2e−na = (e−a + e−2a)(1 − e−a)−3 ≤ 2e−a(1 − e−a)−3 ≤ 2(1 − e−a)−1,

∑
n≥1

ne−na ≤
∑
n≥1

n2e−na ≤ 2(1 − e−a)−1, a > 0 ,
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and estimate (26). Then, due to the fact that max
D>0

De− D
τε = τεe−1, we have

∞∑
n=−∞

Dn−e− Dn−
τε ≤ Cτε , C = C(L, T ). (29)

Consequently,

∫ t/ε

1

∑∞
n=−∞ Dn−e− Dn−

τε

ε
√

τ 5
dτ ≤ C

∫ t/ε

1

1√
τ 3

dτ ≤ 2C.

In the same way we obtain

∞∑
n=−∞

Dn+ e− Dn+
τε = D0+e− D0+

τε + D1+e− D1+
τε +

∞∑
n�=0,1, n=−∞

Dn+e− Dn+
τε

≤ 2τεe−1 + L2
∑
n≥1

(n + 1)2e− (2n)2L2
4τε + L2

∑
n≥2

(n + 1)2e− (2n−2)2L2
4τε

≤ Cτε(1 − e− L2
T )−1 ≤ Cτε ,

(30)

which yields

∫ t/ε

1

∑∞
n=−∞ Dn+e− Dn+

τε

ε
√

τ 5
dτ ≤ 2C.

Therefore, we get

|g(t, x, y)| ≤ C(σ,L, T )
√

ε = C
√

ε

and so

|g(t, x, y + h) − g(t, x, y)| ≤ C
√

ε, ‖g(t, x, ·)‖L2[0,L] ≤ C
√

ε,

w2
2,[0,L](g, r) ≤ Cε.

(31)

Now we estimate |g(t, x, y + h) − g(t, x, y)| and then w2
2,[0,L](g, r) in terms of

some positive power of h. Thus,

|g(t,x, y + h) − g(t, x, y)|
=
∣∣∣∣∫ t

0
(G(t − s, x, y + h) − G(t − s, x, y)) [σ(s/ε, y + h) − σ̄ (y + h)] ds

+
∫ t

0
G(t − s, x, y) ([σ(s/ε, y + h) − σ(s/ε, y)] − [σ̄ (y + h) − σ̄ (y)]) ds

∣∣∣∣
= |I1 + I2| ,
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and then∫ L−h

0
|g(t, x, y + h) − g(t, x, y)|2 dy ≤ 2

∫ L−h

0
I 2

1 dy + 2
∫ L−h

0
I 2

2 dy . (32)

By condition A3 and finiteness of
∑∞

n=−∞ e− Dn±
s , we obtain

|I2| ≤C2Lσ hβ(σ)

∫ t

0

e−(t−s)

√
4π(t − s)

ds ≤ C2Lσ hβ(σ)
√

t ≤ Chβ(σ) ,∫ L−h

0
I 2

2 dy ≤ Ch2β(σ ) .

(33)

Denote

Dh
n± = (y + h ± x − 2nL)2

4
.

Recall that here h ∈ [0, L] and we consider the integrals in (32) such that y + h ≤ L.
So

|I1| =
∣∣∣∣∣
∫ t

0

e−(t−s)

√
4π(t − s)

∞∑
n=−∞

(
e− Dh

n−
t−s − e− Dn−

t−s

)
[σ(s/ε, y + h) − σ̄ (y + h)]ds

+
∫ t

0

e−(t−s)

√
4π(t − s)

∞∑
n=−∞

(
e− Dh

n+
t−s − e− Dn+

t−s

)
[σ(s/ε, y + h) − σ̄ (y + h)] ds

∣∣∣∣∣
= |I1− + I1+| .

Since e−(t−s) ≤ 1, for t − s ≥ 0, we conclude by Assumption A2 that

|I1−| ≤ 2Cσ

∣∣∣∣∣
∫ t

0

1√
4π(t − s)

∞∑
n=−∞

(
e− Dh

n−
t−s − e− Dn−

t−s

)
ds

∣∣∣∣∣
= 2Cσ

∣∣∣∣ ∑
n=0,±1

∫ t

0

1√
4π(t − s)

(
e− Dh

n−
t−s − e− Dn−

t−s

)
ds

+
∫ t

0

1√
4π(t − s)

∑
|n|≥2

(
e− Dh

n−
t−s − e− Dn−

t−s

)
ds

∣∣∣∣.
For n = 0,±1, the values of Dh

n− and Dn− are bounded by 4L2. Thus, the same
reasoning as that used in obtaining the bound of I2 in [22, inequality (13)] proves∣∣∣∣∣

∫ t

0

1√
4π(t − s)

(
e− Dh

n−
t−s − e− Dn−

t−s

)
ds

∣∣∣∣∣ ≤ C|h ln h| ≤ Chβ(σ).

Consider the second integral. We have

∑
|n|≥2

∣∣∣∣∣e− Dh
n−

t−s − e− Dn−
t−s

∣∣∣∣∣ ≤ ∑
|n|≥2

2h|y + h
2 − x − 2nL|

4(t − s)
e− min{Dh

n−,Dn−}
t−s ,
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where we use the following relation∣∣e−a − e−b
∣∣ ≤ e− min{a,b}|a − b|, a, b ≥ 0. (34)

According to (28), ∣∣∣y + h

2
− x − 2nL

∣∣∣ ≤ 2(1 + |n|)2L,

and analogously to (25) we obtain

e− min{Dh
n−,Dn−}
t−s ≤ e

− (2|n|−1)2L2

4(t−s) , |n| ≥ 2.

Hence,∣∣∣∣∫ t

0

1√
4π(t − s)

∑
|n|≥2

(
e− Dh

n−
t−s − e− Dn−

t−s

)
ds

∣∣∣∣∣∣
≤ Ch

∫ t

0

1

4(t − s)3/2

∑
n≥2

(1 + n)2L2e
− (2n−1)2L2

4(t−s) ds.

(35)

Then we use the same reasoning as in getting (29) and have∑
n≥2

(1 + n)2L2e
− (2n−1)2L2

4(t−s) ≤ C4(t − s).

It follows that∣∣∣∣∣∣
∫ t

0

1√
4π(t − s)

∑
|n|≥2

(
e− Dh

n−
t−s − e− Dn−

t−s

)
ds

∣∣∣∣∣∣ ≤ Ch
√

t ≤ Ch,

and finally that

|I1−| ≤ Chβ(σ).

The same estimate holds for term |I1+| ≤ Chβ(σ). Hence,∫ L−h

0
I 2

1 dy ≤ Ch2β(σ ).

Taking into account (33), we deduce that∫ L−h

0
|g(t, x, y + h) − g(t, x, y)|2 dy ≤ Ch2β(σ ),

w2
2,[0,L](g, r) ≤ Cr2β(σ ).

Raise the latter inequality to the power θ and multiply by inequality (31) raised
to the power 1 − θ , for an arbitrary θ ∈ (0, 1). We have

w2
2,[0,L](g, r) ≤ Cr2θβ(σ )ε1−θ .
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Thus, for any γ < 1
2

(
1 − 1

2β(σ )

)
, there exists α < θβ(σ) such that

‖g‖Bα
22([b,c]) ≤ C

√
ε + Cε(1−θ)/2

(∫ t

0
r2θβ(σ )−2α−1dr

) 1
2 ≤ Cεγ .

Consequently, by relation (7),

|uε(t, x) − ū(t, x)| =
∣∣∣∣∫[0,L]

g(t, x, y)dμ(y)

∣∣∣∣
≤ |g(0, z)μ([0, L])| + C‖g(·, z)‖Bα

22([0,L])

⎧⎨⎩∑
n≥1

2−nε
∑

1≤k≤2n

∣∣∣μ (�(L)
kn

)∣∣∣2
⎫⎬⎭

1
2

≤ Cεγ

⎛⎜⎝|μ([0, L])| +
⎧⎨⎩∑

n≥1

2−nε
∑

1≤k≤2n

∣∣∣μ (�(L)
kn

)∣∣∣2
⎫⎬⎭

1
2
⎞⎟⎠ ≤ C(ω)εγ ,

where the sum with the stochastic measure is finite in view of [21, Lemma 3.1], and
the constant C(ω) does not depend on t, x and ε.
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