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Abstract Explicit solutions for a class of linear backward stochastic differential equations
(BSDE) driven by Gaussian Volterra processes are given. These processes include the mul-
tifractional Brownian motion and the multifractional Ornstein-Uhlenbeck process. By an Itô
formula, proven in the context of Malliavin calculus, the BSDE is associated to a linear sec-
ond order partial differential equation with terminal condition whose solution is given by a
Feynman-Kac type formula.
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1 Introduction

A backward stochastic differential equation (BSDE) with a generator f : [0, T ]×R×
R

n → R, a terminal value ξT and driven by a stochastic process X = (X1, . . . , Xn)

is given by the equation

Yt = ξT −
∫ T

t

f (s, Ys, Zs)ds +
∫ T

t

ZsdXs, 0 � t � T . (1)
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A solution is a pair of square integrable processes Y and Z = (Z1, . . . , Zn)

that are adapted to the filtration generated by X. Such equations appear especially
in the context of asset pricing and hedging theory in finance and in the context of
stochastic control problems. BSDEs may be considered as an alternative to the more
familiar partial differential equations (PDE) since the solutions of BSDEs are closely
related to classical or viscosity solutions of associated PDEs (see e.g. [17]). As a
consequence, BSDEs may be used for the numerical solution of nonlinear PDEs.

BSDEs driven by Brownian motion have been studied extensively after the first
general existence and uniqueness result proved by E. Pardoux and S.G. Peng [16].
For a synthesis of this research work we may refer to the recent textbooks [8, 9,
17, 18, 20, 24]. More recently BSDEs driven by fractional Brownian motions have
been investigated (see, e.g., [4, 11–14, 3, 22, 23]). Since fractional Brownian mo-
tions (with Hurst index H ∈ (0, 1/2) ∪ (1/2, 1)) are neither martingales nor Markov
processes, new methods have been developed to show the wellposedness of BSDEs
in certain function spaces. In particular the integral

∫ T

t
ZsdXs has been defined in

different ways, e.g. pathwise in the context of fractional analysis or as a divergence
integral, and the notion of quasi-conditional expectation has been introduced. In fact,
the classical notion of conditional expectation does not seem to be convenient for a
proof of the existence and uniqueness of solutions to BSDEs whose driving process
is not a martingale. Very few articles are concerned with BSDEs for more general
Gaussian processes ([5, 6]) or in the context of the theory of rough paths [10]. In
[5] the stochastic integral

∫ T

t
ZsdXs is understood in the Wick-Itô sense, and the

existence and uniqueness of the solution of (1) is proved for a class of Gaussian
processes which includes fractional Brownian motion. The proof is based on a trans-
fer theorem that aims to reduce the question of wellposedness to BSDEs driven by
Brownian motion. In [6] it is shown that the wellposedness of linear BSDEs with
general square integrable terminal condition ξ holds true if and only if X is a martin-
gale.

This paper is concerned with linear BSDEs driven by Gaussian Volterra processes
X. This class of processes contains multifractional Brownian motions and multifrac-
tional Ornstein-Uhlenbeck processes. Contrary to fractional Brownian motion where
the Hurst parameter H is constant, it becomes for multifractional Brownian motion
a function h which is assumed here to be differentiable and with values in (1/2, 1).
The aim is to obtain the solution of the linear BSDE with the associated linear PDE
whose solution is given explicitely. This generalizes a result in [4] obtained for frac-
tional Brownian motion. We define the stochastic integral

∫ T

t
ZsdXs as a divergence

integral, and extend an Itô formula in [2] to the multidimensional case. The Itô for-
mula is then applied to the solution of the associated PDE in order to get a solution of
the BSDE. Special attention is given to the fact that the variance of Volterra processes
is not necessarily an increasing function of time, but in general only of bounded vari-
ation. The explicit solution of the associated PDE contains this variance and is given
by a Feynman-Kac type formula on time intervals where it is increasing. The appli-
cation of this formula to the BSDEs is therefore restricted to time intervals where this
variance is increasing.

In this section we define the class of Volterra processes X we have in mind and
the linear BSDEs and the associated PDE. Section 2 is concerned with complements
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on the Skorohod integral with respect to Volterra processes. The Itô formula is proved
in Section 3 and applied in Section 4 to the linear BSDE.

1.1 Gaussian Volterra processes

Let X = {Xt, 0 � t � T } be a zero mean continuous Gaussian process given by

Xt =
∫ T

0
K(t, s)dWs (2)

where W = {Wt, 0 � t � T } is a standard Brownian motion and K : [0, T ]2 → R

is a square integrable kernel, i.e.
∫
[0,T ]2 K(t, s)2dtds < +∞. We assume that K is

of Volterra type, i.e, K(t, s) = 0 whenever t < s. Usually, the representation (2) is
called a Volterra representation of X. Gaussian Volterra processes and their stochastic
analysis have been studied e.g. in [2, 21] and [19]. In [2] K is called regular if it
satisfies

(H) For all s ∈ (0, T ], ∫ T

0 | K | ((s, T ], s)2ds < ∞, where | K | ((s, T ], s)
denotes the total variation of K(., s) on (s, T ].

We assume the following condition on K(t, s) which is more restrictive than (H)
([2, 21]):

(H1) K(t, s) is continuous for all 0 < s � t < T and continuously differentiable
in the variable t in 0 < s < t < T ,

(H2) For some 0 < α, β < 1
2 , there is a finite constant c > 0 such that∣∣∣∂K

∂t
(t, s)

∣∣∣ � c(t − s)α−1
( t

s

)β

, for all 0 < s < t < T .

The covariance function of X is given by

R(t, s) := EXtXs =
∫ min(t,s)

0
K(t, u)K(s, u)du. (3)

We discuss shortly some examples of Gaussian Volterra processes that satisfy (H1)
and (H2).

Example 1. The multi-fractional Brownian motion (mBm) (Bh(t)
t , 0 � t � T ) with

Hurst function h : [0, T ] → [a, b] ⊂ ( 1
2 , 1). Its kernel is given by [7]

K(t, s) = s1/2−h(t)

∫ t

s

(y − s)h(t)−3/2yh(t)−1/2dy, (4)

where h is assumed to be continously differentiable with bounded derivative. We get

∂K

∂t
(t, s) = h′(t)s

1
2 −h(t)

∫ t

s

(y − s)h(t)− 3
2 yh(t)− 1

2 ln
((y

s
− 1
)
y
)
dy

+ s
1
2 −h(t)(t − s)h(t)− 3

2 th(t)− 1
2 .

A straightforward calculation shows that (H2) is satisfied with α = a − 1
2 , β =

b + ε − 1
2 with ε small enough and c depends on a, b, T and ε. The mBm generalizes
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fractional Brownian motion (fBm) with Hurst index H > 1/2. MBm is a more flexi-
ble model than fBm since the Hölder continuity of its trajectories varies with h. The
trajectories of mBm B

h(·)· are in fact locally Hölder continous of order h(t) at t ([7],
Proposition 6).

Example 2. The multi-fractional Ornstein-Uhlenbeck process U = {Ut, 0 � t � T }
given by Ut = ∫ t

0 e−θ(t−s)dB
h(s)
s , where θ > 0 is a parameter and Bh is the mbm of

Example 1. The kernel of U is given by

K(t, r) =
∫ t

r

e−θ(t−s) ∂K

∂s
(s, r)ds = K(t, r) − θ

∫ t

r

e−θ(t−s)K(s, r)ds.

In fact we have∫ t

0
K(t, r)dWr =

∫ t

0
K(t, r)dWr − θ

∫ t

0

(∫ t

r

e−θ(t−s)K(s, r)ds

)
dWr

= B
h(t)
t − θ

∫ t

0
e−θ(t−s)Bh(s)

s ds.

An integration by parts gives the representation of U . We notice that in the frame-
work of the divergence integral (Section 2) the integral with respect to mbm can be
reduced to an integral with respect to Brownian motion. (H2) is satisfied with the
same values of α and β as in Example 1.

Example 3. The Liouville multi-fractional Brownian motion (B
L,h(t)
t , t ∈ [0, T ])

with Hurst function h as in Example 1. Its kernel is given by K̃(t, r) =
(t − r)h(t)− 1

2 1(0,t](r). We refer to [21] for the Liouville fractional Brownian motion.

1.2 Linear backward stochastic differential equations

Let W = (W 1, . . . ,Wn) a standard Brownian motion in R
n, defined on the probabil-

ity space (�,F , P ), and let F = {Ft ⊂ F , t ∈ [0, T ]} be the filtration generated by
W and augmented by the P -null sets. We consider the R

n-valued Volterra processes
X = (X1, . . . , Xn) given by

X
j
t =

∫ t

0
Kj(t, s)dW

j
s , j = 1, . . . , n, (5)

where Kj : [0, T ]2 → R satisfies the conditions (H1) and (H2). Let σ j , j = 1, . . . , n

be bounded functions on [0, T ], and let bj ∈ C1((0, T ),R) ∩ C([0, T ],R), j =
1, . . . , n. The process N := (N1, . . . , Nn) is defined by

N
j
t = b

j
t +

∫ t

0
σ

j
s δX

j
s , t ∈ [0, T ], j = 1, . . . , n, (6)

where the integral
∫ T

t
ZsδXs is defined as a divergence integral and will be studied in

Sections 2 and 3. Let t0 � 0 be fixed, and denote by L
2(F,Rn) the set of F-adapted

R
n-valued processes Z such that E(

∫ T

t0
| Zt |2 dt) < ∞. We consider the linear
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BDSE for the processes Y = (Yt , t ∈ [t0, T ]) ∈ L
2(F,R) and Z = ((Z1

t , . . . , Z
n
t ),

t ∈ [t0, T ]) ∈ L
2(F,Rn) given by

Yt = g(NT ) −
∫ T

t

[f (s) + A1(s)Ys − A2(s)Zs]ds +
∫ T

t

ZsδXs, t ∈ [t0, T ], (7)

where the real-valued functions g, f , A1 and the Rn-valued function A2 are supposed
to be known. Equation (7) is associated to the following second order linear PDE with
terminal condition

∂u

∂t
(t, x) = −1

2

n∑
j=1

d

dt
V ar(N

j
t )

∂2u

∂x2
j

(t, x) +
n∑

j=1

[
σ

j
t A

j
2(t) − d

dt
b

j
t

] ∂u

∂xj

(t, x)

+ A1(t)u(t, x) + f (t), (8)

u(T , x) = g(x), (t, x) ∈ [t0, T ) × R
n.

By means of the Itô formula of Section 3 we show that

Yt := u(t, Nt ) and Z
j
t := −σ

j
t

∂u

∂xj

(t, Nt ), j = 1, . . . , n (9)

is a solution of (7). Equation (8) is solved explicitely in Section 4.

2 On the divergence integral for Gaussian Volterra processes

The kernel K in (2) defines a linear operator in L2([0, T ]) given by (Kσ)t =∫ t

0 K(t, s)σsds, σ ∈ L2([0, T ]). Let E be the set of step functions on [0, T ], and
let K∗

T : E → L2([0, T ]) be defined by

(K∗
T σ )u :=

∫ T

u

σs

∂K

∂s
(s, u)ds.

The operator K∗
T is the adjoint of K ([2], Lemma 1).

Remarks. a) For s > t , we have (K∗
T σ1[0,t])s = 0, and we will denote (K∗

T σ1[0,t])s
by (K∗

t σ )s where K∗
t is the adjoint of the operator K in the interval [0, t].

b) If K(u, u) = 0 for all u ∈ [0, T ], (K∗
T 1[0,r])u = K(r, u) for u < r . Indeed, if

u � r , we have

(K∗
T 1[0,r])u =

∫ T

u

1[0,r](s)
∂K

∂s
(s, u)ds =

∫ r

u

∂K

∂s
(s, u)ds.

Therefore

R(t, s) = E

[
XtXs

]
=
∫ min(t,s)

0
(K∗

T 1[0,t])u(K∗
T 1[0,s])udu

= <K∗
T 1[0,t],K∗

T 1[0,s]>L2([0,T ]).

For σ, σ̃ ∈ E this equality may be extended to X(σ) := ∫ t

0 (K∗
t σ )sdWs by

E
[
X(σ)X(̃σ )

]
= <K∗

T σ,K∗
T σ̃>L2([0,T ]).
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Let H be the closure of the linear span of the indicator functions 1[0,t], t ∈ [0, T ]
with respect to the scalar product

<1[0,t], 1[0,s]>H := <K∗
T 1[0,t],K∗

T 1[0,s]>L2([0,T ]).

The operator K∗
T is an isometry between H and a closed subspace of L2([0, T ]), and

‖ · ‖H is a semi-norm on H. Furthermore, for ϕ,ψ ∈ H,

<K∗
T ϕ,K∗

T ψ>L2([0,T ]) =
∫ T

0

∫ T

0

( ∫ min(r,s)

0

∂K

∂r
(r, t)

∂K

∂s
(s, t)dt

)
ϕrψsdsdr.

For further use let

φ(r, s) :=
∫ min(r,s)

0

∂K

∂r
(r, t)

∂K

∂s
(s, t)dt, r �= s,

φ̃(r, s) :=
∫ min(r,s)

0

∣∣∣∂K

∂r
(r, t)

∣∣∣∣∣∣∂K

∂s
(s, t)

∣∣∣dt, r �= s.

Note that φ(r, s) = ∂2R
∂s∂r

(r, s) (r �= s) (φ may be infinite on the diagonal r = s).
Let | H | be the closure of the linear span of indicator functions with respect to the
semi-norm given by

‖ ϕ ‖2
|H| =

∫ T

0

(∫ T

t

| ϕr |
∣∣∣∂K

∂r
(r, t)

∣∣∣dr

)2

dt

= 2
∫ T

0
dr

∫ r

0
dsφ̃(r, s) | ϕr || ϕs | .

We briefly recall some basic elements of the stochastic calculus of variations with
respect to X. We refer to [15] for a more complete presentation. Let S be the set of
random variables of the form F = f (X(ϕ1), . . . , X(ϕn)), where n � 1, f ∈ C∞

b (Rn)

(f and its derivatives are bounded) and ϕ1, . . . , ϕn ∈ H. The derivative of F

DXF :=
n∑

j=1

∂f

∂xj

(X(ϕ1), . . . , X(ϕn))ϕj ,

is an H-valued random variable, and DX is a closable operator from Lp(�) to
Lp(�;H) for all p � 1. We denote by D

X
1,p the closure of S with respect to the

semi-norm
‖F‖p

1,p = E|F |p + E‖DXF‖p

H. (10)

We denote by Dom(δX) the subset of L2(�,H) composed of those elements u for
which there exists a positive constant c such that∣∣∣E[<DXF, u>H

]∣∣∣ � c
√
E[F 2], for all F ∈ D

X
1,2. (11)

For u ∈ L2(�;H) in Dom(δX), δX(u) is the element in L2(�) defined by the duality
relationship

E

[
FδX(u)

]
= E

[
<DX· F, u·>H

]
, F ∈ D

X
1,2. (12)
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We also use the notation
∫ T

0 utδXt for δX(u). A class of processes that belong
to the domain of δX is given as follows: let SH be the class of H-valued random
variables u =∑n

j=1 Fjhj (Fj ∈ S , hj ∈ H).

In the same way D
X
1,p(| H |) is defined as the completion of S |H| under the semi-

norm
‖ u ‖p

1,p,|H|:= E ‖ u ‖p

|H| +E ‖ DXu ‖p

|H|⊗|H|,

where

‖ DXu ‖2
|H|⊗|H|=

∫
[0,T ]4

| DX
s ut || DX

t ′ us′ | φ̃(s, s′)φ̃(t, t ′)dsdtds′dt ′. (13)

The space D
X
1,2(| H |) is included in the domain of δX, and we have, for u ∈

D
X
1,2(| H |),

E

(
δX(u)2

)
� E ‖ u ‖2

|H| +E ‖ DXu ‖2
|H|⊗|H| .

For F ∈ S , let

D
X
s F :=

∫ T

0
φ(s, t)DX

t Fdt, s ∈ [0, T ]. (14)

Then (14) implies∫
[0,T ]2

D
X
s utD

X
t vsdsdt =

∫
[0,T ]4

DX
s utD

X
t ′ vs′φ(s, s′)φ(t, t ′)dsdtds′dt ′. (15)

Proposition 1. Let f , g ∈ D
X
1,2(| H |). Then the integrals δX(f ) and δX(g) exist in

L2(�) and

E

[
δX(f )δX(g)

]
= E<f, g>H +

∫ T

0
ds

∫ T

0
dtE

[
D

X
t fsD

X
s gt

]
. (16)

Remark. With the choice f = g Proposition 1 implies DX
1,2(| H |) ⊂ dom(δX). In

fact, for f ∈ D
X
1,2(| H |),

‖f ‖H � ‖f ‖|H| and
∫

[0,T ]2
D

X
s ftD

X
t fsdsdt �‖ DXf ‖2

|H|⊗|H| .

Since (16) is a standard property of the divergence integral (adapted to the actual
framework), we omit here its proof.

3 Itô formula

Let F ∈ C1,2([0, T ] × R
n) and suppose that

max
(∣∣∣F(t, x)

∣∣∣, ∣∣∣∂F

∂t
(t, x)

∣∣∣, ∣∣∣ ∂F

∂xj

(t, x)

∣∣∣, ∣∣∣∂2F

∂x2
j

(t, x)

∣∣∣, j = 1, . . . , n
)
� ceλ|x|2

(17)
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for all t ∈ [0, T ] and x ∈ R
n, where c, λ are positive constants such that λ <

1
4 mini (supt∈[0,T ] V ar(Ni

t ))
−1. This implies

E

∣∣∣F(t,Nt )

∣∣∣2
� c2

E exp(2λ | Nt |2)

= c2

(2π)n/2

n∏
j=1

1

(V ar(N
j
t ))1/2

∫
exp

(
2λx2

j − 1

2

(xj − b
j
t )2

V ar(N
j
t )

)
dxj

= c2

(2π)n/2

n∏
j=1

1

(V ar(N
j
t ))1/2

×
∫

exp

(
−x2

j

(1 − 4λV arN
j
t )

2V arN
j
t

+ b
j
t

V arN
j
t

xj − (b
j
t )2

2V arN
j
t

)
dxj

= c2

(2π)n/2

n∏
j=1

1

(V ar(N
j
t ))1/2

√√√√ 2πV arN
j
t

1 − 4λV arN
j
t

× exp

(
(b

j
t )2

2V arN
j
t (1 − 4λV arN

j
t )

− (b
j
t )2

2V arN
j
t

)

= c2

(2π)(n−1)/2

n∏
j=1

1√
1 − 4λV arN

j
t

exp

(
2λ(b

j
t )2

1 − 4λV arN
j
t

)
< ∞, (18)

and the same inequalities holds for ∂F
∂t

(t, x), ∂F
∂xj

(t, x) and ∂2F

∂x2
j

(t, x), j = 1, . . . , n.

Theorem 1. Let N be given by (6), and suppose that, for j = 1, . . . , n, the kernels
Kj of Xj satisfy (H1) and (H2), bj ∈ C1((0, T ),R)∩C([0, T ],R), and σ = {σ j

t , t ∈
[0, T ], j = 1, . . . , n} is bounded. If F ∈ C1,2([0, T ]×R

n) satisfies (17), ∂F
∂xj

(·, N·) ∈
D

Xj

1,2(| Hj |), j = 1, . . . , n and, for all t ∈ [0, T ],

F(t,Nt ) = F(0, 0) +
∫ t

0

∂F

∂s
(s,Ns)ds +

n∑
j=1

∫ t

0

∂F

∂xj

(s,Ns)
( d

ds
b

j
s ds + σ

j
s δX

j
s

)

+ 1

2

n∑
j=1

∫ t

0

∂2F

∂x2
j

(s, Ns)
d

ds
V ar(N

j
s )ds. (19)

Remarks. a) The growth assumption (17) on F may be unexpected for the proof an
Itô formula. In fact, in [1] an Itô formula is shown for fractional Brownian motion for
any F ∈ C1,2 by means of a method of localization. The reason for hypothesis (17) is
that it implies the finiteness of the second moment of F(t,Nt ), shown in (18). When
applied to the solution u of the PDE (8), it implies, together with Theorem 2, the
finiteness of the second moment of the solution (Y, Z) of the BSDE, and this seems
to be an important ingredient for the proof of the uniqueness of the solution ([11, 14]
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for BSDE with fBm). Moreover, Lemma 1 shows that (17) is also reasonable from
the point of view of the PDE (8).

b) A more general model for N than in Section 1.2 is

Ñ i
t = bi

t +
n∑

j=1

∫ t

0
σ̃

i,j
s δX

j
s , i = 1, . . . , n, (20)

where σ̃ = (̃σ
i,j
t , i, j = 1, . . . , n) is a matrix of bounded functions σ̃ i,j defined

on [0, T ]. Let Ñ = (Ñ1, . . . , Ñn). The components of Ñ are dependent since Ñ i

depends not only on a single random perturbation Xi , but on the others Xj (j �= i) as
well. The model of Section 1.2 may be recovered by choosing the matrix σ̃ diagonal
with functions σ j := σ̃ j,j in the diagonal. An Itô formula can be shown for F(t, Ñt )

too, but, instead of the variances of N , the covariances of Ñ appear now in the second
order term. It reads

F(t, Ñt ) = F(0, 0) +
∫ t

0

∂F

∂s
(s, Ñs)ds

+
n∑

i=1

∫ t

0

∂F

∂xi

(s, Ñs)
( d

ds
bi
sds +

n∑
j=1

σ̃
i,j
s δX

j
s

)

+ 1

2

n∑
i=1

n∑
j=1

∫ t

0

∂2F

∂xi∂xj

(s, Ñs)
d

ds
Cov(Ñ i

s , Ñ
j
s )ds. (21)

The derivatives of the variances of N in the second order term of (8) have therefore
to be replaced by the derivatives of the covariances of Ñ , and one has to assume that
the matrix ( d

dt
Cov(Ñ i

t , Ñ
j
t ), i, j = 1, . . . , n) is positive definite. We notice that

V ar(N
j
t ) = E

(∫ t

0

(
K

∗,j
t σ j

)
s
δW

j
s

)2

=
∫ t

0

(
K

∗,j
t σ j

)2

s
ds, and

d

dt
V ar(N

j
t ) = 2σ

j
t D

j
t N

j
t ,

c) In the model where σ̃ is diagonal, Xi and Xj are defined with independent
Brownian motions Wi and Wj if i �= j . This differs from the model where all the

Volterra processes X
j

are defined with the same Brownian motion W as follows:

X
j

t =
∫ t

0
Kj(t, s)δWs, N

j

t = b
j
t +

∫ t

0
σ

j
s δX

j

s , t ∈ [0, T ], j = 1, . . . , n.

In this case the processes N
j

are again correlated, and the matrix ( d
dt

Cov(N
i

t , N
j

t ),
i, j = 1, . . . , n) is not diagonal and not necessarily positive semidefinite.

Let us prove now Theorem 1.

Proof. 1. First we show that ∂F
∂xj

(·, N·) ∈ Dom(δXj
) for all j = 1, . . . , n. For this

we show that ∂F
∂xj

(·, N·) ∈ D
Xj

1,2(| Hj |), where | Hj | is the space defined in Section 2
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with X replaced by Xj . The terms φj and φ̃j refer now to the kernel Kj of Xj . The
constants in the inequalities below may vary from line to line.

E

∥∥∥ ∂F

∂xj

(., N.)

∥∥∥2

|Hj | = E

∫ T

0

( ∫ T

s

∣∣∣ ∂F

∂xj

(t, Nt )

∣∣∣∣∣∣∂Kj

∂t
(t, s)

∣∣∣dt
)2

ds

� cE

∫ T

0

( ∫ T

s

exp(λ | Nt |2)(t − s)αj −1
( t

s

)βj

dt
)2

ds.

Applying Hölder’s inequality to 1 < pj < 1
1−αj

< 2 and qj its conjugate, we get

( ∫ T

s

exp(λ | Nt |2)(t − s)αj −1
( t

s

)βj

dt
)2

�
( ∫ T

s

exp(qjλ | Nt |2)dt
) 2

qj

( ∫ T

s

(t − s)pj (αj −1)
( t

s

)pj βj

dt
) 2

pj .

Then

E

( ∫ T

0
exp(qjλ | Nt |2)dt

) 2
qj � E

( ∫ T

0
exp(qjλ sup

t∈[0,T ]
| Nt |2)dt

) 2
qj

� T 2/qj

n∏
i=1

E exp(2λ sup
t∈[0,T ]

(Ni
t )

2)dt.

The right side of the inequality above is finite for λ < 1
4 mini (supt∈[0,T ] V ar(Ni

t ))
−1,

see [2]. Moreover,∫ T

s

(t − s)pj (αj −1)
( t

s

)pj βj

dt = s−pj βj

∫ T

s

(t − s)pj (αj −1)tpj βj dt

� s−pj βj T pj βj
(T − s)pj (αj −1)+1

pj (αj − 1) + 1
,

and ∫ T

0

( ∫ T

s

(t − s)pj (αj −1)
( t

s

)pj βj

dt
) 2

pj ds

� T 2βj(
pj (αj − 1) + 1

) 2
pj

∫ T

0

(
s−pj βj (T − s)pj (αj −1)+1

) 2
pj ds

= T 2βj(
pj (αj − 1) + 1

) 2
pj

∫ T

0
s−2βj T

2(αj −1)+ 2
pj

(
1 − s

T

)2(αj −1)+ 2
pj ds

= T
2(αj −1)+ 2

pj
+1(

pj (αj − 1) + 1
) 2

pj

B
(

1 − 2βj , 2(αj − 1) + 2

pj

+ 1
)
,
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where B is the beta function. It remains to show that E
∥∥DXj ∂F

∂xj
(., N.)

∥∥|Hj |⊗|Hj | <

∞.

E

∥∥∥DXj ∂F

∂xj

(., N.)

∥∥∥2

|Hj |⊗|Hj |

= E

∫
[0,T ]4

∣∣∣DXj

s

∂F

∂xj

(t, Nt )

∣∣∣∣∣∣DXj

t ′
∂F

∂xj

(s′, Ns′)
∣∣∣φ̃j (s, s′)φ̃j (t, t ′)dsdtds′dt ′

= E

∫
[0,T ]4

∣∣∣∂2F

∂x2
j

(t, Nt )σ
j
s

∣∣∣∣∣∣∂2F

∂x2
j

(s′, Ns′)σ j

t ′
∣∣∣φ̃j (s, s′)φ̃j (t, t ′)dsdtds′dt ′

� c

∫ T

0
dt

∫ T

0
ds′
⎡⎣E(∂2F

∂x2
j

(t, Nt )

)2

+ E

(
∂2F

∂x2
j

(s′, Ns′)

)2
⎤⎦

×
∫ T

0
dt ′φ̃j (t, t ′)

∫ T

0
dsφ̃j (s′, s).

By (18) with F replaced by ∂2F

∂x2
j

, E
(

∂2F

∂x2
j

(t, Nt )
)2 stays bounded in t ∈ [0, T ]. The

finiteness of the remaining integrals follows from (H1), (H2) applied to Kj .
2. We proceed now to the outline of the proof of the Itô formula. Let

N
j,ε
t = b

j
t +

∫ t

0

( ∫ t

s

σ
j
r

∂Kj

∂r
(r + ε, s)dr

)
δW

j
s

= b
j
t +

∫ t

0

( ∫ r

0
σ

j
r

∂Kj

∂r
(r + ε, s)δW

j
s

)
dr,

for t � T − ε. Then, F(t,N
1,ε
t , . . . , N

n,ε
t ) has locally bounded variation, and we can

write

dF(t, N
1,ε
t , . . . , N

n,ε
t ) = ∂F

∂t
(t, N

1,ε
t , . . . , N

n,ε
t )dt

+
n∑

i=1

∂F

∂xi

(t, N
1,ε
t , . . . , N

n,ε
t )dN

i,ε
t

=
⎛⎝∂F

∂t
(t, Nε

t ) +
n∑

j=1

∂F

∂xj

(t, Nε
t )

d

dt
b

j
t

⎞⎠ dt

+
n∑

j=1

∂F

∂xj

(t, Nε
t )σ

j
t

∫ t

0

∂Kj

∂t
(t + ε, s)δW

j
s dt

with the notation Nε = (N1,ε, . . . , Nn,ε). Furthermore,

∂F

∂xj

(t, Nε
t )σ

j
t

∫ t

0

∂Kj

∂t
(t + ε, s)δW

j
s = σ

j
t

[ ∫ t

0

∂F

∂xj

(t, Nε
t )

∂Kj

∂t
(t + ε, s)δW

j
s

+
∫ t

0
DWj

s

( ∂F

∂xj

(t, Nε
t )
)∂Kj

∂t
(t + ε, s)ds

]
,
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where

DWj

s

( ∂F

∂xj

(t, Nε
t )
)

= ∂2F

∂x2
j

(t, Nε
t )DWj

s N
j,ε
t = ∂2F

∂x2
j

(t, Nε
t )

∫ t

s

σ
j
r

∂Kj

∂r
(r + ε, s)dr.

Therefore

F(t,Nε
t ) = F(0, 0) +

∫ t

0

⎛⎝∂F

∂s
(s,Nε

s ) +
n∑

j=1

∂F

∂xj

(s,Nε
s )

d

ds
b

j
s

⎞⎠ ds

+
n∑

j=1

∫ t

0

( ∫ t

s

σ
j
r

∂F

∂xj

(r,Nε
r )

∂Kj

∂r
(r + ε, s)dr

)
δW

j
s

+ 1

2

n∑
j=1

∫ t

0

∂2F

∂x2
j

(r, Nε
r )

∂

∂r

( ∫ r

0

(
K

∗,ε,j
r σ j

)2

s
ds
)
dr.

The divergence integral coincides, up to ε, with the integral that appears in the state-
ment of the theorem. The last term coincides, up to ε, with the term at the end of
Remark b) after the theorem. It remains to show that the terms above converge in
L2(�) towards the terms in the statement of the theorem as ε → 0. This can be done
for each integral similarly as in the proof of Theorem 4 in [2].

4 Solvability of linear BSDEs

As mentioned in the introduction the aim is to apply the Itô formula (19) for F re-
placed by the solution u of the PDE (8) and to show that Y and Z defined by (9)
satisfy the BSDE (7). We will show later in this section that u in fact satisfies the
growth condition (17) under a suitable growth condition on the final condition in (7).
This implies by (18) that Y and Z are square integrable.

The Itô formula (19), with F replaced by u reads

u(t, Nt ) = u(T ,NT ) −
∫ T

t

∂u

∂s
(s,Ns)ds −

n∑
j=1

∫ T

t

∂u

∂xj

(s,Ns)
( d

ds
b

j
s ds + σ

j
s δX

j
s

)

− 1

2

n∑
j=1

∫ T

t

∂2u

∂x2
j

(s, Ns)
d

ds
V ar(N

j
s )ds. (22)

An application of (8) to the second term on the right hand side of (22) yields

u(t, Nt ) = u(T ,NT ) −
∫ T

t

(
f (s) + A1(s)u(s,Ns) +

n∑
j=1

A
j
2(s)σ

j
s

∂u

∂xj

(s,Ns)
)
ds

−
n∑

j=1

∫ T

t

σ
j
s

∂u

∂xj

(s,Ns)δX
j
s . (23)
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We get (7) by setting Yt := u(t, Nt ) and Z
j
t := −σ

j
t

∂u
∂xj

(t, Nt ), i.e. (Y, (Z1, . . . , Zn))

solves (7) and is adapted to F. As in Section 1.2 we consider this equation for t ∈
[t0, T ], for some fixed t0 � 0.

In order to solve (8) explicitely, we have to assume, in addition to (H1) and (H2)
for the kernels Kj , some regularity and integrability conditions. (H5) will be dis-
cussed later.

(H3) There exist constants c, C > 0 such that c < σj < C, j = 1, . . . , n, and
A1, f , A2 := (A1

2, . . . , A
n
2) are bounded.

(H4) g is continuous, and there exist positive constants c′ and λ′ <

minj=1,...,n(16 supt∈[0,T ] V ar(N
j
t ))−1 such that | g(x) |� c′eλ′|x|2 for all x ∈ R

n.

(H5) d
dt

V ar(N
j
t ) > 0 for all t ∈ [t0, T ] and

∫ T

t0
(V ar(N

j
T )− V ar(N

j
t ))−1/2dt <

∞, j = 1, . . . , n.

Theorem 2. Assume that (H1)–(H5) hold, and let v(t, z) = (2πt)−1/2 exp(−z2/2t).
Then (Y, (Z1, . . . , Zn)) given by (9) solves (7), where

u(t, x) = −
∫ T

t

exp
( ∫ t

s

A1(r)dr
)
f (s)ds + exp

(
−
∫ T

t

A1(s)ds
)

×
∫
Rn

g(y)

n∏
j=1

v
(
V ar(N

j
T ) − V ar(N

j
t ), xj

−
∫ T

t

(σ
j
s A

j
2(s) − d

ds
b

j
s )ds − yj

)
dy (24)

solves (8).

Remark. An explicit calculation of the partial derivatives of u shows that u is in
fact a classical solution of (8). Sufficient conditions for the uniqueness of the solution
of (8) (even in the general nonlinear case) can be found in [12], Theorem 2.4. The
question of uniqueness of the solution (Y, (Z1, . . . , Zn)) of (7) is more delicate for
equations with Volterra processes than for equations with fractional Brownian motion
and will be adressed in a separate paper. Here we notice that (7) has a unique solution
of the form (9) if the solution of (8) is unique. We show now that u verifies the growth
condition (17).

Lemma 1. Let u be given by (24). Then there are positive constants M and λ <

minj=1,...n(4 supt∈[0,T ] V ar(N
j
t ))−1 such that

1) | u(t, x) |� Meλ|x|2 , (t, x) ∈ [t0, T ] × R
n,

2)
∣∣∣ ∂u
∂xj

(t, x)

∣∣∣ � M(V ar(N
j
T ) − V ar(N

j
t ))−1/2eλ|x|2 , (t, x) ∈ [t0, T ) × R

n,

3)
∣∣∣ ∂2u

∂x2
j

(t, x)

∣∣∣ � M(V ar(N
j
T ) − V ar(N

j
t ))−1eλ|x|2 , (t, x) ∈ [t0, T ) × R

n.

Proof. We prove 2), the proofs of 1) and 3) are simpler or similar. Let us write ri
s for

σ i
s A

i
2(s) − d

ds
bi
s and Di

t for V ar(Ni
T ) − V ar(Ni

t ).

∂u

∂xi

(t, x) = e− ∫ T
t A1(s)ds

∫
Rn

g(y)
∂

∂ξi

v(Di
t , ξi)

∣∣∣
ξi=xi−

∫ T
t ri

s ds−yi
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×
n∏

j �=i

v
(
D

j
t , xj −

∫ T

t

r
j
s ds − yj

)
dy

= e− ∫ T
t A1(s)ds

∫
Rn

g(y)
1√

2πDi
t

(
− xi − ∫ T

t
ri
sds − yi

Di
t

)

× exp
(

− (xi − ∫ T

t
ri
sds − yi)

2

2Di
t

)
×

n∏
j �=i

1√
2πD

j
t

exp
(

− (xj − ∫ T

t
r
j
s ds − yj )

2

2D
j
t

)
dy.

By (H4) and the change of variables zj = xj − ∫ T

t
r
j
s ds − yj , j = 1, . . . , n we get

∣∣∣ ∂u

∂xi

(t, x)

∣∣∣ � C

∫
Rn

1√
2πDi

t

∣∣∣ zi

Di
t

∣∣∣exp(− z2
i

2Di
t

)
exp
(
λ′
∣∣∣x −

∫ T

t

rsds − z

∣∣∣2)

×
n∏

j �=i

1√
2πD

j
t

exp
(

− z2
j

2D
j
t

)
dz.

Let us prove that

exp
(
λ′
∣∣∣x −

∫ T

t

rsds − z

∣∣∣2)∏
j �=i

exp
(

− z2
j

2D
j
t

)
√

2πD
j
t

� exp
(

2λ′
∣∣∣x −

∫ T

t

rsds

∣∣∣2)exp(2λ′z2
i )

×
∏
j �=i

exp
[

− z2
j

D
j
t

(
1
2 − 2λ′V arN

j
T

)]
√

2πD
j
t

.

In fact,

exp
(
λ′
∣∣∣x −

∫ T

t

rsds − z

∣∣∣2)
� exp

(
2λ′
∣∣∣x −

∫ T

t

rsds

∣∣∣2)exp(2λ′ | z |2
)

= exp
(

2λ′
∣∣∣x −

∫ T

t

rsds

∣∣∣2)exp(2λ′z2
i )
∏
j �=i

exp(2λ′z2
j )

� exp
(

2λ′
∣∣∣x −

∫ T

t

rsds

∣∣∣2)exp(2λ′z2
i )
∏
j �=i

exp
(

2λ′ V arN
j
T

D
j
t

z2
j

)
.
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Consequently,∣∣∣ ∂u

∂xi

(t, x)

∣∣∣
� Cexp

(
2λ′
∣∣∣x −

∫ T

t

rsds

∣∣∣2) ∫
Rn

1√
2πDi

t

1√
Di

t

∣∣∣zi

∣∣∣√
Di

t

exp(2λ′z2
i )exp

(
− z2

i

2Di
t

)

×
∏
j �=i

exp
[

− z2
j

D
j
t

(
1
2 − 2λ′V arN

j
T

)]
√

2πD
j
t

dz.

Moreover, for any ε > 0, there is a constant Kε such that |zi |√
Di

t

� Kεexp
(

ε

Di
t

z2
i

)
.

Therefore∣∣∣ ∂u

∂xi

(t, x)

∣∣∣
� CKεexp

(
2λ′
∣∣∣x −

∫ T

t

rsds

∣∣∣2) ∫
Rn

1√
2πDi

t

1√
Di

t

exp
( ε

Di
t

z2
i

)

× exp(2λ′z2
i )exp

(
− z2

i

2Di
t

)∏
j �=i

exp
[

− z2
j

D
j
t

(
1
2 − 2λ′V arN

j
T

)]
√

2πD
j
t

dz

� CKεexp
(

2λ′
∣∣∣x −

∫ T

t

rsds

∣∣∣2)
×
∫
Rn−1

[ ∫
R

1√
2πDi

t

exp
(−( 1

2 − ε − 2λ′V arNi
T )

Di
t

z2
i

)
dzi

]

×
∏
j �=i

exp
[

− z2
j

D
j
t

(
1
2 − 2λ′V arN

j
T

)]
√

2πD
j
t

dz′, z′ = (z1, . . . , zi−1, zi+1, . . . , zn)

� CKεexp
(

2λ′
∣∣∣x −

∫ T

t

rsds

∣∣∣2) ∫
Rn−1

[ 1√
2πDi

t

√
2πDi

t

1 − 2ε − 4λ′V arNi
T

]

×
∏
j �=i

exp
[

− z2
j

D
j
t

(
1
2 − 2λ′V arN

j
t

)]
√

2πD
j
t

dz′

= CKε

1√
1 − 2ε − 4λ′V arNi

T

1√
Di

t

exp
(

2λ′
∣∣∣x −

∫ T

t

rsds

∣∣∣2)

×
∏
j �=i

1√
2πD

j
t

√√√√ 2πD
j
t

1 − 4λ′V arN
j
T
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� CKε

1√
1 − 2ε − 4λ′V arNi

T

1√
Di

t

exp
(

4λ′ | x |2
)
exp
(

4λ′
∣∣∣ ∫ T

t

rsds

∣∣∣2)
× 1[√

1 − 4λ′ max
j

V arN
j
T

]n−1

� MK ′
ε√

Di
t

exp
(
λ | x |2

)

with a M = exp(4λ′ max{| ∫ T

t
rsds|2, t ∈ [t0, T ]}), λ = 4λ′ and a suitable con-

stant K ′
ε.

Let us prove now Theorem 2.

Proof. It remains to show that (Y, Z) satisfies the BSDE (7). By the preceding lemma
u satisfies (23) with T replaced by T −ε. Since E exp(2λ | Nt |2) is bounded on [0, T ]
for λ < minj=1,...n(4 supt∈[0,T ] V ar(N

j
t ))−1, we obtain

E

∫ T

t

∣∣∣∣f (s) + A1(s)u(s,Ns) +
n∑

j=1

A
j
2(s)σ

j
s

∂u

∂xj

(s,Ns)

∣∣∣∣ds

�
n∑

j=1

∫ T

t

(V ar(N
j
T ) − V ar(N

j
t ))−1/2dt < ∞

for all t < T by (H5). By continuity of u and N , the terms in the first line of (23)
with T replaced by T − ε converge to the terms in (23) as ε → 0. The divergence
integrals converge too in the sense

E

[∫ T −ε

t

σ
j
s

∂u

∂xj

(s,Ns)δX
j
s F

]
→
ε→0

E

[∫ T

t

σ
j
s

∂u

∂xj

(s,Ns)δX
j
s F

]
for all j = 1, . . . , n and F ∈ S .

Remark. We discuss now the hypothesis (H5). The positivity of d
dt

V ar(N
j
t ) means

that V ar(N
j
t ) is (strictly) increasing on [t0, T ]. We note that

d

dt
V ar(N

j
t ) = d

dt

∫ t

0
(K

∗,j
t σ j )2

s ds = 2
∫ t

0
σ

j
t σ

j
u

∫ u

0

∂Kj

∂t
(t, s)

∂Kj

∂u
(u, s)dsdu

= 2σ
j
t

∫ t

0
σ

j
u φj (t, u)du.

Since σ j > 0 by (H3), a sufficient condition for d
dt

V ar(N
j
t ) > 0 for all t ∈ [t0, T ] is

φj > 0 on [0, T ]2 \ [0, t0]2. This is the case if ∂Kj

∂u
(u, s) > 0 for all (u, s) ∈ [0, T ]2,

u > s, but the explicit calculation of D
j
t := V ar(N

j
T ) − V ar(N

j
t ) below shows that
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this is a sufficient but not a necessary condition. We note that for fractional Brownian
motion BH with Hurst index H > 1/2

φH (t, u) = ∂2

∂t∂u
EBH

t BH
u = CH | t − u |2H−2> 0,

where CH > 0 is a constant depending on H .

Let us comment now on the hypothesis of integrability of (Dj
t )−1/2 near T . We

have

D
j
t = E

[( ∫ T

0
δW

j
s

∫ T

s

σ
j
r

∂Kj

∂r
(r, s)dr

)2 −
( ∫ t

0
δW

j
s

∫ t

s

σ
j
r

∂Kj

∂r
(r, s)dr

)2]
= E

[( ∫ T

0
δW

j
s

∫ T

s

σ
j
r

∂Kj

∂r
(r, s)dr +

∫ t

0
δW

j
s

∫ t

s

σ
j
r

∂Kj

∂r
(r, s)dr

)
×
( ∫ T

0
δW

j
s

∫ T

s

σ
j
r

∂Kj

∂r
(r, s)dr −

∫ t

0
δW

j
s

∫ t

s

σ
j
r

∂Kj

∂r
(r, s)dr

)]
.

An explicit calculation shows

D
j
t =

∫ t

0
dr

∫ T

t

dr ′σ j
r σ

j

r ′φj (r, r ′) +
∫ t

0
ds

(∫ T

t

drσ
j
r

∂Kj

∂r
(r, s)

)2

+
∫ T

t

ds

(∫ T

s

drσ
j
r

∂Kj

∂r
(r, s)

)2

=: A1
t + A2

t + A3
t .

Under the hypothesis (H3) for σ j and if φj > 0, a sufficient condition for∫ T

t0
(D

j
t )−1/2dt < ∞ is

A3
t =

∫ T

t

(K
∗,j
T σ j )2

s ds � c(T − t)a

for some constant c > 0 and a ∈ (0, 2) as t ↗ T . For fractional Brownian motion
BH with H > 1/2 this condition is satisfied with a = H + 1/2. For the Volterra
processes in Examples 1–3 this condition is satisfied with a = 2h(T ) if h is such that
∂K
∂u

(u, s) > 0, for (u, s) ∈ (t0, T )2, u > s.

Acknowledgments

The authors are grateful to the referees for the careful reading of the paper, their
suggestions improved its presentation substantially.

Funding

The authors acknowledge the financial support by the program Hubert Curien Utique
No. 17G1505 of the French Ministry of Foreign Affairs and the Tunisian Ministry of
Education and Research.



432 H. Knani, M. Dozzi

References

[1] Alòs, E., Nualart, D.: Stochastic integration with respect to the fractional brow-
nian motion. Stochastics 75, 129–152 (2003). MR1978896. https://doi.org/10.1080/
1045112031000078917

[2] Alòs, E., Mazet, O., Nualart, D.: Stochastic calculus with respect to Gausssian processes.
Ann. Probab. 29, 766–801 (2001). MR1849177. https://doi.org/10.1214/aop/1008956692

[3] Bamba Sow, A., Kor Diouf, B.: Fractional anticipated BSDEs with stochastic Lip-
schitz coefficients. Random Oper. Stoch. Equ. 26(3), 143–161 (2018). MR3849701.
https://doi.org/10.1515/rose-2018-0012

[4] Bender, C.: Explicit solutions of a class of linear fractional BSDEs. Syst. Control Lett.
54, 671–680 (2005). MR2142362. https://doi.org/10.1016/j.sysconle.2004.11.006

[5] Bender, C.: Backward SDE’s driven by gaussian processes. Stoch. Process. Appl. 124,
2892–2916 (2014). MR3217428. https://doi.org/10.1016/j.spa.2014.03.013

[6] Bender, C., Viitasaari, L.: A general non-existence result for linear BSDEs driven
by a Gaussian process. Stoch. Process. Appl. 127, 1204–1233 (2017). MR3619268.
https://doi.org/10.1016/j.spa.2016.07.012

[7] Boufoussi, B., Dozzi, M., Marty, R.: Local time and Tanaka formula for a Volterra-
type multifractional Gaussian process. Bernoulli 16, 1294–1311 (2010). MR2759180.
https://doi.org/10.3150/10-BEJ261

[8] Carmona, R.: Lectures on BSDEs, Stochastic Control and Stochastic Differential
Games with Financial Applications. SIAM (2016). MR3629171. https://doi.org/10.1137/
1.9781611974249

[9] Crépey, S.: Financial Modeling, a Backward Stochastic Differential Equations Perspec-
tive. Springer (2013). MR3154654. https://doi.org/10.1007/978-3-642-37113-4

[10] Diehl, J., Friz, P.: Backward stochastic differential equations with rough drivers. Ann.
Probab. 40, 1715–1758 (2012). MR2978136. https://doi.org/10.1214/11-AOP660

[11] Hu, Y., Peng, S.: Backward stochastic differential equation driven by fractional brownian
motion. SIAM J. Control Optim. 48, 1675–1700 (2009). MR2516183. https://doi.org/
10.1137/070709451

[12] Hu, Y., Ocone, D., Song, J.: Some results on backward stochastic differential equa-
tions driven by fractional brownian motion. Stochastic Analysis and Applications to Fi-
nance, Intediscip. Math. Sci 13, 225–242 (2012). MR2986849. https://doi.org/10.1142/
9789814383585_0012
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