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Abstract We deal with a generalization of the risk model with stochastic premiums where
dividends are paid according to a constant dividend strategy and consider heuristic approx-
imations for the ruin probability. To be more precise, we construct five- and three-moment
analogues to the De Vylder approximation. To this end, we obtain an explicit formula for the
ruin probability in the case of exponentially distributed premium and claim sizes. Finally, we
analyze the accuracy of the approximations for some typical distributions of premium and
claim sizes using statistical estimates obtained by the Monte Carlo methods.
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1 Introduction

The ruin probability of an insurance company is one of the main risk measures con-
sidered in risk theory, and the problems of its calculation and approximation have
attracted a lot of attention recently (see, e.g., [2, 16, 22, 25, 27–29] and references
therein). Risk models where shareholders receive dividends from their insurance com-
pany have been of great interest to researchers since De Finetti first considered div-
idend strategies in insurance dealing with a binomial model [12]. The classical risk
model and its various modifications with different dividend strategies are investigated

© 2020 The Author(s). Published by VTeX. Open access article under the CC BY license.

www.vmsta.org

https://doi.org/10.15559/20-VMSTA157
mailto:ragulina.olena@gmail.com
http://www.ams.org/msc/msc2010.html?s=91B30
http://www.ams.org/msc/msc2010.html?s=60G51
http://creativecommons.org/licenses/by/4.0/
http://www.vmsta.org
http://www.vtex.lt/en/


246 O. Ragulina

in a number of papers (see, e.g., [1, 4, 8, 10, 11, 15, 20, 21, 26, 27, 30] and references
therein).

It is well known that explicit formulas for the ruin probability can be derived
only in a few special cases even for the classical Cramér–Lundberg risk model, so
numerous heuristic approximations for this function have been proposed and studied
(see [2, 3, 5, 9, 13, 16, 17, 28, 29]). So-called simple approximations, which use only
some moments of the distribution of claim sizes and do not take into account its tail
behavior, form a special class of approximations for the ruin probabilities.

The De Vylder approximation, which is introduced in [13] for the classical risk
model, is supposed to be one of the most successful simple approximations. It is based
on the heuristic idea to replace the investigated risk process by a risk process with
exponentially distributed claim sizes such that the first three moments coincide (see
also [16, 28, 29] for details). Thus, to apply the De Vylder approximation, we need to
calculate only the first three moments of the distribution of the claim sizes. Despite its
simplicity, the approximation gives surprisingly good results when the initial surplus
is not too small, especially when the distribution of claim sizes is light-tailed. This fact
was explained later by Grandell [17] after analyzing the simple approximations from
a mathematical viewpoint. Analogues to the De Vylder approximation are constructed
in the risk model with additional funds [23] and some risk models with reinsurance
[7, 19].

The present paper deals with a generalization of the risk model with stochas-
tic premiums where dividends are paid according to a constant dividend strategy. In
what follows, we suppose that all stochastic objects we use below are defined on a
probability space (�,F,P) satisfying the usual conditions. In the risk model with
stochastic premiums (see, e.g., [6, 22]), premium sizes form a sequence (Ȳi)i≥1 of
non-negative independent and identically distributed (i.i.d.) random variables (r.v.’s)
with cumulative distribution function (c.d.f.) FȲ (y) = P[Ȳi ≤ y], and the number of
premiums on the time interval [0, t] is a Poisson process (N̄t )t≥0 with constant inten-
sity λ̄ > 0. Similarly, claim sizes form a sequence (Yi)i≥1 of i.i.d. r.v.’s with c.d.f.
FY (y) = P[Yi ≤ y], and the number of claims on the time interval [0, t] is a Poisson
process (Nt )t≥0 with constant intensity λ > 0. Thus, the total premiums and claims

on [0, t] equal
∑N̄t

i=1 Ȳi and
∑Nt

i=1 Yi , respectively. Note that here
∑N̄t

i=1 Ȳi = 0 if

N̄t = 0, and
∑Nt

i=1 Yi = 0 if Nt = 0. In what follows, we also assume that the r.v.’s
(Yi)i≥1 and (Ȳi)i≥1 have finite expectations μ > 0 and μ̄ > 0, respectively, and
(Yi)i≥1, (Ȳi)i≥1, (Nt )t≥0 and (N̄t )t≥0 are mutually independent.

Moreover, we make the additional assumption that the insurance company pays
dividends to its shareholders according to a constant dividend strategy, which implies
that dividends are paid continuously at a rate d > 0. The strategy can be considered
as a multi-layer dividend strategy where the number of layers is equal to one (see,
e.g., [27])). Next, we denote a non-negative initial surplus of the insurance company
by x, and let Xt(x) be its surplus at time t provided that the initial surplus is x. Then
the surplus process

(
Xt(x)

)
t≥0 is defined by the equality

Xt(x) = x +
N̄t∑
i=1

Ȳi −
Nt∑
i=1

Yi − dt, t ≥ 0. (1)



Simple approximations for the ruin probability 247

Next, let τ(x) = inf{t ≥ 0 : Xt(x) < 0} be the ruin time for the risk process(
Xt(x)

)
t≥0 defined by (1). For x ≥ 0, the infinite-horizon ruin probability is defined

by
ψ(x) = E[1(τ (x) < ∞) |X0(x) = x],

where 1(·) is the indicator function. Note that the ruin probability is a special case of
the expected discounted penalty function, which is introduced in [14] and also called
the Gerber–Shiu function.

Thus, it is easily seen that the risk model described above is a special case of the
model with stochastic premiums and a multi-layer dividend strategy investigated in
[27], although in that paper it is assumed that the number of layers is more than one.
In [27], piecewise integro-differential equations for the Gerber–Shiu function and the
expected discounted dividend payments until ruin are derived. In addition, the model
is studied in detail in the case of exponentially distributed claim and premium sizes.
In particular, explicit formulas for the ruin probability as well as for the expected
discounted dividend payments are obtained.

The aim of the present paper is to construct analogues to the De Vylder approx-
imation for the ruin probability in the risk model described above and analyze the
accuracy of these approximations. The rest of the paper is organized as follows. In
Section 2, we obtain an explicit formula for the ruin probability in the case of ex-
ponentially distributed premium and claim sizes. We use this formula in Section 3,
where we derive five- and three-moment analogues to the De Vylder approximation.
Finally, Section 4 is devoted to numerical illustrations. To be more precise, we deal
with some typical distributions of premium and claim sizes and apply the results ob-
tained in Section 3. To analyze the accuracy of the approximations, we use statistical
estimates obtained by the Monte Carlo methods.

2 An explicit formula for the ruin probability in the case of exponentially
distributed premium and claim sizes

From now on, we suppose that the net profit condition holds, which in this model
means that

λ̄μ̄ > λμ + d. (2)

Theorem 1 below is a special case of Theorem 1 in [27], where it is formulated
and proved for the Gerber–Shiu function in the model where the number of layers is
more than one. It is easy to check that the assertion of the theorem remains true if the
number of layers equals one.

Theorem 1. Let the surplus process
(
Xt(x)

)
t≥0 be defined by (1) under the above

assumptions, and let FY (y) be continuous on R+. Then the function ψ(x) is differen-
tiable on R+ and satisfies the integro-differential equation

dψ ′(x) + (λ̄ + λ)ψ(x) = λ̄

∫ ∞

0
ψ(x + y) dFȲ (y)

+ λ

∫ x

0
ψ(x − y) dFY (y) + λ

(
1 − FY (x)

)
, x ≥ 0.

(3)



248 O. Ragulina

Remark 1. To solve equation (3), we use the following two boundary conditions.
Firstly, using standard considerations (see, e.g., [22, 24, 28]) it can be easily shown
that limx→∞ ψ(x) = 0 provided that the net profit condition (2) holds. Secondly, it
is obvious that ψ(0) = 1 for this risk model. Although equation (3) is not solvable
analytically in the general case, we can find explicit expressions for the corresponding
ruin probability in some special cases. The uniqueness of the required solution to
equation (3) should be justified in each case.

Assume now that the premium and claim sizes are exponentially distributed, i.e.
their probability density functions (p.d.f.’s) are

fȲ (y) = 1

μ̄
e−y/μ̄ and fY (y) = 1

μ
e−y/μ, y ≥ 0,

respectively. In this case, the integro-differential equation (3) can be reduced to a
linear differential equation with constant coefficients.

Lemma 1. Let the surplus process
(
Xt(x)

)
t≥0 be defined by (1) under the above

assumptions, and let the premium and claim sizes be exponentially distributed with
means μ̄ and μ, respectively. Then for all x ≥ 0, ψ(x) is a solution to the differential
equation

dμ̄μψ ′′′(x) + (
d(μ̄ − μ) + μ̄μ(λ̄ + λ)

)
ψ ′′(x) + (λ̄μ̄ − λμ − d)ψ ′(x) = 0. (4)

The proof of Lemma 1 is similar to the proof of Lemma 1 in [27]. An explicit
formula for the ruin probability is given in Theorem 2 below.

Theorem 2. Let the surplus process
(
Xt(x)

)
t≥0 follow (1) under the above assump-

tions, and let premium and claim sizes be exponentially distributed with means μ̄ and
μ, respectively. If the net profit condition (2) holds, then

ψ(x) = C1e
z1x + C2e

z2x for all x ≥ 0, (5)

where

z1 = −(
d(μ̄ − μ) + μ̄μ(λ̄ + λ)

) + √
D

2dμ̄μ
,

z2 = −(
d(μ̄ − μ) + μ̄μ(λ̄ + λ)

) − √
D

2dμ̄μ
,

D = (
d(μ̄ + μ) + μ̄μ(λ − λ̄)

)2 + 4λ̄λμ̄2μ2,

C1 = λ̄μ̄(μ̄ + μ)(dz2 + λ̄) + dλ̄μ(μ̄z1 − 1)

dλ̄μ̄2(z2 − z1)

and

C2 = − λ̄μ̄(μ̄ + μ)(dz1 + λ̄) + dλ̄μ(μ̄z2 − 1)

dλ̄μ̄2(z2 − z1)
.

Proof. By Lemma 1, ψ(x) is a solution to (4) for all x ≥ 0. The characteristic
equation corresponding to (4) has the form

dμ̄μz3 + (
d(μ̄ − μ) + μ̄μ(λ̄ + λ)

)
z2 + (λ̄μ̄ − λμ − d)z = 0. (6)
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The discriminant of the equation

dμ̄μz2 + (
d(μ̄ − μ) + μ̄μ(λ̄ + λ)

)
z + (λ̄μ̄ − λμ − d) = 0 (7)

is equal to (
d(μ̄ − μ) + μ̄μ(λ̄ + λ)

)2 − 4dμ̄μ(λ̄μ̄ − λμ − d)

= (
d(μ̄ + μ) + μ̄μ(λ − λ̄)

)2 + 4λ̄λμ̄2μ2,

which is obviously positive and coincides with the constant D introduced above.
Therefore, z1 and z2 defined in the assertion of the theorem are two real roots of
equation (7).

By the net profit condition (2), we conclude that λ̄μ̄ − λμ − d > 0 and

d(μ̄ − μ) + μ̄μ(λ̄ + λ) = μ(λ̄μ̄ − λμ − d) + λμ2 + λμ̄μ + dμ̄ > 0,

which implies that z1 < 0 and z2 < 0 by Vieta’s theorem. Consequently, z1 < 0,
z2 < 0 and z3 = 0 are roots of equation (6), from which we deduce that

ψ(x) = C1e
z1x + C2e

z2x + C3 for all x ≥ 0

with some constants C1, C2 and C3. Since the net profit condition (2) holds, by Re-
mark 1, we have limx→∞ ψ(x) = 0, which yields C3 = 0. So we obtain (5).

To determine the constants C1 and C2, we use the following two conditions.
Firstly, substituting (5) into the equality ψ(0) = 1 we get

C1 + C2 = 1. (8)

Secondly, letting x = 0 in (3) we obtain

dψ ′(0) + (λ̄ + λ)ψ(0) = λ̄

∫ ∞

0
ψ(y) dFȲ (y) + λ. (9)

Since
ψ ′(x) = C1z1e

z1x + C2z2e
z2x for all x ≥ 0

and
1

μ̄

∫ ∞

0
ψ(u)e−u/μ̄ du = − C1

μ̄z1 − 1
− C2

μ̄z2 − 1
,

from (9) we get

C1

(
dz1 + λ̄

μ̄z1 − 1

)
+ C2

(
dz2 + λ̄

μ̄z2 − 1

)
= −λ̄. (10)

Taking into account that

(μ̄z1 − 1)(μ̄z2 − 1) = μ̄2z1z2 − μ̄(z1 + z2) + 1

= μ̄2 λ̄μ̄ − λμ − d

dμ̄μ
+ μ̄

d(μ̄ − μ) + μ̄μ(λ̄ + λ)

dμ̄μ
+ 1 = λ̄μ̄(μ̄ + μ)

dμ
,

we find the constants C1 and C2 from the system of linear equations (8) and (10),
which always has a unique solution. Applying arguments similar to those in the proof
of Theorem 3 in [27] we can show that the function ψ(x) that we found is a unique
solution to (3) satisfying the required conditions, which completes the proof.
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3 Analogues to the De Vylder approximation

3.1 An auxiliary result

Let the process
(
Ut

)
t≥0 be defined by

Ut =
N̄t∑
i=1

Ȳi −
Nt∑
i=1

Yi − dt, t ≥ 0. (11)

We construct two analogues to the De Vylder approximation replacing the process(
Ut

)
t≥0 by a process

(
Ũt

)
t≥0 with exponentially distributed premium and claim sizes.

Since in this risk model the process
(
Ũt

)
t≥0 is determined by five parameters, which

we denote by λ̄0, μ̄0, λ0, μ0 and d0, five equalities are required to determine these
parameters. Consequently, we need the first five moments of

(
Ut

)
t≥0.

Lemma 2. Let the process
(
Ut

)
t≥0 be defined by (11) under the above assumptions,

E[Ȳ 5
i ] < ∞ and E[Y 5

i ] < ∞. Then for all t ≥ 0, we have

E[Ut ] = (λ̄μ̄ − λμ − d)t, (12)

E[U2
t ] = (

E[Ut ]
)2 + (

λ̄E[Ȳ 2] + λE[Y 2])t, (13)

E[U3
t ] = (

E[Ut ]
)3 + 3E[Ut ] · (

λ̄E[Ȳ 2] + λE[Y 2])t + (
λ̄E[Ȳ 3] − λE[Y 3])t, (14)

E[U4
t ] = (

E[Ut ]
)4 + 6

(
E[Ut ]

)2 · (
λ̄E[Ȳ 2] + λE[Y 2])t

+ 4E[Ut ] · (
λ̄E[Ȳ 3] − λE[Y 3])t + 3

(
λ̄E[Ȳ 2] + λE[Y 2])t2

+ (
λ̄E[Ȳ 4] + λE[Y 4])t,

(15)

E[U5
t ] = (

E[Ut ]
)5 + 10

(
E[Ut ]

)3 · (
λ̄E[Ȳ 2] + λE[Y 2])t

+ 10
(
E[Ut ]

)2 · (
λ̄E[Ȳ 3] − λE[Y 3])t

+ 15E[Ut ] · (
λ̄E[Ȳ 2] + λE[Y 2])2

t2

+ 5E[Ut ] · (
λ̄E[Ȳ 4] + λE[Y 4])t

+ 10
(
λ̄E[Ȳ 2] + λE[Y 2])(λ̄E[Ȳ 3] − λE[Y 3])t2

+ (
λ̄E[Ȳ 5] − λE[Y 5])t.

(16)

Proof. Let MȲ (s) and MY (s) be the moment generating functions of the r.v.’s Ȳi

and Yi , respectively, provided that they exist in some neighborhood of s = 0. Fur-
thermore, we denote the moment generating function of

(
Ut

)
t≥0 by M(s). An easy

computation shows that

M(s) = E[esUt ] = exp
{
λ̄t

(
MȲ (s) − 1

) + λt
(
MY (−s) − 1

) − dts
}
.

Taking the first five derivatives of M(s) yields

M ′(s) = (
λ̄tM ′̄

Y
(s) − λtM ′

Y (−s) − dt
)
M(s),

M ′′(s) =
((

λ̄tM ′̄
Y
(s) − λtM ′

Y (−s) − dt
)2 + λ̄tM ′′̄

Y
(s) + λtM ′′

Y (−s)
)
M(s),
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M ′′′(s) =
((

λ̄tM ′̄
Y
(s) − λtM ′

Y (−s) − dt
)3

+ 3
(
λ̄tM ′̄

Y
(s) − λtM ′

Y (−s) − dt
)(

λ̄tM ′′̄
Y
(s) + λtM ′′

Y (−s)
)

+ λ̄tM ′′′
Ȳ

(s) − λtM ′′′
Y (−s)

)
M(s),

M(IV )(s) =
((

λ̄tM ′̄
Y
(s) − λtM ′

Y (−s) − dt
)4

+ 6
(
λ̄tM ′̄

Y
(s) − λtM ′

Y (−s) − dt
)2(

λ̄tM ′′̄
Y
(s) + λtM ′′

Y (−s)
)

+ 4
(
λ̄tM ′̄

Y
(s) − λtM ′

Y (−s) − dt
)(

λ̄tM ′′′
Ȳ

(s) − λtM ′′′
Y (−s)

)
+ 3

(
λ̄tM ′′̄

Y
(s) + λtM ′′

Y (−s)
)2

+ λ̄tM
(IV )

Ȳ
(s) + λtM

(IV )
Y (−s)

)
M(s)

and

M(V )(s) =
((

λ̄tM ′̄
Y
(s) − λtM ′

Y (−s) − dt
)5

+ 10
(
λ̄tM ′̄

Y
(s) − λtM ′

Y (−s) − dt
)3(

λ̄tM ′′̄
Y
(s) + λtM ′′

Y (−s)
)

+ 10
(
λ̄tM ′̄

Y
(s) − λtM ′

Y (−s) − dt
)2(

λ̄tM ′′′
Ȳ

(s) − λtM ′′′
Y (−s)

)
+ 15

(
λ̄tM ′̄

Y
(s) − λtM ′

Y (−s) − dt
)(

λ̄tM ′′̄
Y
(s) + λtM ′′

Y (−s)
)2

+ 5
(
λ̄tM ′̄

Y
(s) − λtM ′

Y (−s) − dt
)(

λ̄tM
(IV )

Ȳ
(s) + λtM

(IV )
Y (−s)

)
+ 10

(
λ̄tM ′′̄

Y
(s) + λtM ′′

Y (−s)
)(

λ̄tM ′′′
Ȳ

(s) − λtM ′′′
Y (−s)

)
+ λ̄tM

(V )

Ȳ
(s) − λtM

(V )
Y (−s)

)
M(s).

Since E[Uk
t ] = M(k)(0) for all integer k ≥ 1, substituting s = 0 into the formulas

above gives (12)–(16).
If the moment generating functions of Ȳi and Yi do not exist, we can obtain (12)–

(16) by a direct computation of the required expectations provided that E[Ȳ 5
i ] < ∞

and E[Y 5
i ] < ∞, which completes the proof.

In what follows, we use the following constants:

γ2 = λ̄E[Ȳ 2] + λE[Y 2], γ3 = λ̄E[Ȳ 3] − λE[Y 3],
γ4 = λ̄E[Ȳ 4] + λE[Y 4], γ5 = λ̄E[Ȳ 5] − λE[Y 5].

3.2 A five-moment approximation

To construct a five-moment analogue to the De Vylder approximation, we replace the
process

(
Ut

)
t≥0 by a process

(
Ũt

)
t≥0 with exponentially distributed premium and

claim sizes such that

E[Uk
t ] = E[Ũ k

t ], k = 1, 2, 3, 4, 5. (17)
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Theorem 3 (a five-moment analogue to the De Vylder approximation). Let the sur-
plus process

(
Xt(x)

)
t≥0 be defined by (1) under the above assumptions,

E[Ȳ 5
i ] < ∞, E[Y 5

i ] < ∞, and let the net profit condition (2) hold. Then the ruin
probability is approximately equal to

ψDV 5(x) = C1e
z1x + C2e

z2x for all x ≥ 0, (18)

where

z1 = −(
d0(μ̄0 − μ0) + μ̄0μ0(λ̄0 + λ0)

) + √
D

2d0μ̄0μ0
,

z2 = −(
d0(μ̄0 − μ0) + μ̄0μ0(λ̄0 + λ0)

) − √
D

2d0μ̄0μ0
,

D = (
d0(μ̄0 + μ0) + μ̄0μ0(λ0 − λ̄0)

)2 + 4λ̄0λ0μ̄
2
0μ

2
0,

C1 = λ̄0μ̄0(μ̄0 + μ0)(dz2 + λ̄0) + d0λ̄0μ0(μ̄0z1 − 1)

d0λ̄0μ̄
2
0(z2 − z1)

,

C2 = − λ̄0μ̄0(μ̄0 + μ0)(dz1 + λ̄0) + d0λ̄0μ0(μ̄0z2 − 1)

d0λ̄0μ̄
2
0(z2 − z1)

,

and the constants λ̄0, μ̄0, λ0, μ0 and d0 are defined by the following equalities:

μ0 = − 5γ3γ4 − 3γ2γ5

40γ 2
3 − 30γ2γ4

+
√

(5γ3γ4 − 3γ2γ5)2 + (4γ3γ5 − 5γ 2
4 )(20γ 2

3 − 15γ2γ4)

|40γ 2
3 − 30γ2γ4|

,

μ̄0 = 5γ3γ4 − 3γ2γ5

40γ 2
3 − 30γ2γ4

+
√

(5γ3γ4 − 3γ2γ5)2 + (4γ3γ5 − 5γ 2
4 )(20γ 2

3 − 15γ2γ4)

|40γ 2
3 − 30γ2γ4|

,

λ0 = 3μ̄0γ2 − γ3

6μ2
0(μ̄0 + μ0)

, λ̄0 = γ2 − 2λ0μ
2
0

2μ̄2
0

,

d0 = λ̄0μ̄0 − λ0μ0 − (λ̄μ̄ − λμ − d),

provided that λ̄0 > 0, μ̄0 > 0, λ0 > 0, μ0 > 0, d0 > 0, 4γ 2
3 − 3γ2γ4 �= 0 and

(5γ3γ4 − 3γ2γ5)
2 + (4γ3γ5 − 5γ 2

4 )(20γ 2
3 − 15γ2γ4) > 0.

Proof. Taking into account that the kth moments of the r.v.’s that are exponentially
distributed with means μ̄0 and μ0 equal k!μ̄k

0 and k!μk
0, respectively, from Lemma 2

we conclude that (17) is equivalent to the system of equations (19)–(23):

λ̄0μ̄0 − λ0μ0 − d0 = λ̄μ̄ − λμ − d, (19)

2λ̄0μ̄
2
0 + 2λ0μ

2
0 = γ2, (20)

6λ̄0μ̄
3
0 − 6λ0μ

3
0 = γ3, (21)

24λ̄0μ̄
4
0 + 24λ0μ

4
0 = γ4, (22)
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120λ̄0μ̄
5
0 − 120λ0μ

5
0 = γ5. (23)

Now our aim is to find the constants λ̄0, μ̄0, λ0, μ0 and d0 from this system.
From (20) we have 2λ̄0μ̄

2
0 = γ2 − 2λ0μ

2
0. Substituting this into equations (21)–(23)

we get

3γ2μ̄0 − 6λ0μ
2
0(μ̄0 + μ0) = γ3, (24)

12γ2μ̄
2
0 − 24λ0μ

2
0(μ̄

2
0 − μ2

0) = γ4, (25)

60γ2μ̄
3
0 − 120λ0μ

2
0(μ̄

3
0 + μ3

0) = γ5. (26)

Next, from (24) we have 6λ0μ
2
0(μ̄0 + μ0) = 3γ2μ̄0 − γ3. Substituting this into

equations (25)–(26) we obtain

12γ2μ̄0μ0 + 4γ3(μ̄0 − μ0) = γ4 (27)

and
60γ2μ̄0μ0(μ̄0 − μ0) + 20γ3

(
(μ̄0 − μ0)

2 + μ̄0μ0
) = γ5. (28)

Multiplying (27) by
(−5(μ̄0 − μ0)

)
and adding (28) we get

20γ3μ̄0μ0 + 5γ4(μ̄0 − μ0) = γ5. (29)

Note that (27) and (29) form a system of two equations, which are linear with
respect to variables μ̄0μ0 and μ̄0 − μ0. Solving this system we obtain

μ̄0μ0 = 4γ3γ5 − 5γ 2
4

80γ 2
3 − 60γ2γ4

(30)

and

μ̄0 − μ0 = 5γ3γ4 − 3γ2γ5

20γ 2
3 − 15γ2γ4

(31)

provided that 4γ 2
3 − 3γ2γ4 �= 0.

Substituting the expression for μ̄0 from (31) into (30) gives

μ2
0 + 5γ3γ4 − 3γ2γ5

20γ 2
3 − 15γ2γ4

μ0 − 4γ3γ5 − 5γ 2
4

80γ 2
3 − 60γ2γ4

= 0, (32)

from which we have

μ0 = − 5γ3γ4 − 3γ2γ5

40γ 2
3 − 30γ2γ4

±
√

(5γ3γ4 − 3γ2γ5)2 + (4γ3γ5 − 5γ 2
4 )(20γ 2

3 − 15γ2γ4)

|40γ 2
3 − 30γ2γ4|

provided that (5γ3γ4 − 3γ2γ5)
2 + (4γ3γ5 − 5γ 2

4 )(20γ 2
3 − 15γ2γ4) > 0 and 4γ 2

3 −
3γ2γ4 �= 0. Hence, taking into account (31) we get

μ̄0 = 5γ3γ4 − 3γ2γ5

40γ 2
3 − 30γ2γ4

±
√

(5γ3γ4 − 3γ2γ5)2 + (4γ3γ5 − 5γ 2
4 )(20γ 2

3 − 15γ2γ4)

|40γ 2
3 − 30γ2γ4|

.
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Since both μ̄0 and μ0 must be positive, from the expressions for μ̄0 and μ0 we
deduce that we can take only the values of the parameters given in the assertion of the
theorem (otherwise, if we take the values with “−”, at least one of the parameters μ̄0
or μ0 will be negative). Finally, we obtain the corresponding values of the parameters
λ0, λ̄0 and d0 from (24), (20) and (19), respectively, provided that all the values are
positive.

Thus, we have a new process
(
Ũt

)
t≥0 with exponentially distributed premium

and claim sizes, which is completely determined by λ̄0, μ̄0, λ0, μ0 and d0. Now the
assertion of the theorem follows immediately from Theorem 2.

3.3 A three-moment approximation

From the assertion of Theorem 3 it is clear that its conditions are quite restrictive.
In particular, some of the parameters λ̄0, μ̄0, λ0, μ0 and d0 can be negative, and
numerical computations show that such situations happen quite often. Hence, it is
impossible to construct the five-moment approximation in those cases. Namely for
this reason we also consider a simplified three-moment analogue to the De Vylder
approximation. To construct it, we replace the process

(
Ut

)
t≥0 by the process

(
Ũt

)
t≥0

with exponentially distributed premium and claim sizes such that

E[Uk
t ] = E[Ũ k

t ], k = 1, 2, 3, (33)

and the following proportionality conditions hold:

μ̄

μ
= μ̄0

μ0
and

λ̄

λ
= λ̄0

λ0
. (34)

In particular, condition (34) implies that λ̄μ̄/λμ = λ̄0μ̄0/λ0μ0. This means that
the ratio between the expected premiums and the expected claims per unit time re-
mains the same, which seems to be natural.

Theorem 4 (a three-moment analogue to the De Vylder approximation). Let the sur-
plus process

(
Xt(x)

)
t≥0 is defined by (1) under the above assumptions, E[Ȳ 3

i ] < ∞,

E[Y 3
i ] < ∞, and let the net profit condition (2) hold. Then the ruin probability is

approximately equal to

ψDV 3(x) = C1e
z1x + C2e

z2x for all x ≥ 0, (35)

where z1, z2, C1 and C2 are defined as in Theorem 3 and the constants λ̄0, μ̄0, λ0, μ0
and d0 are defined by the following equalities:

μ0 = γ3μ(λ̄μ̄2 + λμ2)

3γ2(λ̄μ̄3 − λμ3)
, λ0 = 9γ 3

2 λ(λ̄μ̄3 − λμ3)2

2γ 2
3 (λ̄μ̄2 + λμ2)3

,

μ̄0 = γ3μ̄(λ̄μ̄2 + λμ2)

3γ2(λ̄μ̄3 − λμ3)
, λ̄0 = 9γ 3

2 λ̄(λ̄μ̄3 − λμ3)2

2γ 2
3 (λ̄μ̄2 + λμ2)3

,

d0 = λ̄0μ̄0 − λ0μ0 − (λ̄μ̄ − λμ − d),

provided that γ3(λ̄μ̄3 − λμ3) > 0 and d0 > 0.
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Proof. From Lemma 2 we conclude that (33) is equivalent to the system of equa-
tions (19)–(21), and from (34) we get

λ̄0μ̄
2
0 = λ0μ

2
0

λ̄μ̄2

λμ2 and λ̄0μ̄
3
0 = λ0μ

3
0

λ̄μ̄3

λμ3 . (36)

Substituting (36) into (20) and (21) we obtain

2λ0μ
2
0

(
λ̄μ̄2

λμ2 + 1

)
= γ2 (37)

and

6λ0μ
3
0

(
λ̄μ̄3

λμ3 − 1

)
= γ3. (38)

Dividing (38) by (37) we easily get the expression for μ0 provided that γ3(λ̄μ̄3 −
λμ3) > 0. Next, substituting this expression into (37) we obtain the expression for λ0.
The constants μ̄0 and λ̄0 are determined from (34). Finally, we can find d0 from (19).
Applying Theorem 2 for exponentially distributed premium and claim sizes yields
the assertion of the theorem.

Comparing the assertions of Theorems 3 and 4 we deduce that the conditions of
Theorem 4 are much less restrictive.

Remark 2. Instead of conditions (34), we can consider the following more general
conditions:

μ̄

μ
= ν1

μ̄0

μ0
and

λ̄

λ
= ν2

λ̄0

λ0
, (39)

where ν1 > 0 and ν2 > 0. The corresponding approximation for the ruin probability
is calculated using the same formula (35), but the constants λ̄0, μ̄0, λ0, μ0 and d0 are
defined by the following equalities:

μ0 = γ3μν1(λ̄μ̄2 + λμ2ν2
1ν2)

3γ2(λ̄μ̄3 − λμ3ν3
1ν2)

, λ0 = 9γ 3
2 λν2(λ̄μ̄3 − λμ3ν3

1ν2)
2

2γ 2
3 (λ̄μ̄2 + λμ2ν3

1ν2)3
,

μ̄0 = γ3μ̄(λ̄μ̄2 + λμ2ν2
1ν2)

3γ2(λ̄μ̄3 − λμ3ν3
1ν2)

, λ̄0 = 9γ 3
2 λ̄(λ̄μ̄3 − λμ3ν3

1ν2)
2

2γ 2
3 (λ̄μ̄2 + λμ2ν2

1ν2)3
,

d0 = λ̄0μ̄0 − λ0μ0 − (λ̄μ̄ − λμ − d),

provided that γ3(λ̄μ̄3 − λμ3ν3
1ν2) > 0 and d0 > 0. Conditions (39) enable us to con-

sider different cases by changing the values of the coefficients ν1 and ν2 and choose
those ones that approximate the ruin probability more accurately. Nevertheless, note
that for some values of ν1 and ν2, the corresponding approximations give not so good
results, and consequently, should not be applied.

4 Numerical illustrations

4.1 A statistical estimate for the ruin probability
To analyze the accuracy of the approximations proposed in Section 3, we will need
a statistical estimate for the ruin probability obtained by the direct simulation of the
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surplus process
(
Xt(x)

)
t≥0 using the Monte Carlo methods. To this end, we use the

approach described in [23]. Let N be the total number of simulations of
(
Xt(x)

)
t≥0.

To get the corresponding statistical estimate ψ̂(x) for the ruin probability ψ(x), we
divide the number of simulations leading to ruin by the total number of simulations
N . To find the number of simulations N , which is necessary in order to calculate the
ruin probability with the required accuracy and reliability, we apply the following
proposition, which follows immediately from Hoeffding’s inequality (see [18]).

Proposition 1. Let the surplus process
(
Xt(x)

)
t≥0 be defined by (1) under the above

assumptions. Then for any ε > 0, we have

P
[∣∣ψ(x) − ψ̂(x)

∣∣ > ε
] ≤ 2e−2ε2N.

In all examples below, we set ε = 0.005 and 2e−2ε2N = 0.005. Therefore, we get
N = 119 830. Moreover, let λ̄ = 2.3, μ̄ = 0.2, λ = 0.1, μ = 3 and d = 0.05.

4.2 Gamma distributions for the premium and claim sizes

Let the p.d.f. of Ȳi be

fȲ (y) = 1

	(ᾱ)β̄ᾱ
yᾱ−1e−y/β̄ , y ≥ 0,

where ᾱ > 0, β̄ > 0 and ᾱβ̄ = μ̄, and let the p.d.f. of Yi be

fY (y) = 1

	(α)βα
yα−1e−y/β, y ≥ 0,

where α > 0, β > 0 and αβ = μ.
Then

E[Ȳi] = ᾱβ̄ = μ̄, E[Ȳ 2
i ] = ᾱ(ᾱ + 1)β̄2,

E[Ȳ 3
i ] = ᾱ(ᾱ + 1)(ᾱ + 2)β̄3,

E[Ȳ 4
i ] = ᾱ(ᾱ + 1)(ᾱ + 2)(ᾱ + 3)β̄4,

E[Ȳ 5
i ] = ᾱ(ᾱ + 1)(ᾱ + 2)(ᾱ + 3)(ᾱ + 4)β̄5,

and analogous formulas hold for the moments of Yi .
Therefore, we get

γ2 = λ̄ᾱ(ᾱ + 1)β̄2 + λα(α + 1)β2,

γ3 = λ̄ᾱ(ᾱ + 1)(ᾱ + 2)β̄3 − λα(α + 1)(α + 2)β3,

γ4 = λ̄ᾱ(ᾱ + 1)(ᾱ + 2)(ᾱ + 3)β̄4 + λα(α + 1)(α + 2)(α + 3)β4,

γ5 = λ̄ᾱ(ᾱ + 1)(ᾱ + 2)(ᾱ + 3)(ᾱ + 4)β̄5 − λα(α + 1)(α + 2)(α + 3)(α + 4)β5.

A number of numerical examples show that the conditions of Theorem 3 hold pro-
vided that α is very close to 1. So the five-moment approximation can be constructed
only in those cases. We now consider two examples.
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Table 1. Results of computations: the gamma distributions for the premium and claim sizes,
ᾱ = 2, β̄ = 0.1, α = 1 and β = 3

x ψ̂(x) ψDV 5(x)
(ψDV 5(x)

ψ̂(x)
− 1

) · 100% ψDV 3(x)
(ψDV 3(x)

ψ̂(x)
− 1

) · 100%

1 0.6912 0.6832 −1.15% 0.6766 −2.11%
2 0.6205 0.6270 1.05% 0.6210 0.08%
3 0.5681 0.5754 1.29% 0.5700 0.34%
5 0.4870 0.4846 −0.50% 0.4802 −1.41%
7 0.4040 0.4081 1.01% 0.4045 0.12%

10 0.3149 0.3154 0.17% 0.3128 −0.66%
15 0.2024 0.2053 1.42% 0.2037 0.66%
20 0.1374 0.1336 −2.73% 0.1327 −3.38%
30 0.0584 0.0566 −3.09% 0.0563 −3.58%
50 0.0098 0.0102 3.63% 0.0101 3.45%

Example 1. Let now ᾱ = 2, β̄ = 0.1, α = 1 and β = 3.

If we construct the five-moment analogue to the De Vylder approximation, by
Theorem 3, we get λ̄0 ≈ 3.923743, μ̄0 ≈ 0.132632, λ0 ≈ 0.099996, μ0 ≈ 3.000027,
d0 ≈ 0.110423, and consequently,

ψDV 5(x) ≈ 0.255492 e−29.147189x + 0.744508 e−0.085895x for all x ≥ 0.

For the corresponding three-moment approximation using conditions (34), by
Theorem 4, we have λ̄0 ≈ 2.129067, μ̄0 ≈ 0.205450, λ0 ≈ 0.092568, μ0 ≈
3.081744, d0 ≈ 0.042145, and hence,

ψDV 3(x) ≈ 0.262882 e−48.085872x + 0.737118 e−0.085730x for all x ≥ 0.

Table 1 presents the results of computations for some values of x. Next, Table 2

shows the values of the relative approximation errors
(

ψDV 3(x)

ψ̂(x)
− 1

)
· 100% for the

three-moment approximations constructed using conditions (39) for different ν1 and
ν2. Note that here we chose some values of ν1 and ν2 that give more or less good

Table 2. Values of
(ψDV 3(x)

ψ̂(x)
− 1

) · 100% for different ν1 and ν2: the gamma distributions for

the premium and claim sizes, ᾱ = 2, β̄ = 0.1, α = 1 and β = 3

x
ν1=0.7
ν2=1.5

ν1=0.9
ν2=1.2

ν1=1.1
ν2=0.7

ν1=1.5
ν2=0.7

ν1=2
ν2=0.2

ν1=5
ν2=0.05

ν1=10
ν2=0.05

1 −3.48% −2.36% −2.21% −1.00% −1.41% −0.35% 0.52%
2 −1.29% −0.17% 0.00% 1.20% 0.70% 1.84% 2.72%
3 −1.02% 0.09% 0.26% 1.43% 0.97% 2.08% 2.93%
5 −2.69% −1.65% −1.46% −0.38% −0.76% 0.28% 1.05%
7 −1.13% −0.12% 0.09% 1.12% 0.80% 1.80% 2.52%

10 −1.82% −0.89% −0.67% 0.26% 0.04% 0.95% 1.57%
15 −0.39% 0.44% 0.70% 1.48% 1.42% 2.21% 2.67%
20 −4.26% −3.58% −3.29% −2.70% −2.60% −1.97% −1.68%
30 −4.21% −3.75% −3.39% −3.13% −2.70% −2.33% −2.36%
50 3.31% 3.31% 3.86% 3.45% 4.61% 4.45% 3.76%
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results. Choosing some other values of the coefficients leads to extremely bad ap-
proximations. In addition, analyzing the relative approximation errors in Table 2 we
conclude that it is difficult to decide which of the approximations is better: choosing
ν1 and ν2 that yield smaller errors for some values of the initial surplus results in
larger errors for other values.

Example 2. Let now ᾱ = 4, β̄ = 0.05, α = 3 and β = 1.

In this case, the conditions of Theorem 3 do not hold, so we can construct only the
three-moment analogue to the De Vylder approximation. By Theorem 4, we obtain
λ̄0 ≈ 4.871659, μ̄0 ≈ 0.111879, λ0 ≈ 0.211811, μ0 ≈ 1.678181, d0 ≈ 0.079577,
and therefore,

ψDV 3(x) ≈ 0.221130 e−55.405586x + 0.778870 e−0.132881x for all x ≥ 0.

Table 3 presents the results of computations for some values of x, whereas Table 4

shows the values of the relative approximation errors
(

ψDV 3(x)

ψ̂(x)
− 1

)
· 100% for the

three-moment approximations constructed using conditions (39) for different ν1 and
ν2.

Table 3. Results of computations: the gamma distributions for the premium and claim sizes,
ᾱ = 4, β̄ = 0.05, α = 3 and β = 1

x ψ̂(x) ψDV 3(x)
(ψDV 3(x)

ψ̂(x)
− 1

) · 100%

1 0.6690 0.6820 1.94%
2 0.6046 0.5971 −1.24%
3 0.5301 0.5228 −1.38%
5 0.4039 0.4008 −0.77%
7 0.3039 0.3073 1.10%

10 0.2065 0.2062 −0.13%
15 0.1056 0.1061 0.50%
20 0.0535 0.0546 2.17%
30 0.0150 0.0145 −3.60%

Table 4. Values of
(ψDV 3(x)

ψ̂(x)
− 1

) · 100% for different ν1 and ν2: the gamma distributions for

the premium and claim sizes, ᾱ = 4, β̄ = 0.05, α = 3 and β = 1

x
ν1=0.7
ν2=1.5

ν1=0.9
ν2=1.2

ν1=1.1
ν2=0.6

ν1=1.5
ν2=0.7

ν1=2
ν2=0.2

ν1=5
ν2=0.05

ν1=10
ν2=0.03

1 0.82% 1.73% 1.68% 2.85% 2.51% 3.42% 3.97%
2 −2.30% −1.44% −1.47% −0.39% −0.68% 0.17% 0.68%
3 −2.41% −1.58% −1.58% −0.55% −0.81% 0.01% 0.50%
5 −1.75% −0.96% −0.93% 0.01% −0.17% 0.59% 1.02%
7 0.16% 0.91% 0.99% 1.84% 1.73% 2.45% 2.84%

10 −0.97% −0.31% −0.17% 0.53% 0.53% 1.15% 1.45%
15 −0.21% 0.33% 0.58% 1.03% 1.22% 1.69% 1.85%
20 1.60% 2.01% 2.37% 2.58% 2.96% 3.30% 3.31%
30 −3.86% −3.72% −3.17% −3.46% −2.74% −2.71% −2.96%
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4.3 Hyperexponential distributions for the premium and claim sizes

Let
FȲ (y) = p̄1FȲ ,1(y) + p̄2FȲ ,2(y) + · · · + p̄k̄FȲ ,k̄(y), y ≥ 0,

where k̄ ≥ 1, p̄j > 0, FȲ ,j is the c.d.f. of the exponential distribution with mean μ̄j

for all 1 ≤ j ≤ k̄,
∑k̄

j=1 p̄j = 1,
∑k̄

j=1 p̄j μ̄j = μ̄, and let

FY (y) = p1FY,1(y) + p2FY,2(y) + · · · + pkFY,k(y), y ≥ 0,

where k ≥ 1, pj > 0, FY,j is the c.d.f. of the exponential distribution with mean μj

for all 1 ≤ j ≤ k,
∑k

j=1 pj = 1,
∑k

j=1 pjμj = μ.
Then

E[Ȳi] =
k̄∑

j=1

p̄j μ̄j = μ̄, E[Ȳ 2
i ] = 2

k̄∑
j=1

p̄j μ̄
2
j , E[Ȳ 3

i ] = 6
k̄∑

j=1

p̄j μ̄
3
j ,

E[Ȳ 4
i ] = 24

k̄∑
j=1

p̄j μ̄
4
j , E[Ȳ 5

i ] = 120
k̄∑

j=1

p̄j μ̄
5
j ,

and analogous formulas hold for the moments of Yi .
Hence, we obtain

γ2 = 2

(
λ̄

k̄∑
j=1

p̄j μ̄
2
j + λ

k∑
j=1

pjμ
2
j

)
, γ3 = 6

(
λ̄

k̄∑
j=1

p̄j μ̄
3
j − λ

k∑
j=1

pjμ
3
j

)
,

γ4 = 24

(
λ̄

k̄∑
j=1

p̄j μ̄
4
j + λ

k∑
j=1

pjμ
4
j

)
, γ5 = 120

(
λ̄

k̄∑
j=1

p̄j μ̄
5
j − λ

k∑
j=1

pjμ
5
j

)
.

Examples 3 and 4 below present some numerical results.

Example 3. Let now k̄ = 2, p̄1 = 0.75, p̄2 = 0.25, μ̄1 = 0.1, μ̄2 = 0.5, k = 2,
p1 = 0.8, p2 = 0.2, μ1 = 2.8 and μ2 = 3.8.

If we construct the five-moment analogue to the De Vylder approximation, by
Theorem 3, we obtain λ̄0 ≈ 10.626422, μ̄0 ≈ 0.141004, λ0 ≈ 0.082185, μ0 ≈
3.245591, d0 ≈ 1.121624, and consequently,

ψDV 5(x) ≈ 0.236453 e−2.683647x + 0.763547 e−0.079854x for all x ≥ 0.

For the corresponding three-moment approximation using conditions (34), by
Theorem 4, we have λ̄0 ≈ 2.738661, μ̄0 ≈ 0.190975, λ0 ≈ 0.119072, μ0 ≈
2.864627, d0 ≈ 0.071919 (here we use conditions (34)), and therefore,

ψDV 3(x) ≈ 0.228569 e−34.768023x + 0.771431 e−0.080413x for all x ≥ 0.

Table 5 presents the results of computations for some values of x, whereas Table 6

shows the values of
(

ψDV 3(x)

ψ̂(x)
− 1

)
·100% for the three-moment approximations con-

structed using conditions (39) for different ν1 and ν2.
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Table 5. Results of computations: the hyperexponential distributions for the premium and claim
sizes, k̄ = 2, p̄1 = 0.75, p̄2 = 0.25, μ̄1 = 0.1, μ̄2 = 0.5, k = 2, p1 = 0.8, p2 = 0.2,
μ1 = 2.8 and μ2 = 3.8

x ψ̂(x) ψDV 5(x)
(ψDV 5(x)

ψ̂(x)
− 1

) · 100% ψDV 3(x)
(ψDV 3(x)

ψ̂(x)
− 1

) · 100%

1 0.6988 0.7211 3.20% 0.7118 1.87%
2 0.6365 0.6519 2.43% 0.6568 3.19%
3 0.5909 0.6010 1.71% 0.6061 2.58%
5 0.5023 0.5122 1.97% 0.5160 2.74%
7 0.4253 0.4366 2.67% 0.4394 3.32%

10 0.3367 0.3436 2.06% 0.3452 2.54%
15 0.2210 0.2305 4.31% 0.2309 4.51%
20 0.1542 0.1546 0.26% 0.1545 0.17%
30 0.0670 0.0696 3.84% 0.0691 3.17%
50 0.0141 0.0141 −0.09% 0.0138 −1.84%

Table 6. Values of
(ψDV 3(x)

ψ̂(x)
− 1

) · 100% for different ν1 and ν2: the hyperexponential distri-

butions for the premium and claim sizes, k̄ = 2, p̄1 = 0.75, p̄2 = 0.25, μ̄1 = 0.1, μ̄2 = 0.5,
k = 2, p1 = 0.8, p2 = 0.2, μ1 = 2.8 and μ2 = 3.8

x
ν1=0.4
ν2=2.7

ν1=0.5
ν2=2.1

ν1=0.7
ν2=0.7

ν1=0.9
ν2=0.6

ν1=1.1
ν2=0.5

ν1=1.5
ν2=0.15

ν1=2
ν2=0.1

1 −2.81% −1.14% 0.28% 0.73% 1.37% 4.60% 4.25%
2 −1.47% 0.19% −0.01% 1.72% 2.59% 2.18% 2.77%
3 −1.98% −0.36% −0.60% 1.16% 2.01% 1.12% 1.93%
5 −1.67% −0.10% −0.26% 1.41% 2.22% 1.35% 2.17%
7 −0.95% 0.57% 0.49% 2.08% 2.86% 2.09% 2.87%

10 −1.47% −0.04% 0.01% 1.45% 2.17% 1.57% 2.27%
15 0.83% 2.14% 2.41% 3.65% 4.27% 3.94% 4.54%
20 −2.97% −1.85% −1.38% −0.42% 0.08% 0.03% 0.50%
30 0.73% 1.59% 2.51% 3.04% 3.35% 3.86% 4.11%
50 −2.62% −2.36% −0.62% −1.02% −1.12% 0.43% 0.22%

Example 4. Let now k̄ = 3, p̄1 = 0.2, p̄2 = 0.5, p̄3 = 0.3, μ̄1 = 0.1, μ̄2 = 0.15,
μ̄3 = 0.35, k = 3, p1 = 0.1, p2 = 0.4, p3 = 0.5, μ1 = 1, μ2 = 2.7 and μ3 = 3.64.

In this case, the conditions of Theorem 3 do not hold, so we can construct only
the three-moment analogue to the De Vylder approximation. By Theorem 4, we get
λ̄0 ≈ 2.112044, μ̄0 ≈ 0.217677, λ0 ≈ 0.091828, μ0 ≈ 3.265162, d0 ≈ 0.049911
(here we use conditions (34)), and therefore,

ψDV 3(x) ≈ 0.252988 e−39.790359x + 0.747012 e−0.077929x for all x ≥ 0.

Table 7 presents the results of computations for some values of x, whereas Table 8

shows the values of
(

ψDV 3(x)

ψ̂(x)
− 1

)
·100% for the three-moment approximations con-

structed using conditions (39) for different ν1 and ν2.

4.4 Lomax distributions for the premium and claim sizes
Let

FȲ (y) = 1 −
( β̄

y + β̄

)ᾱ

, y ≥ 0,
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Table 7. Results of computations: the hyperexponential distributions for the premium and claim
sizes, k̄ = 3, p̄1 = 0.2, p̄2 = 0.5, p̄3 = 0.3, μ̄1 = 0.1, μ̄2 = 0.15, μ̄3 = 0.35, k = 3,
p1 = 0.1, p2 = 0.4, p3 = 0.5, μ1 = 1, μ2 = 2.7 and μ3 = 3.64

x ψ̂(x) ψDV 3(x)
(ψDV 3(x)

ψ̂(x)
− 1

) · 100%

1 0.6949 0.6910 −0.56%
2 0.6368 0.6392 0.38%
3 0.5861 0.5913 0.88%
5 0.5035 0.5059 0.49%
7 0.4306 0.4329 0.55%

10 0.3446 0.3427 −0.56%
15 0.2299 0.2321 0.95%
20 0.1594 0.1572 −1.35%
30 0.0694 0.0721 3.91%

Table 8. Values of
(ψDV 3(x)

ψ̂(x)
− 1

) · 100% for different ν1 and ν2: the hyperexponential distri-

butions for the premium and claim sizes, k̄ = 3, p̄1 = 0.2, p̄2 = 0.5, p̄3 = 0.3, μ̄1 = 0.1,
μ̄2 = 0.15, μ̄3 = 0.35, k = 3, p1 = 0.1, p2 = 0.4, p3 = 0.5, μ1 = 1, μ2 = 2.7 and
μ3 = 3.64

x
ν1=0.5
ν2=2.1

ν1=0.7
ν2=1.5

ν1=0.9
ν2=1.1

ν1=1.1
ν2=1

ν1=1.5
ν2=0.5

ν1=2
ν2=0.2

ν1=3
ν2=0.1

1 −3.93% −1.89% −0.94% −0.16% 0.19% 0.19% 0.69%
2 −2.96% −0.94% 0.00% 0.77% 1.12% 0.98% 1.47%
3 −2.42% −0.42% 0.52% 1.27% 1.63% 1.50% 1.98%
5 −2.69% −0.77% 0.13% 0.86% 1.21% 1.12% 1.58%
7 −2.51% −0.66% 0.21% 0.90% 1.26% 1.20% 1.65%

10 −3.41% −1.69% −0.87% −0.24% 0.12% 0.11% 0.53%
15 −1.65% −0.09% 0.67% 1.23% 1.61% 1.68% 2.06%
20 −3.61% −2.26% −1.59% −1.12% −0.75% −0.60% −0.26%
30 2.14% 3.18% 3.72% 4.05% 4.47% 4.79% 5.07%

where ᾱ > 1, β̄ > 0 and β̄/(ᾱ − 1) = μ̄, and let

FY (y) = 1 −
( β

y + β

)α

, y ≥ 0,

where α > 1, β > 0 and β/(α − 1) = μ. In what follows, we assume that ᾱ > 5,
α > 5 and both ᾱ and α are integer. Then

E[Ȳi] = β̄

ᾱ − 1
= μ̄, E[Ȳ 2

i ] = 2β̄2

(ᾱ − 2)(ᾱ − 1)
,

E[Ȳ 3
i ] = 6β̄3

(ᾱ − 3)(ᾱ − 2)(ᾱ − 1)
, E[Ȳ 4

i ] = 24β̄4

(ᾱ − 4)(ᾱ − 3)(ᾱ − 2)(ᾱ − 1)
,

E[Ȳ 5
i ] = 120β̄5

(ᾱ − 5)(ᾱ − 4)(ᾱ − 3)(ᾱ − 2)(ᾱ − 1)
,

and analogous formulas hold for the moments of Yi .
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Consequently, we have

γ2 = 2

(
λ̄β̄2

(ᾱ − 2)(ᾱ − 1)
+ λβ2

(α − 2)(α − 1)

)
,

γ3 = 6

(
λ̄β̄3

(ᾱ − 3)(ᾱ − 2)(ᾱ − 1)
− λβ3

(α − 3)(α − 2)(α − 1)

)
,

γ4 = 24

(
λ̄β̄4

(ᾱ − 4)(ᾱ − 3)(ᾱ − 2)(ᾱ − 1)
+ λβ4

(α − 4)(α − 3)(α − 2)(α − 1)

)
,

γ5 = 120

(
λ̄β̄5

(ᾱ − 5)(ᾱ − 4)(ᾱ − 3)(ᾱ − 2)(ᾱ − 1)

− λβ5

(α − 5)(α − 4)(α − 3)(α − 2)(α − 1)

)
.

Note that the Lomax distribution, which is also called the Pareto type II distri-
bution, is a heavy-tailed distribution in contrast to the gamma and hyperexponential
distributions. This can be the reason why the conditions of Theorem 3 do not hold
for this distribution, at least as a number of numerical examples indicate. However,
the three-moment approximation can be applied provided that the conditions of The-
orem 4 hold.

Example 5. Let now ᾱ = 6, β̄ = 1, α = 6 and β = 15.

In this case, we can construct only the three-moment analogue to the De Vylder
approximation. By Theorem 4, we get λ̄0 = 1.035, μ̄0 ≈ 0.333333, λ0 = 0.045,
μ0 = 5, d0 = 0.01 (here we use conditions (34)), and therefore,

ψDV 3(x) ≈ 0.313466 e−105.137225x + 0.686534 e−0.062775x for all x ≥ 0.

Table 9 presents the results of computations for some values of x, whereas Ta-

ble 10 shows the values of
(

ψDV 3(x)

ψ̂(x)
− 1

)
· 100% for the three-moment approxima-

tions constructed using conditions (39) for different ν1 and ν2.

Table 9. Results of computations: the Lomax distributions for premium and claim sizes, ᾱ = 6,
β̄ = 1, α = 6 and β = 15

x ψ̂(x) ψDV 3(x)
(ψDV 3(x)

ψ̂(x)
− 1

) · 100%

1 0.6881 0.6448 −6.30%
2 0.6391 0.6055 −5.25%
3 0.5899 0.5687 −3.59%
5 0.5086 0.5016 −1.37%
7 0.4429 0.4424 −0.10%

10 0.3638 0.3665 0.73%
15 0.2643 0.2677 1.32%
20 0.1887 0.1956 3.67%
30 0.1025 0.1044 1.92%
50 0.0301 0.0298 −1.16%
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Table 10. Values of
(ψDV 3(x)

ψ̂(x)
− 1

) · 100% for different ν1 and ν2: the Lomax distributions for

the premium and claim sizes, ᾱ = 6, β̄ = 1, α = 6 and β = 15

x
ν1=0.9
ν2=1.1

ν1=1.1
ν2=0.9

ν1=1.5
ν2=0.6

ν1=2
ν2=0.4

ν1=5
ν2=0.2

ν1=7
ν2=0.15

ν1=10
ν2=0.1

1 −6.78% −5.94% −5.11% −4.56% −3.24% −3.03% −2.89%
2 −5.73% −4.90% −4.07% −3.52% −2.21% −2.00% −1.86%
3 −4.07% −3.24% −2.40% −1.85% −0.55% −0.33% −0.20%
5 −1.84% −1.02% −0.19% 0.36% 1.64% 1.85% 1.99%
7 −0.56% 0.24% 1.06% 1.60% 2.85% 3.05% 3.19%

10 0.29% 1.06% 1.85% 2.37% 3.55% 3.75% 3.88%
15 0.92% 1.62% 2.36% 2.84% 3.90% 4.08% 4.20%
20 3.30% 3.94% 4.63% 5.09% 6.04% 6.20% 6.32%
30 1.65% 2.14% 2.69% 3.06% 3.74% 3.86% 3.95%
50 −1.26% −1.06% −0.76% −0.55% −0.38% −0.34% −0.29%

5 Conclusion

The results of computations presented in Tables 1, 3, 5, 7 and 9 indicate that both
approximations yield very small relative errors. Although the existence of exponen-
tial moments of the distributions of the premium and claim sizes is not required to
construct the approximations, it is easily seen that the relative errors are smaller when
those distributions do not have heavy tails.

The construction of the five-moment approximation is based on the classical ap-
proach, where we only require that the first five moments of the processes coincide
without any additional assumptions. The numerical illustrations show that this ap-
proach gives very good results, but unfortunately, the conditions that are necessary
for its construction are too restrictive. A definite advantage of the three-moment ap-
proximation is that the corresponding conditions are much less restrictive, but the
construction of this approximation requires two additional conditions, which are also
based on some heuristic assumptions. Nevertheless, there is no reason to assert that
one of the approximations is more accurate than the other one: the corresponding
relative errors vary for different values of the initial surplus.

The relative errors for some three-moment approximations using more general
conditions (39) are given in Tables 2, 4, 6, 8 and 10. The analysis of the errors shows
that the accuracy of those approximations is more or less the same: choosing ν1 and
ν2 that yield smaller errors for some values of the initial surplus leads to larger errors
for other values. Nonetheless, for some other values of ν1 and ν2, the corresponding
approximations can give not so good results. Therefore, the choice of coefficients ν1
and ν2 should be controlled using other methods that enable us to approximate the
ruin probability.

Finally, note that although the numerical examples considered above are not suf-
ficient to make conclusions about the accuracy of the suggested approximations in
general and it would be highly desirable to have a tool to control the accuracy in
terms of parameter values, those illustrations enable us to outline some general ten-
dencies.
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