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Abstract We find the best approximation of the fractional Brownian motion with the Hurst
index H ∈ (0, 1/2) by Gaussian martingales of the form

∫ t
0 sγ dWs , where W is a Wiener

process, γ > 0.
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1 Introduction

The subject of the present paper is a fractional Brownian motion (fBm) BH =
{BH

t , t ≥ 0} with the Hurst index H ∈ (
0, 1

2

)
. Generally speaking, a fBm with

the Hurst index H ∈ (0, 1) is a Gaussian process with zero mean and the covariance
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function of the form

EBH
t BH

s = 1

2
(t2H + s2H − |t − s|2H ).

Its properties are rather different for H ∈ (
0, 1

2

)
and H ∈ ( 1

2 , 1
)
. In particu-

lar, H ∈ (
0, 1

2

)
implies short-term dependence. In contrast, H ∈ ( 1

2 , 1
)

implies
long-term dependence. Moreover, technically it is easier to deal with fBms having
H ∈ ( 1

2 , 1
)
. Due to this and many other reasons, fBm with H ∈ ( 1

2 , 1
)

has been
much more intensively studied in the recent years. However, the financial markets in
which trading takes place quite often, demonstrate the presence of a short memory,
and therefore the volatility in such markets (so called rough volatility) is well modeled
by fBm with H ∈ (

0, 1
2

)
, see e.g. [7]. Thus interest to fBm with small Hurst indices

has substantially increased recently. Furthermore, it is well known that a fractional
Brownian motion is neither a Markov process nor semimartingale, and especially it is
neither martingale nor a process with independent increments unless H = 1

2 . That is
why it is naturally to search the possibility of the approximation of fBm in a certain
metric by simpler processes, such as Markov processes, martingales, semimartingales
or a processes of bounded variation. As for the processes of bounded variation and
semimartingales, corresponding results are presented in [1, 2] and [12]. In the papers
[4, 5, 8, 10] approximation of a fractional Brownian motion with Gaussian martin-
gales was studied and summarized in the monograph [3], but most of problems were
considered only for H ∈ ( 1

2 , 1
)
, for the reasons stated above.

In the present paper we continue to consider the approximation of a fractional
Brownian motion by Gaussian martingales but concentrate on the case H ∈ (

0, 1
2

)
.

Let (�,F , P) be a complete probability space with a filtration F = {Ft }t≥0 satis-
fying the standard assumptions. We start with the Molchan representation of fBm via
the Wiener process on a finite interval. Namely, it was established in [9] that the fBm
{BH

t ,Ft , t ≥ 0} can be represented as

BH
t =

t∫
0

z(t, s)dWs, (1)

where {Wt, t ∈ [0, T ]} is a Wiener process,

z(t, s) = cH

(
tH−1/2s1/2−H (t − s)H−1/2

−(H − 1/2)s1/2−H

t∫
s

uH−3/2(u − s)H−1/2du

)
,

is the Molchan kernel,

cH =
(

2H · �( 3
2 − H)

�(H + 1
2 ) · �(2 − 2H)

)1/2

, (2)

and �(x), x > 0, is the Gamma function.
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Let us consider a problem of the distance between a fractional Brownian motion
and the space of square integrable martingales (initially not obligatory Gaussian),
adapted to the same filtration. So, we are looking for a square integrable F-martingale
M with the bracket that is absolutely continuous w.r.t. (with respect to) the Lebesgue
measure such that it minimizes the value

ρH (M)2 := sup
t∈[0,T ]

E(BH
t − Mt)

2.

We observe first that BH and W generate the same filtration, so any square in-
tegrable F-martingale M with the bracket that is absolutely continuous w.r.t. the
Lebesgue measure, admits a representation

Mt =
∫ t

0
a(s)dWs, (3)

where a is an F-adapted square integrable process such that 〈M〉t = ∫ t

0 a2(s)ds.
Hence we can write, see [10],

E(BH
t − Mt)

2 = E

(∫ t

0
(z(t, s) − a(s))dWs

)2

=
∫ t

0
E(z(t, s) − a(s))2ds

=
∫ t

0
(z(t, s) − Ea(s))2ds +

∫ t

0
Var a(s)ds.

Consequently, it is enough to minimize ρH (M) over continuous Gaussian martin-
gales. Such martingales have orthogonal and therefore independent increments. Then
the fact that they have representation (3) with a non-random a follows, e.g., from
[11].

Now let a : [0, T ] → R be a nonrandom measurable function of the class

L2[0, T ]; that is, a is such that the stochastic integral
t∫

0
a(s)dWs , t ∈ [0, T ], is

well defined w.r.t. the Wiener process {Wt, t ∈ [0, T ]} (this integral is usually
called the Wiener integral if the integrand is a nonrandom function). So, the problem
is to find

inf
a∈L2[0,T ] sup

0≤t≤T

E

⎛
⎝BH

t −
t∫

0

a(s)dWs

⎞
⎠

2

= inf
a∈L2[0,T ] sup

0≤t≤T

t∫
0

(z(t, s) − a(s))2ds.

Note that the expression to be minimized does not involve neither the fractional
Brownian motion nor the Wiener process, so the problem becomes purely analytic.
Moreover, since the problem posed in a general form is not observable and accessible
for solution, we restrict ourselves to one particular subclass of functions. We study
the class

{a(s) = sγ , γ > 0}.
Our main result is Theorem 1, which shows where max

t∈[0,1] E
(
BH

t − ∫ t

0 a(s)dWs

)2

could be reached, depending on γ > 0. We also provide remarks after the theorem.
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2 Distance from fBm with H ∈ (0, 1/2) to the subspaces of Gaussian martin-
gales involving power integrands

Consider a class of power functions with an arbitrary positive exponent. Thus, we
now introduce the class

{a(s) = sγ , γ > 0}.
For the sake of simplicity, let T = 1.

Theorem 1. Let a = a(s) be a function of the form a(s) = sγ , γ > 0, H ∈ (0, 1/2).
Then:

(i) For all γ > 0 the maximum max
t∈[0,1] E

(
BH

t − ∫ t

0 sγ dWs

)2
is reached at one of

the following points: t = 1 or t = t1, where

t1 =
(

cH B

(
γ − H + 3

2
,H + 1

2

)
(γ + 1)

−
√

c2
H

(
B

(
γ − H + 3

2
,H + 1

2

)
(γ + 1)

)2

− 2H

) 1
γ−H+ 1

2 .

(ii) For any H ∈ (0, 1/2) there exists γ0 = γ0(H) > 0 such that for γ > γ0 the
maximum

max
t∈[0,1] E

(
BH

t −
∫ t

0
sγ dWs

)2

= t2H
1 − 2t

γ+ 1
2 +H

1 cH B

(
γ − H + 3

2
,H + 1

2

)
γ + 1

γ + 1
2 + H

+ 1

2γ + 1
t
2γ+1
1

and is reached at the point t1. Here B(x, y), x, y > 0, is a beta function.

Proof. According to Lemma 2.20 [3], the distance between the fractional Brownian
motion and the integral

∫ t

0 sγ dWs w.r.t. Wiener process t ∈ [0, 1] equals

E

(
BH

t −
∫ t

0
sγ dWs

)2

= E
(
BH

t

)2 − 2E

(∫ t

0
z(t, s)dWs

∫ t

0
sγ dWs

)

+ E

(∫ t

0
sγ dWs

)2

= t2H − 2
∫ t

0
z(t, s)sγ ds +

∫ t

0
s2γ ds

= t2H − 2tγ+H+ 1
2 cH B

(
γ − H + 3

2
,H + 1

2

)
γ + 1

γ + H + 1
2

+ t2γ+1

2γ + 1
:= h(t, γ ), (4)

where cH is taken from (2).
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Let us calculate the partial derivative of h(t, γ ) in t :

∂h(t, γ )

∂t
= t2H−1

(
2H − 2tγ−H+ 1

2 cH

· B

(
γ − H + 3

2
,H + 1

2

)
(γ + 1) + t2(γ−H+ 1

2 )
)
.

Let us verify whether there is t ∈ [0, 1] such that ∂h(t,γ )
∂t

= 0, i.e.

t2(γ−H+ 1
2 ) − 2tγ−H+ 1

2 cH B

(
γ − H + 3

2
,H + 1

2

)
(γ + 1) + 2H = 0.

Changing the variable tγ−H+ 1
2 =: x, we obtain the following quadratic equation:

x2 − 2xcH B

(
γ − H + 3

2
,H + 1

2

)
(γ + 1) + 2H = 0. (5)

The discriminant D = D(γ ) of the quadratic equation (5) equals

D(γ ) = 4c2
H

(
B

(
γ − H + 3

2
,H + 1

2

)
(γ + 1)

)2

− 8H

= 8H

((
B

(
γ − H + 3

2
,H + 1

2

)
(γ + 1)

)2 �( 3
2 − H)

�(H + 1
2 )�(2 − 2H)

− 1

)

= 8H

⎛
⎝�(H + 1

2 )�( 3
2 − H)

�(2 − 2H)

(
�(γ − H + 3

2 )

�(γ + 1)

)2

− 1

⎞
⎠ . (6)

Now we are going to show that D(0) > 0 and D(γ ) is increasing in γ > 0. For

this we study separately the function f (H) := �(H+ 1
2 )(�( 3

2 −H))3

�(2−2H)
for H ∈ (0, 1

2 ).

Let us calculate the values of this function at the following points: f (0) = π2

8 >

1, f ( 1
2 ) = 1. To establish that f (H) is decreasing in H , consider Lemma 3 and the

following calculation:

(ln f (H))′H =
(

ln
�(H + 1

2 )(�( 3
2 − H))3

�(2 − 2H)

)′

H

=
(

ln �

(
H + 1

2

)
+ 3 ln �

(
3

2
− H

)
− ln � (2 − 2H)

)′

H

= �′(H + 1
2 )

�(H + 1
2 )

− 3
�′( 3

2 − H)

�( 3
2 − H)

+ 2
�′(2 − 2H)

�(2 − 2H)

=
∫ 1

0

1 − tH− 1
2

1 − t
dt − C − 3

(∫ 1

0

1 − t
1
2 −H

1 − t
dt − C

)

+ 2

(∫ 1

0

1 − t1−2H

1 − t
dt − C

)
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Fig. 1. The behavior of f (H) for H ∈ (0, 1
2 )

=
∫ 1

0

1 − tH− 1
2 − 3 + 3t

1
2 −H + 2 − 2t1−2H

1 − t
dt

=
∫ 1

0

3t
1
2 −H − 2t1−2H − tH− 1

2

1 − t
dt

=
∫ 1

0

tH− 1
2 (3t1−2H − 2t

3
2 −3H − 1)

1 − t
dt. (7)

Let t ∈ (0, 1). Obviously, in this case tH− 1
2 > 0 and 1 − t > 0. Changing the

variables in (7) as z := t
1
2 −H , we get

3z2 − 2z3 − 1 = −(1 − z)2(2z + 1),

and this function is negative for all z ∈ (0, 1). Hence, (ln f (H))′ < 0 and it means
that f (H) is decreasing. Furthermore, f (H) > 1 for every H ∈ (0, 1

2 ). The behavior
of f (H) is presented in Figure 1.

So, we proved that D(0) > 0 (the behavior of D(0) as a function of H is presented
in Figure 2), and it follows from Lemma 4 that D(γ ) is increasing in γ > 0 for any
H ∈ (0, 1/2). Therefore, for every H ∈ (0, 1

2 ) and γ > 0 we have that the quadratic
equation (5) has two roots.

More precisely, if you use standard notations for the coefficients of the quadratic
equation, then coefficient a at x2 in (5) is strongly positive, a = 1, coefficient at x

equals b = −2cH B(γ − H + 3
2 ,H + 1

2 )(γ + 1) and is negative, and c = 2H > 0.

We conclude that our quadratic equation has two positive roots x1 = −b−
√

b2−4ac

2a

and x2 = −b+
√

b2−4ac
2a

, x1 ≤ x2.

According to our notations, we let ti := x

1
γ−H+ 1

2
i , i = 1, 2. Since x = tγ−H+ 1

2 ∈
[0, 1] for t ∈ [0, 1] and the left-hand side of (5) is negative for x ∈ (x1, x2), we get
the following cases:
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Fig. 2. The behavior of D(0) as a function of H ∈ (0, 1
2 )

(i) Let x1 < 1 and x2 < 1. Then max
t∈[0,1] h(t, γ ) can be achieved at one of two

points: t = t1 or t = 1.

(ii) Let x1 < 1 and x2 ≥ 1. Then max
t∈[0,1] h(t, γ ) is achieved at point t = t1.

(iii) Let x1 ≥ 1 (and consequently x2 > 1). Then max
t∈[0,1] h(t, γ ) is achieved at point

t = 1.

Now, we rewrite the discriminant (6) in the following form:

D = 4

(
c2
H

(
B

(
γ − H + 3

2
,H + 1

2

)
(γ + 1)

)2

− 2H

)

=: 4(d2
H (γ ) − 2H) > 0, (8)

where dH (γ ) = cH B(γ − H + 3
2 ,H + 1

2 )(γ + 1). From Lemma 5, x1 <
√

2H < 1,
so case (iii) never occurs.

According to Lemma 5, the biggest of two roots, x2 = dH (γ ) +
√

d2
H (γ ) − 2H ,

is increasing in γ > 0 and x2 > 1 ⇔ dH > 1
2 + H . Moreover, it follows from

Lemma 5, (iv) that dH (γ ) → +∞ as γ → +∞. Therefore, for all H ∈ (0, 1
2 ) there

exists γ0(H) > 0 such that for all γ > γ0 we have x2 > 1.

It means that for γ > γ0 our maximum is reached at the point t1 = (x1)

1
γ+ 1

2 −H .
Finally,

max
t∈[0,1] E

(
BH

t −
∫ t

0
sγ dWs

)2

= t2H
1 − 2t

γ+ 1
2 +H

1 cH B

(
γ − H + 3

2
,H + 1

2

)
γ + 1

γ + 1
2 + H

+ 1

2γ + 1
t
2γ+1
1 ,
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where t1 = (x1)

1
γ+ 1

2 −H .

Remark 1. The implicit equation dH (γ ) = 1
2 + H considered as the equation for γ0

as a function of H gives us the relation between H ∈ (
0, 1

2

)
and respective γ0 > 0

which, by virtue of the foregoing, is determined unambiguously. The form of the
algebraic curve γ0 = γ0(H) is presented in Figure 3.

Fig. 3. The algebraic curve γ0 = γ0(H)

Consider one of the coefficients that are present in (4), namely,

c1
H,γ = 2cH B

(
γ − H + 3

2
,H + 1

2

)
γ + 1

γ + H + 1
2

= 2

(
2H�

( 3
2 − H

)
�

(
H + 1

2

)
� (2 − 2H)

)1/2
�

(
γ − H + 3

2

)
�

(
H + 1

2

)
� (γ + 1)

(
γ + H + 1

2

) .

Let γ = 0. Then

c1
H,0 = 2

(
2H�

( 3
2 − H

)
�

(
H + 1

2

)
� (2 − 2H)

)1/2
�

( 3
2 − H

)
�

(
H + 1

2

)
H + 1

2

= 2

H + 1
2

(
2H�

( 3
2 − H

)
�

(
H + 1

2

)
� (2 − 2H)

)1/2
π

( 1
2 − H

)
sin

(
π

( 1
2 − H

)) .

For H = 1
2 , one has c1

1/2,0 = 2. Obviously, c1
H,0 → 0 as H ↓ 0. It means that

c1
H,0 is small in some neighborhood of zero. Having this in mind, we establish some

sufficient condition for h(t, 0) to get its maximum at point 1.

Lemma 1. Let c1
H,0 < 1. Then h(t1, 0) < h(1, 0).



Distance from fBm to the subspaces of Gaussian martingales 199

Proof. Indeed, h(t1, 0) = t2H
1 − c1

H,0t
1/2+H

1 + t1, while h(1, 0) = 2 − c1
H,0. Then

the inequality h(t1, 0) < h(1, 0) is equivalent to the following one:

c1
H,0

(
1 − t

1/2+H
1

)
< 2 − t1 − t2H

1 .

If c1
H,0 < 1, then c1

H,0

(
1 − t

1/2+H

1

)
< 1 − t

1/2+H

1 < 1 − t1 < 2 − t1 − t2H
1 .

Remark 2. As it was mentioned before, c1
1/2,0 = 2, and so for H = 1

2 the condition
of Lemma 1 is not satisfied. In this case d1/2(0) = 1, and t1 = t2 = 1, so that we
have the equality h(t1, 0) = h(1, 0).

However, the question what will be for γ = 0 and H0 < H < 1
2 , where H0 is

such a value that for 0 < H < H0, c1
H,0 < 1, is open. In order to fill this gap, we

provide the numerical results with some comments.
Consider two fuctions h(t1, γ ) and h(1, γ ) as functions of γ and H . We already

know that max
t∈[0,1] h(t, γ ) = max{h(t1, γ ), h(1, γ )}. The projection of the surface of

max{h(t1, γ ), h(1, γ )} on the (H, γ )-plane is presented in Figure 4. Points, where
h(t, γ ) reaches its maximum at t = 1 are represented in green color, and points
where h(t, γ ) reaches its maximum at t = t1 are represented in brown color. The
black curve is the algebraic curve γ0 = γ0(H), which is presented in Figure 3.

Fig. 4. The projection of the surface of max
t∈[0,1] h(t, γ )

Appendix section

In the proof of Theorem 1, we use these auxiliary results.

Lemma 2. Let f : R → R be a strictly convex function of one variable. Take the
function g(x1, x2) = f (x1)−f (x2)

x1−x2
, x1 �= x2, x1, x2 ∈ R. Then g(x1 + α, x2 + α) is

strictly increasing in α > 0.
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Lemma 3. Let �(x) be the Gamma function. Then

(ln �(x))′ = �′(x)

�(x)
=

∫ 1

0

1 − tx−1

1 − t
dt − C,

where C is a fixed constant.

Proofs of Lemma 2 and Lemma 3 could be found in [6].

Lemma 4. If H ∈ (
0, 1

2

)
, then the function z(γ ) := �(γ−H+ 3

2 )

�(γ+1)
is increasing in

γ > 0.

Proof. For every γ > 0 we have z(γ ) > 0. Let us calculate

ln z(γ ) = ln
�

(
γ − H + 3

2

)
�(γ + 1)

=

=
(

1

2
− H

)
ln �

(
γ − H + 3

2

) − ln �(γ + 1)(
γ − H + 3

2

) − (γ + 1)
=:

(
1

2
− H

)
ω(γ ).

According to Lemma 2 and the fact that ln(�(x)) is strictly convex we have that ω(γ )

is increasing. Since
( 1

2 − H
)

> 0, it is clear that z(γ ) is increasing in γ > 0.

Lemma 5. Let dH (γ ) = cH B(γ − H + 3
2 ,H + 1

2 )(γ + 1), and x1 = dH (γ ) −√
d2
H (γ ) − 2H , x2 = dH (γ ) +

√
d2
H (γ ) − 2H be roots of the quadratic equation

(5). Then for all γ > 0, H ∈ (
0, 1

2

)
the following statements hold.

i) dH (γ ) is increasing in γ > 0.

ii) x1 <
√

2H and x2 >
√

2H .

iii) dH (γ ) > 1
2 + H ⇔ x2 > 1 and x1 < 2H .

iv) dH (γ ) → ∞ as γ → ∞.

Proof. (i) Note that dH (γ ) is increasing in γ > 0 since

dH (γ ) = cH �

(
H + 1

2

)
�

(
γ − H + 3

2

)
� (γ + 1)

,

where cH �
(
H + 1

2

)
> 0 for all H ∈ (

0, 1
2

)
, and according to Lemma 4,

�(γ−H+ 3
2 )

�(γ+1)
is increasing in γ > 0.

(ii) Discriminant (6) satisfies the following relation:

0 < D (0) = 4
(
d2
H (0) − 2H

)
.

Therefore, dH (γ ) >
√

2H for all γ > 0. Also, we can rewrite x1 = dH (γ ) −√
d2
H (γ ) − 2H and x2 = dH (γ ) +

√
d2
H (γ ) − 2H . Hence x2 >

√
2H . Transform

the value x1 to the following form:

x1 = d2
H (γ ) − (d2

H (γ ) − 2H)

dH (γ ) +
√

d2
H (γ ) − 2H

= 2H

x2
<

√
2H.
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(iii) Let us assume that x2 > 1 (or, what is equivalent, x1 = 2H
x2

<

2H ). In turn, this is equivalent to the relation dH (γ ) +
√

d2
H (γ ) − 2H > 1, or√

d2
H (γ ) − 2H > 1 − dH (γ ). The latter inequality can be realized in one of two

cases:
d2
H (γ ) − 2H > 1 − 2dH (γ ) + d2

H (γ ), 1 − dH (γ ) ≥ 0; (9)

or
1 − dH (γ ) < 0. (10)

The couple of inequalities (9) is equivalent to 1 ≥ dH (γ ) > 1
2 + H . Therefore,

inequalities (9) and (10), taken together, indicate that dH (γ ) > 1
2 + H if and only if

x2 > 1.
(iv) The value dH (γ ) can be presented as

dH (γ ) = cH

�
(
γ − H + 3

2

)
�

(
H + 1

2

)
� (γ + 2)

(γ + 1) ,

where cH �
(
H + 1

2

)
> 0 is a fixed constant, and for all H ∈ (

0, 1
2

)
,

�
(
γ − H + 3

2

)
� (γ + 2)

(γ + 1) = �
(
γ − H + 3

2

)
� (γ + 1)

=

√
2π

γ−H+ 3
2

(
γ−H+ 3

2
e

)γ−H+ 3
2
(

1 + O

(
1

γ−H+ 3
2

))
√

2π
γ+1

(
γ+1

e

)γ+1 (
1 + O

(
1

γ+1

))

∼ 1

e
1
2 −H

(
γ − H + 3

2

)γ−H+1

(γ + 1)γ+ 1
2

→ ∞, γ → ∞,

which follows from the Stirling’s approximation for Gamma function.
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