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Abstract We consider a measurable stationary Gaussian stochastic process. A criterion for
testing hypotheses about the covariance function of such a process using estimates for its norm
in the space Lp(T), p ≥ 1, is constructed.
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1 Introduction

We construct a criterion for testing the hypothesis that the covariance function of
measurable real-valued stationary Gaussian stochastic process X(t) equals ρ(τ). We
shall use the correlogram

ρ̂(τ ) = 1

T

T∫
0

X(t + τ)X(t)dt, 0 ≤ τ ≤ T ,

as an estimator of the function ρ(τ).
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A lot of papers so far have been dedicated to estimation of covariance function
with given accuracy in the uniform metric, in particular, the papers [2, 4, 6, 11,
12] and the book [13]. We also note that similar estimates of Gaussian stochastic
processes were obtained in books [7] and [1]. The main properties of the correl-
ograms of stationary Gaussian stochastic processes were studied by Buldygin and
Kozachenko [3].

The definition of a square Gaussian random vector was introduced by Kozachenko
and Moklyachuk [10]. Applications of the theory of square Gaussian random vari-
ables and stochastic processes in mathematical statistics were considered in the paper
[9] and in the book [3]. In the papers [5] and [8], Kozachenko and Fedoryanich con-
structed a criterion for testing hypotheses about the covariance function of a Gaussian
stationary process with given accuracy and reliability in L2(T).

Our goal is to estimate the covariance function ρ(τ) of a Gaussian stochastic
process with given accuracy and reliability in Lp(T), p ≥ 1. Also, we obtain the
estimate for the norm of square Gaussian stochastic processes in the space Lp(T).
We use this estimate for constructing a criterion for testing hypotheses about the
covariance function of a Gaussian stochastic process.

The article is organized as follows. In Section 2, we give necessary information
about the square Gaussian random variables. In Section 3, we obtain an estimate
for the norm of square Gaussian stochastic processes in the space Lp(T). In Sec-
tion 4, we propose a criterion for testing a hypothesis about the covariance function
of a stationary Gaussian stochastic process based on the estimate obtained in Sec-
tion 3.

2 Some information about the square Gaussian random variables
and processes

Definition 1 ([3]). Let T be a parametric set, and let Ξ = {ξt : t ∈ T} be a family of
Gaussian random variables such that Eξt = 0. The space SGΞ(Ω) is called a space
of square Gaussian random variables if any ζ ∈ SGΞ(Ω) can be represented as

ζ = ξ̄ T Aξ̄ − Eξ̄ T Aξ̄ ,

where ξ̄ = (ξ1, . . . , ξN )T with ξk ∈ Ξ, k = 1, . . . , n, and A is an arbitrary matrix
with real-valued entries, or if ζ ∈ SGΞ(Ω) has the representation

ζ = lim
n→∞

(
ξ̄ T
n Aξ̄n − Eξ̄ T

n Aξ̄n

)
.

Theorem 1 ([3]). Assume that ζ ∈ SGΞ(Ω) and Var ζ > 0. Then the following
inequality holds for |s| < 1:

E exp

{
s√
2

(
ζ√

Var ζ

)}
≤ 1√

1 − |s| exp

{
−|s|

2

}
= L0(s). (1)

Definition 2 ([3]). A stochastic process Y is called a square Gaussian stochastic
process if for each t ∈ T, the random variable Y(t) belongs to the space SGΞ(Ω).
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3 An estimate for the Lp(T) norm of a square Gaussian stochastic process

In the following theorem, we obtain an estimate for the norm of square Gaussian
stochastic processes in the space Lp(T). We shall use this result for constructing a
criterion for testing hypotheses about the covariance function of a Gaussian stochastic
process.

Theorem 2. Let {T,A, μ}be a measurable space, where T is a parametric set, and
let Y = {Y(t), t ∈ T} be a square Gaussian stochastic process. Suppose that Y is
a measurable process. Further, let the Lebesgue integral

∫
T
(EY 2(t))

p
2 dμ(t) be well

defined for p ≥ 1. Then the integral
∫
T
(Y (t))pdμ(t) exists with probability 1, and

P

{∫
T

∣∣Y(t)
∣∣pdμ(t) > ε

}
≤ 2

√√√√1 + ε1/p
√

2

C
1
p
p

exp

{
− ε

1
p

√
2C

1
p
p

}
(2)

for all ε ≥ (
p√
2

+
√

(
p
2 + 1)p)pCp, where Cp = ∫

T
(EY 2(t))

p
2 dμ(t).

Proof. Since maxx>0 xαe−x = ααe−α , we have xαe−x ≤ ααe−α .
If ζ is a random variable from the space SGΞ(Ω) and x = s√

2
· |ζ |√

Eζ 2
, where

s > 0, then

E
(

s√
2

|ζ |√
Eζ 2

)α

≤ ααe−α · E exp

{
s√
2

|ζ |√
Eζ 2

}

and

E|ζ |α ≤
(√

2Eζ 2

s

)α

ααe−αE exp

{
s√
2

|ζ |√
Eζ 2

}
.

From inequality (1) for 0 < s < 1 we get that

E|ζ |α ≤
(√

2Eζ 2

s

)α

ααe−α

(
E exp

{
s√
2

ζ√
Eζ 2

}
+ E exp

{
− s√

2

ζ√
Eζ 2

})

≤ 2√
1 − s

(√
2Eζ 2

s

)α

ααe−α exp

{
− s√

2

}

= 2L0(s)

(√
2Eζ 2

s

)α

ααe−α. (3)

Let Y(t), t ∈ T, be a measurable square Gaussian stochastic process. Using the
Chebyshev inequality, we derive that, for all l ≥ 1,

P

{∫
T

∣∣Y(t)
∣∣pdμ(t) > ε

}
≤ E(

∫
T

|Y(t)|pdμ(t))l

εl
.

Then from the generalized Minkowski inequality together with inequality (3) for
l > 1 we obtain that

(
E

(∫
T

∣∣Y(t)
∣∣pdμ(t)

)l) 1
l ≤

∫
T

(
E

∣∣Y(t)
∣∣pl) 1

l dμ(t)
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≤
∫
T

(
2L0(s)

(
2EY 2(t)

) pl
2 (pl)pls−pl exp{−pl}) 1

l dμ(t)

= (
2L0(s)

) 1
l

∫
T

(
2EY 2(t)

) p
2 s−p(pl)p exp{−p}dμ(t)

= (
2L0(s)

) 1
l 2

p
2 s−p(pl)p exp{−p}

∫
T

(
EY 2(t)

) p
2 dμ(t).

Assuming that Cp = ∫
T
(EY 2(t))

p
2 dμ(t), we deduce that

E
(∫
T

∣∣Y(t)
∣∣pdμ(t)

)l

≤ 2L0(s)2
pl
2 (lp)pl exp{−pl}Cl

ps−pl.

Hence,

P

{∫
T

∣∣Y(t)
∣∣pdμ(t) > ε

}
≤ 2 · (

2
p
2
)l

L0(s)
(
pp

)l(exp{−p})l
Cl

p

(
s−p

)l · (lp)l

εl

= 2L0(s)a
l
(
lp

)l
,

where a = 2
p
2 ppCp

epspε
, that is, a

1
p = 2

1
2 pC

1
p
p

esε
1
p

. Let us find the minimum of the function

ψ(l) = al(lp)l . We can easily check that it reaches its minimum at the point l∗ =
1

ea
1
p

.

Then

2L0(s)ψ
(
l∗

) = 2L0(s)a

1

ea
1
p ·

(
1

ea
1
p

)p· 1

ea
1
p = 2L0(s)a

1

ea
1
p · a

− 1

ea
1
p · e

− p

ea
1
p

= 2L0(s) exp

{
− pesε

1
p

2
1
2 peC

1
p
p

}
= 2L0(s) exp

{
− sε

1
p

2
1
2 C

1
p
p

}

= 2√
1 − s

exp

{
−s

(
1

2
+ ε1/p

2
1
2 C

1
p
p

)}
.

In turn, minimizing the function θ(s) = 2√
1−s

exp{−s( 1
2 + ε1/p

2
1
2 C

1
p
p

)} in s, we

deduce s∗ = 1 − 1

1+
√

2ε1/p

C
1/p
p

. Thus,

θ
(
s∗) = 2

√√√√1 + ε1/p
√

2

C
1
p
p

exp

{
− ε

1
p

√
2C

1
p
p

}
.
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Since l∗ ≥ 1, it follows that inequality (2) holds if 1

ea
1
p

= sε1/p√
2pC

1/p
p

≥ 1. Substituting

the value of s∗ into this expression, we obtain the inequality ε2/p ≥ pC
1/p
p (C

1/p
p +√

2ε1/p). Solving this inequality with respect to ε > 0, we deduce that inequality (2)

holds for ε ≥ (
p√
2

+
√

(
p
2 + 1)p)pCp. The theorem is proved.

4 The construction of a criterion for testing hypotheses about the covariance
function of a stationary Gaussian stochastic process

Consider a measurable stationary Gaussian stochastic process X defined for all t ∈ R.
Without any loss of generality, we can assume that X = {X(t), t ∈ T = [0, T + A],
0 < T < ∞, 0 < A < ∞} and EX(t) = 0. The covariance function ρ(τ) =
EX(t + τ)X(t) of this process is defined for any τ ∈ R and is an even function. Let
ρ(τ) be continuous on T.

Theorem 3. Let the correlogram

ρ̂(τ ) = 1

T

T∫
0

X(t + τ)X(t)dt, 0 ≤ τ ≤ A, (4)

be an estimator of the covariance function ρ(τ). Then the following inequality holds

for all ε ≥ (
p√
2

+
√

(
p
2 + 1)p)pCp:

P

{ A∫
0

(
ρ̂(τ ) − ρ(τ)

)p
dτ > ε

}
≤ 2

√√√√1 + ε1/p
√

2

C
1
p
p

exp

{
− ε

1
p

√
2C

1
p
p

}
,

where Cp = ∫ A

0 ( 2
T 2

∫ T

0 (T −u)(ρ2(u)+ρ(u+τ)ρ(u−τ))du)
p
2 dτ and 0 < A < ∞.

Remark 1. Since the sample paths of the process X(t) are continuous with probabil-
ity one on the set T, ρ̂(τ ) is a Riemann integral.

Proof. Consider
E

(
ρ̂(τ ) − ρ(τ)

)2 = E
(
ρ̂(τ )

)2 − ρ2(τ ).

From the Isserlis equality for jointly Gaussian random variables it follows that

E
(
ρ̂(τ )

)2 − ρ2(τ ) = E
(

1

T 2

T∫
0

T∫
0

X(t + τ)X(t)X(s + τ)X(s)dtds

)
− ρ2(τ )

= 1

T 2

T∫
0

T∫
0

(
EX(t + τ)X(t)EX(s + τ)X(s) + EX(t + τ)X(s + τ)

× EX(t)X(s) + EX(t + τ)X(s)EX(s + τ)X(t)
)
dtds − ρ2(τ )
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= 1

T 2

T∫
0

T∫
0

(
ρ2(τ ) + ρ2(t − s) + ρ(t − s + τ)ρ(t − s − τ)

)
dtds − ρ2(τ )

= 1

T 2

T∫
0

T∫
0

(
ρ2(t − s) + ρ(t − s + τ)ρ(t − s − τ)

)
dtds

= 2

T 2

T∫
0

(T − u)
(
ρ2(u) + ρ(u + τ)ρ(u − τ)

)
du.

We have obtained that

E
(
ρ̂(τ ) − ρ(τ)

)2 = 2

T 2

T∫
0

(T − u)
(
ρ2(u) + ρ(u + τ)ρ(u − τ)

)
du. (5)

Since ρ̂(τ )−ρ(τ) is a square Gaussian stochastic process (see Lemma 3.1, Chapter 6
in [3]), it follows from Theorem 2 that

P

{ A∫
0

(
ρ̂(τ ) − ρ(τ)

)p
dτ > ε

}
≤ 2

√√√√1 + ε1/p
√

2

C
1
p
p

exp

{
− ε

1
p

√
2C

1
p
p

}
.

Applying Eq. (5), we get

Cp =
A∫

0

(
2

T 2

T∫
0

(T − u)
(
ρ2(u) + ρ(u + τ)ρ(u − τ)

)
du

) p
2

dτ.

The theorem is proved.

Denote

g(ε) = 2

√√√√1 + ε1/p
√

2

C
1
p
p

exp

{
− ε

1
p

√
2C

1
p
p

}
.

From Theorem 3 it follows that if ε ≥ zp = Cp(
p√
2

+
√

(
p
2 + 1)p)p, then

P

{ A∫
0

(
ρ̂(τ ) − ρ(τ)

)p
dτ > ε

}
≤ g(ε).

Let εδ be a solution of the equation g(ε) = δ, 0 < δ < 1. Put Sδ = max{εδ, zp}. It is
obvious that g(Sδ) ≤ δ and

P

{ A∫
0

(
ρ̂(τ ) − ρ(τ)

)p
dτ > Sδ

}
≤ δ. (6)
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Let H be the hypothesis that the covariance function of a measurable real-valued
stationary Gaussian stochastic process X(t) equals ρ(τ) for 0 ≤ τ ≤ A. From The-
orem 3 and (6) it follows that to test the hypothesis H, we can use the following
criterion.

Criterion 1. For a given level of confidence δ the hypothesis H is accepted if

A∫
0

(
ρ̂(τ ) − ρ(τ)

)p
dμ(τ) < Sδ;

otherwise, the hypothesis is rejected.

Remark 2. The equation g(ε) = δ has a solution for any δ > 0 since g(ε) is a de-
creasing function. We can find the solution of the equation using numerical methods.

Remark 3. We can easily see that Criterion 1 can be used if Cp → 0 as T → ∞.

The next theorem contain assumptions under which Cp → 0 as T → ∞.

Theorem 4. Let ρ(τ) be the covariance function of a centered stationary random
process. Let ρ(τ) be a continuous function. If ρ(T ) → 0 as T → ∞, then Cp → 0

as T → ∞, where Cp = ∫ A

0 (ψ(T , τ ))p/2dt and

ψ(T , τ) = 2

T 2

T∫
0

(T − u)
(
ρ2(u) + ρ(u + τ)ρ(u − τ)

)
du, A > 0, T > 0.

Proof. We have ψ(T , τ) ≤ 2
T

∫ T

0 (ρ2(u)+ρ(u+τ)ρ(u−τ))du ≤ 4ρ2(0). Now it is
suffices to prove that ψ(T , τ) → 0 as T → ∞. From the L’Hopital’s rule it follows
that

lim
T →∞ ψ(T , τ) = lim

T →∞
2

T

T∫
0

(
ρ2(u) + ρ(u + τ)ρ(u − τ)

)
du

= lim
T →∞

(
ρ2(T ) + ρ(T + τ)ρ(T − τ)

) = 0.

Application of Lebesgue’s dominated convergence theorem completes the proof.

Here are examples in which we find the estimates for Cp.

Example 1. Let H be the hypothesis that the covariance function of a centered mea-
surable stationary Gaussian stochastic process equals ρ(τ) = B exp{−a|τ |}, where
B > 0 and a > 0.

To test the hypothesis H, we can use Criterion 1 by selecting ρ̂T (τ ) that is defined
in (4) as an estimator of the function ρ(τ). Let 0 < A < ∞. We shall find the value
of the expression

I =
T∫

0

(T − u)
(
e−2au + e−a|u+τ |e−a|u−τ |)du
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=
T∫

0

T e−2audu + T

T∫
0

e−a|u+τ |e−a|u−τ |du −
T∫

0

ue−2audu

−
T∫

0

ue−a|u+τ |e−a|u−τ |du

= I1 + I2 + I3 + I4.

Now lets us calculate the summands:

I1 = T

T∫
0

e−2audu = T

2a

(
1 − e−2aT

)
,

I2 = T

T∫
0

e−a|u+τ |e−a|u−τ |du

= T

( τ∫
0

e−a(u+τ)ea(u−τ)du +
T∫

τ

e−a(u+τ)e−a(u−τ)du

)

= T

( τ∫
0

e−2aτ du +
T∫

τ

e−2audu

)

= T

(
τe−2aτ − 1

2a
e−2aT + 1

2a
e−2aτ

)
,

I3 =
T∫

0

ue−2audu = − T

2a
e−2aT + 1

2a

T∫
0

e−2audu

= − T

2a
e−2aT − 1

4a2
e−2aT + 1

4a2
,

I4 =
T∫

0

ue−a|u+τ |e−a|u−τ |du

=
τ∫

0

ue−a(u+τ)ea(u−τ)du +
T∫

τ

ue−a(u+τ)e−a(u−τ)du

=
τ∫

0

ue−2aτ du +
T∫

τ

ue−2audu

= τ 2

2
e−2aτ − T

2a
e−2aT + τ

2a
e−2aτ − 1

4a2
e−2aT + 1

4a2
e−2aτ .
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Therefore,

I =
(

T τ + T

2a
− τ 2

2
− τ

2a
− 1

4a2

)
e−2aτ + 1

2a2
e−2aT + T

2a
− 1

4a2

≤
(

T τ + T

2a

)
e−2aτ + T

2a
+ 1

2a2
e−2aT .

Thus, we obtain

Cp ≤
(

2B

T 2

) p
2

A∫
0

((
T τ + T

2a

)
e−2aτ + T

2a
+ 1

2a2
e−2aT

)p/2

dτ

= (2B)
p
2
T p/2

T p
I5 = (2B)

p
2

1

T p/2
I5,

where I5 = ∫ A

0 ((τ + 1
2a

)e−2aτ + 1
2a

+ 1
2a2 e−2aT )p/2dτ .

Example 2. Let H be the hypothesis that the covariance function of a centered mea-
surable stationary Gaussian stochastic process equals ρ(τ) = B exp{−a|τ |2}, where
B > 0 and a > 0.

Similarly as in the previous example, to test the hypothesis H, we can use Cri-
terion 1 by selecting ρ̂T (τ ) defined in (4) as the estimator of the function ρ(τ). Let
0 < A < ∞. Let us find the value of the expression

I =
T∫

0

(T − u)
(
e−2au2 + e−a|u+τ |2e−a|u−τ |2)du

=
T∫

0

T e−2au2
du + T

T∫
0

e−a|u+τ |2e−a|u−τ |2du −
T∫

0

ue−2au2
du

−
T∫

0

ue−a|u+τ |2e−a|u−τ |2du

= I1 + I2 + I3 + I4.

Now let us calculate the summands:

I1 = T

T∫
0

e−2au2
du ≤ T

∞∫
0

e−2au2
du =

√
πT

2
√

2a
,

I2 = T

T∫
0

e−a|u+τ |2e−a|u−τ |2du = T e−2aτ 2

T∫
0

e−2au2
du ≤

√
πT

2
√

2a
e−2aτ 2

,

I3 =
T∫

0

ue−2au2
du = − 1

4a

T∫
0

e−2au2
d
(−2au2) = − 1

4a

(
e−2aT 2 − 1

)
,
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I4 =
T∫

0

ue−2a(u2+τ 2)du = e−2aτ 2

T∫
0

ue−2au2
du = − 1

4a
e−2aτ 2(

e−2aT 2 − 1
)
.

Hence,

I ≤
√

πT

2
√

2a
+

√
πT

2
√

2a
e−2aτ 2 + 1

4a

(
e−2aT 2 − 1

) + 1

4a
e−2aτ 2(

e−2aT 2 − 1
)

≤ T

( √
π

2
√

2a
+

√
π

2
√

2a
e−2aτ 2

)
.

Thus, we obtain

Cp ≤
(

2B

T 2

) p
2

A∫
0

(
T

( √
π

2
√

2a
+

√
π

2
√

2a
e−2aτ 2

))p/2

dτ = (2B)
p
2

1

T p/2
I6,

where I6 = ∫ A

0 (
√

π

2
√

2a
+

√
π

2
√

2a
e−2aτ 2

)p/2dτ .
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