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Abstract Using martingale methods, we provide bounds for the entropy of a probability mea-
sure on RY with the right-hand side given in a certain integral form. As a corollary, in the
one-dimensional case, we obtain a weighted log-Sobolev inequality.

Keywords Martingale, entropy, log-Sobolev inequality, trimmed regions, trimmed filtration
2010 MSC 39B62, 47D07, 60E15, 60J60

1 Introduction

A probability measure 1 on R? is said to satisfy the log-Sobolev inequality if for
every smooth compactly supported function f : RY — R, the entropy of f2, which
by definition equals

Bt 2= [ Floe s dn - (/R fzdu> “’g(/w fzdu),

possesses a bound
Bnt, 12 <2 [ 19f1Pdw M)
R4
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with some constant c. The least possible constant ¢ such that (1) holds for every
compactly supported smooth f is called the log-Sobolev constant for the measure x;
the multiplier 2 in (1) is chosen in such a way that for the standard Gaussian measure
on R?, its log-Sobolev constant equals 1.

The weighted log-Sobolev inequality has the form

Ent, f2 <2 fR , IWV £1*dp, )

where the function W, taking values in R9%4 has the meaning of a weight. Clearly,
one can consider (1) as a particular case of (2) with constant weight W equal to /c
multiplied by the identity matrix. The problem of giving explicit conditions on w that
ensure the log-Sobolev inequality or its modifications is intensively studied in the
literature, in particular, because of numerous connections between these inequalities
with measure concentration, semigroup properties, and so on (see, e.g., [8]). Moti-
vated by this general problem, in this paper, we propose an approach that is based
mainly on martingale methods and provides explicit bounds for the entropy with the
right-hand side given in a certain integral form.

Our approach is motivated by the well-known fact that, on a path space of a Brow-
nian motion, the log-Sobolev inequality possesses a simple proof based on fine mar-
tingale properties of the space (cf. [1, 6]). We observe that a part of this proof is, to a
high extent, insensitive w.r.t. the structure of the probability space; we formulate a re-
spective martingale bound for the entropy in Section 1.1. To apply this general bound
on a probability space of the form (R, 1), one needs a proper martingale structure
therein. In Section 2, we introduce such a structure in terms of a trimming filtration,
defined in terms of a set of frimmed regions in R¢. This leads to an integral bound for
the entropy on (R?, ). In Section 3, we show the way how this bound can be used to
obtain a weighted log-Sobolev inequality; this is made in the one-dimensional case
d = 1, although we expect that similar arguments should be effective for the multidi-
mensional case as well; this is a subject of our further research.

1.1 A martingale bound for the entropy
Let (£2, F,P) be a probability space with filtration F = {F;,¢ € [0, 1]}, which is
right-continuous and complete, that is, every J; contains all P-null sets from F. Let
{M,,t € [0, 1]} be a nonnegative square-integrable martingale w.r.t. IF on this space,
with cadlag trajectories. We will use the following standard facts and notation (see
[4]).

The martingale M has unique decomposition M = M¢ + M9, where M€ is a
continuous martingale, and M¢ is a purely discontinuous martingale (see [4], Defini-
tion 9.20). Denote by (M¢) the quadratic variation of M€, by

[M]; = (M€), + > (M — M,_)?

s<t

the optional quadratic variation of M, and by (M) the predictable quadratic varia-
tion of M, that is, the projection of [ M] on the set of IF-predictable processes. Alterna-
tively, (M) is identified as the F-predictable process that appears in the Doob—Meyer
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decomposition for M2, that is, the F-predictable nondecreasing process A such that
Ao = 0 and M? — A is a martingale.

For a nonnegative r.v. &, define its entropy by Enté = E&logé — E£ log(E£)
with the convention 0log 0 = 0.

Theorem 1. Let the o-algebra Fy be degenerate. Then for any nonnegative square-
integrable martingale {M;, t € [0, 11} with cadlag trajectories,

1
1
Ent M, §E/ d{M);.
() Ml‘—
Proof. Consider first the case where
Cl S Mt E 625 re [09 1]7 (3)

with some positive constants c1, c3. Consider a smooth function @, bounded with all
its derivatives, such that

D(x) =xlogx, x €l[c, 2]

Then by the 1t6 formula (see [4], Theorem 12.19),

1 1 1
® (M) — P (Mo) = / O'(Mi-)dM; + 5 / @ (M) d{M°),
0 0
+ Y [oM) — d(M,) — D' (M) (M; — M)
0<r<l1
Clearly,
1
E/ qj/(M[_) dM[ - 0
0
Because Fy is assumed to be degenerate, My = E[M;|Fp] = EM; a.s., and hence
Ent M| = E(® (M) — @(M)))
1. (! :
= —E/ " (M;~)d(M°)
27 J t
+E ) [0M) — (M) — &' (M) (My — M)
0<t<l1

For x € [cy, c2], we have @'(x) = 1 + logx and " (x) = 1/x. Observe that for any
x,8 suchthat x, x + 6§ € [c1, 2],

D(x +8) —P(x) — D' ()8 = (x + 8) log(x + 8) — xlogx — 8(1 +logx)

< 5) 8 8?
=x+§logll+—-)—-56<x+5)—-——-56§=—.
X X X

Then

1 L (M, — M,_)? I
Ent M, < -E d(M¢) +E — ™ <E diM];.
" “Z/OM,_< hHE D s /OM,_[]’

0<r<1
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Because the process M;_, t € [0, 1], is F-predictable, we have

I |
E/ M, :E/ (M),
0o M- 0o M-

which completes the proof of the required bound under assumption (3).
The upper bound in this assumption can be removed using the following standard
localization procedure. For N > 1, define

v =inf{r € [0,1]: M; = N}
with the convention inf & = 1. Then, repeating the above argument, we get

1
Mt_

1
d(M),.
t_

1
d<M>tsE/0 -

™
Ent M, < E/
0

We have M, — M;, N — oo a.s. On the other hand, EMer < EM12, and
xlogx = o(xz), x — +oo.
Hence, the family {M:, log M, , N > 1} is uniformly integrable, and
EntM., — EntM;, N — oo.

Passing to the limit as N — oo, we obtain the required statement under the assump-
tion M; > c¢; > 0. Taking M; + (1/n) instead of M; and then passing to the limit as
n — 0o, we complete the proof of the theorem. O

We further give two examples where the shown martingale bound for the entropy
is applied. In these examples, it would be more convenient to assume that ¢ varies in
[0, o0) instead of [0, 1]; a respective version of Theorem 1 can be proved by literally
the same argument.

Example 1 (Log-Sobolev inequality on a Brownian path space; [1, 6]). Let B, t > 0,
be a Wiener process on (£2, F,P) such that 7 = o(B). Let {F;} be the natural
filtration for B. Then forevery ¢ € L,(S2, P), the following martingale representation
is available:

o0
¢ =E; + / 1s d Bs (€]
0
with the It6 integral of a (unique) square-integrable {;}-adapted process {7, } in the
right-hand side (cf. [3]). Take £ € L4(§2,P) and put ¢ = £2 and
'
M; = E[¢|F] = E¢ +[ nsdBs, t>0.
0

Then the calculation from the proof of Theorem 1 gives the bound

1 1 1.2 1 1 2
dm), = -k | Tg = —E/ S——
M;— 2 Jo M, 2 Jo E[E°|F]

1 1

2
Ent£? < 5E/
0

Note the extra term 1/2, which appears because the martingale M is continuous.
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Next, recall the Ocone representation [10] for the process {n,}, which is valid if ¢
possesses the Malliavin derivative D¢ = {D;¢,t > 0}:

ne = E[Dil|F:], 1 =0. &)

We omit the details concerning the Malliavin calculus, referring the reader, if neces-
sary, to [9]. Because the Malliavin derivative possesses the chain rule, we have

12 = 4(BIED,E|F) < 4E[62|FB[(D:6)*| ],

and consequently the following log-Sobolev-type inequality holds:

1
Enté® <2E / E[(D£)*|F;]dt = 2E| D¢ |3, (6)
0
where D& is considered as a random element in H = L,(0, 0o0). By a proper approx-
imation procedure one can show that (7) holds for every £ € L,(£2,P) that has a
Malliavin derivative D& € L,($2, P, H).

The previous example is classic and well known. The next one apparently is new,
which is a bit surprising because the main ingredients therein (the Malliavin calculus
on the Poisson space and the respective analogue of the Clark—Ocone representation
4), (5)) are well known (cf. [2, 5]).

Example 2 (Log-Sobolev inequality on the Poisson path space). Let Ny, t > 0, be a
Poisson process with intensity A, and F = o (N). Denote by 7, k > 1, the moments
of consequent jumps of the process N, and by F; = o (N, s < 1), t > 0, the natural
filtration for N. For any variable of the form

E=F(t1,...,T)

with some n > 1 and some compactly supported F € C!(R"), define the random
element D& in H = L;(0, co) by

n
D == Fl(t,.... o) o5
k=1

Denote by the same symbol D the closure of D, considered as an unbounded operator
L2($2,P) — L,(52,P, H). Then the following analogue of the Clark—Ocone repre-
sentation (4), (5) is available ([5]): for every ¢ that possesses the stochastic derivative
D¢, the following martingale representation holds:

1 [ ~
§=E§+_f nSdNS'5
A Jo

where N; = N; — At denotes the compensated Poisson process corresponding to N,
and {n;} is the projection in L,(§2, P, H) of D& on the subspace generated by the
{F:}-predictable processes.

Proceeding in the same way as we did in the previous example, we obtain the
following log-Sobolev-type inequality on the Poisson path space:

2 4 2
Ent&” < EE”DSHH- @)
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2 Trimmed regions on R¢ and associated integral bounds for the entropy

Let 1 be a probability measure on R? with Borel o -algebra B(R¢). Our further aim
is to apply the general martingale bound from Theorem 1 in the particular setting
(22, F,P) = (R4, B(R?), ). To this end, we first construct a filtration {F;, ¢ €

[0, 11}.

In what follows, we denote N, = {A € F : u(A) = 0} (the class of p-null Borel
sets).

Fix the family {Dy, ¢ € [0, 1]} of closed subsets of R4 such that:

(i) Dy C Dy, s <t;
(i) Do € Ny, u(Dy) < 1fort < 1,and D; = RY;

(iii) forevery t > O,

D, \ (U DS) € Mu

s<t

D,:ﬂDs.

s>t

and for every ¢t < 1,

We call the sets Dy, t € [0, 1], trimmed regions, following the terminology used
frequently in the multivariate analysis (cf. [7]). Given the family {D,}, we define the
respective trimmed filtration {F;} by the following convention. Denote Q; = R\ D;.
Then, by definition, a set A € F belongs to F; if either ANQ; € N, or Q;\ A € N,.

By the construction, F = {#;} is complete. It is also clear that, by property (ii) of
the family {D;}, the o-algebra Fy is degenerate and, by property (iii), the filtration F
is continuous. Hence, we can apply Theorem 1.

Fix a Borel-measurable function g : R — R that is square-integrable w.r.t. i.
Consider it as a random variable on (£2, F, P) = (R?, B(R?), 1) and define

g =Elg|F], te]0,1]

Since the o-algebra possesses an explicit description, we can calculate every g; di-
rectly; namely, for > 0 and p-a.a. x, we have

_Jgx), x €Dy,
gt(x) - {Gt’ X € Qz, (8)
where we denote .
G = — dy). 9
L= o) /th(y)u( ») )

Note that 1(Q;) > 0 for t < 1 and the function G : [0, 1) — RT is continuous.
In what follows, we consider the modification of the process {g;} defined by (8) for
every x € R?. Its trajectories can be described as follows. Denote

t(x) = inf{t : x € D;}; (10)
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then by property (iii) of the family {D,} we have t(x) = min{r : x € D;}, and by
property (ii) we have 7(x) < 1,x € R, t(x) = 0 & x € Dy. Then, for a fixed
x € RY, we have

& (x) =g li>c(x) + Grlicr(n), t€[0,1],

which is a cadlag function because {G,} is continuous on [0, 1).
Theorem 2. Let g be a Borel-measurable function g : R — RY, square-integrable
w.r.t. . Let {D;} be a family of trimmed regions that satisfy (1)—(iii).
Then
(g(x) = Gr(n)?

Ent, g <
u Rd G-[(x)

n(dx),

where the functions G and t are defined by (9) and (10), respectively.

Proof. We have already verified the assumptions of Theorem 1: the filtration {F;} is
complete and right continuous, and the square-integrable martingale {g;} has cadlag
trajectories. Because g1 = g a.s. and JFy is degenerate, by Theorem 1 we have the
bound

1
1
Ent, g < E/ —d(g):.
0 8t—

Hence, we only have to specify the integral in the right-hand side of this bound.
Namely, our aim is to prove that

b (g(x) — Gr(x)?

E / Lagg = [ BRG], ()
0 8- R4 Grv

First, we observe the following.

Lemma 1. Let O < s < t < 1, and let a be a bounded Fg-measurable random
variable. Then

Ee((g): — (),)] = /D . () (8(6) = Grgo)) ().

Proof. By the definition of (g),
E[e((g) — (g)s)] = E[a(s? — ¢7)] = E[a(E(s7|7) — g2)]-
‘We have

g2(x), x €Dy,

2
g (x), x e Dy, 208 _
8 ()= {G[Z, x € Oy,

2 —
gs(-x) - {G%, x € Qs,

and applying formula (8) with g = gt2 and t = s, we get

0, x € Dy,

E(g?|F)(x) — g2(x) ={ H,,
(g7 |F5) ey e o,
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Hy, = ( | (@w-@uan+ [ (G- G%)de)).
D\ Dy O

Because « is Fg-measurable, it equals a constant on Qg w-a.s. Denote this constant
by A; then the previous calculation gives

Ela((g) — (g)s)] = AH, .

Write H; ; in the form
H = / \ g2 (x) u(dx) + n(Q)G; — n(Qs)G2.
D\ Dy

Denote

o = u(00), 1,=f edu:

then
2

1
1w(Q)G? = G} = M—

t
Observe that the functions u,, t € [0, 1] and I;, ¢t € [0, 1], are continuous functions
of a bounded variation and u; > 0, t < 1. Then

) ) t 12 t ]2 Iv
w)GE - 100G = [ d(—“) -/ <——”2d,uv+2—dlv>
s (23 s My Mo
t
=/ (—=G2du, +2G,dl,).
N
It is easy to show that

t
—/ G2 du, =/ G2,y n(dx). (12)
s D¢\ Ds

Indeed, because G is continuous on [0, 1), the left-hand side integral can be approxi-
mated by the integral sum

m
2
Z Gvk (I’L'Uk7] - I’Ll)k)a
k=1

where s = vg < - -+ < v, = t is some partition of [s, ¢]. This sum equals
m
2
> G n(Dy \ Dy,
k=1

For x € Dy, \ Dy, _,, we have t(x) € [vx—1, vk]. Hence, this sum equals

m

>/ Gomdn = [ G2 i)
k=1 P \Dy_, Di\Dy
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up to a residue term that is dominated by

sup Gﬁ - G%}

u,vels,t], |u—v|<maxy (vk —vr—1)

and tends to zero as the size of the partition tends to zero. This proves (12). Similarly,
we can show that

t
[ Gudti== [ Gret i)
s D\ Dy
We can summarize this calculation as follows:

Ee((g): — (g),)] = A f (500) — Gro)) u(d).

DI\D.V
Because a(x) = A for pn-a.a. x & Dy, this completes the proof. O

Let us continue with the proof of (11). Assume first that g > ¢ with some ¢ > 0.
Then g; > ¢, and consequently the process 1/g;_ is left continuous and bounded. In
addition, the function G; = I;/u, is bounded on every segment [0, T] C [0, 1).

Fix T < 1 and take a sequence {A"} of dyadic partitions of [0, T'],

Tk
A=Al k=0,....,2"}, #= TR
and define
2"
g? = goli=o0 + th,f_l lte(t/’(’_l,t]g]-
k=1

For every fixed ¢ > 0, the value g} equals the value of g at some (dyadic) point #, < ¢,
and t, — t—. Hence,

pointwise. In addition, because of the additional assumption g > c, this sequence is
bounded by 1/c. Hence, by the dominated convergence theorem,

T 2"
1 1
B[ dig = tim E (e)p — (&) )

0 8r— ! n—o00 ; gt;:’,l ( I tk—l)
here we take into account that the point + = 0 in the left-hand side integral is negligi-
ble because g; — Eg, t — 0+, in L, and consequently (g); — 0, — O+, in L;.
By Lemma 1,

on on

1 — Gr(n)?
BY (@~ ey ) =Y. [ EEZCl ),
k=1 k=1 t

8 n\D,n t
=1 S%-1 k\ oy k-1

recall that g,;:il(x) = Gp | for x ¢ Dy . Next, for x € Dy \ Dy, we have
|T(x) — 1?-1' < 27" Because Gy, t € [0, T], is uniformly continuous and separated
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from zero, and G (x), x € D7 is bounded, we obtain that

T 1 2" -G 2
E/ —d(g); = lim EZ/ &) = Gee)” iy
0 8- oo = oy Gy |
(g(x) = Gew)®

dx).
by Gim M@

Taking 7T — 1— and applying the monotone convergence theorem to both sides of
the above identity, we get (11).

To remove the additional assumption g > ¢, consider the family g}’ = g; + 1/n.
Then (g") = (g), 8"(x) — G}(,) = g() — Gr(v)» &/— = &— + (1/n), G} ) =
G1(x) + (1/n). Hence, we can write (11) for g", apply the monotone convergence
theorem to both sides of this identity, and get (11) for g. O

3 One corollary: a weighted log-Sobolev inequality on R

In this section, we show the way how the integral bound for the entropy, established
in Theorem 2, can be used to obtain weighted log-Sobolev inequalities. Consider a
continuous probability measure & on (R, B(R)) and denote by p,, the density of its
absolutely continuous part. Fix a family of segments D, = [a;, b;],t € [0, 1), where
ap = by, the function g, is continuous and decreasing to —oo as t — 1—, and the
function b. is continuous and increasing to 400 as t — 1—. Then the family

Dt = [at,bt], t e [O, l), Dl = R,

satisfies the assumptions imposed before. Hence, Theorem 2 is applicable.
We call a function f : R — R symmetric w.r.t. the family {D;,} if

fla) = fb), tel[0,1).
In the following proposition, we apply Theorem 2 to g = f2, where f is smooth and
symmetric.

Proposition 1. Let f : R — R be a smooth function that is symmetric w.r.t. the
family {D;}. Then

Ent,, /% <4 /R WO ()’ (d),

where
pr((=00,x))
B x < ay,
W(x) = Vz(x)log( ) Vix) = u(([jffég;)
M (x) T X = o

Proof. Write

1 1 y
8x)—=Gey) = / (g(x)—g(y) ndy) = / / g’ (2) dz u(dy).
/"l’f(x) Qr(x) MT(X) Q‘[(X) X
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Let us analyze the expression in the right-hand side. Observe that now Q(y) is the
union of two intervals (—00, d;(x)) and (b;(x), +00). Denote

0f = (bi.00). QO =(-0c0.a).  ui = u(Q).
The point x equals either a;(y) or by (y); hence, because g = f2 is symmetric,

glx) = g(at(x)) = g(br(x))~

Then we have

: ' +
x ) g@dz, ye 0y,

dr(x)

Consequently,

8" ()| dz n(dy)

T
|g(x) - Gr(x)| < — /
LSO

Hr(x) iy /Q?(X),T(Z)Sf(y)

T(x)

+/ / |g'(2)| dz M(d)’):|~
Qi) Y Qrry T@=T(Y)

T(x)

Using Fubini’s theorem, we get

IA

1
|g(x) = G| . [/Q+ M;F(Z)|g/(z)|dz+/Q M:(Z)|g/(2)|dz]

7(x) T(x)

IA

/ V(2)|8'(2)| n(dz).
Htx) J Q)

Because g = f2 and hence g’ = 2 ff’, by the Cauchy inequality we then have

(g(x) - Gr(x))2

1 1
< 4( / (V(z)f’(z))2 M(dz)) ( / (f(z))2 M(dz))
Hr(x) Or(x) M (x) Or(x)
1 , 2
= 4( / (V@) f'(2) M(dz))Gr(x)-
Mf(x) Qr(x)

Observe that
2€0:) € 1T@>t(x) & x€ Dy \l{aiw, b))

Hence, by Theorem 2 and Fubini’s theorem we have

1
Ent,,(f2) <4 / ( / (V(Z)f/(Z))zu(dZ)) p(dx)
R /"LT(X) Qr(x)

d
:4f (/ ad x)>(V(z)f/(z))2u(dz).
R D‘[(Z) MT(}C)
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Similarly to the proof of (12), we can show that

pe 1y
= 108 g =0 — 1Og — >
D; Mz(x) Mt

the last identity holds because o = 1. This completes the proof. O

Next, we develop a symmetrization procedure in order to remove the restriction
for f to be symmetric. For any x # ap, one border point of the segment D, (x)
equals x; let us denote s(x) the other border point. Denote also s(ap) = ag. Define
the o -algebra Fof symmetric sets A € F, thatis, such that x € A < s(x) € A. For
a function f € Ly(R, ), consider its Lo-symmetrization

R 2l

/= (Eu[17F])
It can be seen easily that there exists a measurable function p : R — [0, 1] such that,
for p-a.a. x € R,

(H*@) = p) 20 + (1 = p(0)) f2(s(x)) = Ey, 2,

where we denote

1/2

vy = p(x)éx + (1 — p(x))&v(x), x € R.
We have .
E, f? =E.(f)?
and, consequently,
Ent,, f* —Ent, (f)* = E, f*log f* — E.(f)* log(f)?
= E, (B[ f?log £7 = ()7 log(/)?|F])
= / (Ent,, fz) u(dx).
R
It is well known (cf. [8]) that for a Bernoulli measure v = p§;+¢é—1 (p+q = 1),
the following discrete analogue of the log-Sobolev inequality holds:
log p—logg
Ent, /> < Cp(Df)?,  Cp={P1 =g PTO
2 pP=4q,
where we denote Df = f(1) — f(—1). This yields the bound

Ent,, /2 — Ent,,()? < /R Coter (FG) = F(s))) ()

= / cpm( f/(z)dz)zu(dx).
R Dr(x)

By the Cauchy inequality,
3/2

2
' o2 P )(/ M(dz)>
d d ’
(‘/Dfm e Z> = </Dr(x>(f (Z)) pi(z)“( I Dr(y Mig)




A martingale bound for the entropy associated with a trimmed filtration on R4 163
and, similarly to the proof of (12), we can show that

wu(dz) ~12 ~1/2
/ 3/2 = 2(Mr(x) - 1) < 2Mr(x) :
Deeoy M)

This yields the following bound for the difference Ent,, f 2 Ent, ( f )2, formulated
in the terms of f:

Ent, > —Ent,(f)* <2 /R (')’ U @) udz),

3/2

) n(dx)
U(Z): 2(2) p(x)l—/z.
Pu2) J0. M)

Note that C, < 1 for any p € [0, 1], and hence we have

2
UQ) < 2(M) .
Pu(2)

Assuming that the bound from Proposition 1 is applicable to f (which is yet to be
studied because f may fail to be smooth), we obtain the following inequality, valid
without the assumption of symmetry of f:

Ent, f? < /R @@ (P 0)) +2U0 @) (F/(x)7) ndx). (13)

The right-hand side of this inequality contains the derivative of f and hence depends
on the choice of the family of trimmed regions {D,}. We further give a particular
corollary, which appears when {D;,} is the set of quantile trimmed regions. In what
follows, we assume (i to possess a positive distribution density p,, and choose {D; =
[a;, b;]} in the following way. Denote ¢, = F w 1 (v), that is, the quantile of u of the
level v, and put

ar =q12-1/2, b =qi214p2, t €0, 1).

In particular, a9 = by = m, the median of u. Denote also ﬁu =min(Fy,, 1 - F,);
observe that now we have |
ﬁu(x) = Eﬂr(x)-

Theorem 3. Let iu be a probability measure on R with positive distribution density
DPu- Then, for any absolutely continuous f, we have

F (x) 2 1
Et2/K W) wan. K :8(M><l F 1)'
nt, /2 < | KG@)(f') widn) =% ) 8250

Proof. First, observe that now the L;-symmetrization of a function f has the form

A

o =220 + ) (14
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This identity is evident for functions f of the form 1(7005 F-l(w)> V € (0, 1/2] and
L p-11),00)> U € [1/2, 1), and then easily extends to general f.
Next, observe that
s(x) = F, (1 = Fu(x)), (15)

and because F), is absolutely continuous and strictly increasing, s(x) is absolutely
continuous as well. Then f is absolutely continuous with

F@F )+ Fs@)f(s(x)s"(x)
V207200 + f2(s(x))) ’

here and below the derivatives are well defined for a.a. x. Using a standard localiza-
tion/approximation procedure, we can show that Proposition 1 is well applicable to
any absolutely continuous function. Hence, it is applicable to f , and (13) holds.

We have

) =

(F/ )2 + (f(s(x) f/(s(x))s"(x))?
f20) + f2(s(x)

< (F@L@) + (f(s00)s' @)

The function W (x) in (13) now can be rewritten as

(Y ) <

7 2
W(x):<F“(x)) o Al ;

Pu(x) 2F,(x)
hence,

[ (7))’ uan

< /R W) (f' () u(dx) + /R W (F ()2 (') (o).

Let us analyze the second integral in the right-hand side. By (15),

/ pu(x)
= 16
SO == 5o (16

hence,

fR W) (F(s(0)) (s () ()

_ / 2 ﬁu(x) )21 1 d
_/1‘{(]” (s(x))) (pu(s(x)) og 2I:‘,L(x)pM(X) x.

Change the variables y = s(x); observe that we have x = s(y) and I:“M(x) = 19# ().
Then we finally get
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/R W) (F(3) (5 () e(dx)

B , 2 ﬁ,l(y))2 Pu(y)
_/R(f (s) (pu(y) T ReSia s erssy

= /RW(y)(f’(y))zu(dy),
and therefore
/]R W) () 0)* udx) <2 /R W)(f'()° udx).

On the other hand, by identity (14) we have now C () = 1/2, and the function
U(x) in (13) can be rewritten as

2 - 2
U(x)z(,ur(x)> =4<F;L(x)> ,
P,u(x) pu(x)

which completes the proof of the statement. g
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