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Abstract In this paper we establish the existence and the uniqueness of the solution of a
special class of BSDEs for Lévy processes in the case of a Lipschitz generator of sublinear
growth. We then study a related problem of logarithmic utility maximization of the terminal
wealth in the filtration generated by an arbitrary Lévy process.
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1 Introduction

This paper consists of two independent but related parts. In the first part (Section
3), we consider a class of backward stochastic differential equations (from now on
BSDEs) (see (3.1) below) in the filtration generated by a Lévy process and, for the
case of a Lipschitz generator of sublinear growth, we establish the existence and
uniqueness of the solution in Theorem 3.3 below. We stress that the proof of Theorem
3.3 relies on the predictable representation property (from now on PRP) obtained by
Di Tella and Engelbert in [6] (see also [5]) and recalled in Theorem 2.2 below.
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A similar class of BSDEs has been considered by Nualart and Schoutens in [18].
Their approach is based on the PRP of the orthogonalized Teugels martingales, that
was obtained in Nualart and Schoutens [17]. However, the PRP of the family of
Teugels martingales requires an exponential moment of the Lévy measure outside
the origin. On the other hand, for the PRP in [6] no additional assumptions on the
Lévy process are needed. Hence, we are able to consider this class of BSDEs for gen-
eral Lévy processes. Therefore, Theorem 3.3 below generalizes [18, Theorem 1] to
arbitrary Lévy processes but with a great variety of systems of martingales in place
of Teugels martingales.

The second part of the present paper (Section 4) is devoted to the study of a prob-
lem of logarithmic utility maximization of terminal wealth. We solve the problem
having in mind the dynamical approach first introduced by Rouge and El Karoui in
[19] and further developed by Hu, Imkeller and Müller in [10] in a Brownian set-
ting, which is based on a martingale optimality principle constructed via BSDEs.
In case of a more general filtration supporting martingales with jumps, the dynam-
ical approach based on BSDEs has been followed by Morlais in [15, 16] and by
Becherer in [1] to study the problem of exponential utility maximization of the ter-
minal wealth.

The logarithmic utility maximization problem considered in this paper is analo-
gous to the one studied in [10, Section 4] for a Brownian filtration: We extend the
results of [10, Section 4] to Lévy processes with both Gaussian part and jumps.

Because of the special structure of the logarithmic utility, it turns out that, in the
present paper, the martingale optimality principle can be constructed in a direct and
independent way, without using BSDEs. However, as we shall explain (see Remark
4.7 below), this can be also alternatively done using a BSDE of the form of (3.1)
below.

In [8] (see also references therein) Goll and Kallsen have studied the problem
of the logarithmic utility maximization in a very general context (that, in particular,
recovers Lévy processes), combining duality methods and semimartingale character-
istics calculus. In [8], the authors assume the convexity of the set in which the ad-
missible strategies for the optimization problem take values. However, since for the
dynamical approach this further assumptions is not needed, the set of the constraints
considered in the present paper will be closed and non-necessarily convex. Other ref-
erences for the logarithmic utility maximization by the duality approach are Goll and
Kallsen [7] and Kallsen [14]. We also recall the work by Civitanić and Karatzas [2]
about utility optimization by the duality approach.

General setting of the paper. Let (�,F ,P) be a complete probability space and
F be a filtration satisfying the usual conditions. We fix a finite time horizon T > 0.
We only consider R-valued stochastic processes on the time interval [0, T ]. When we
say that a process X is a martingale we implicitly assume that X is càdlàg. We denote
by P the σ -algebra of predictable subsets of [0, T ] × �.

By H 2 we denote the space of square integrable martingales X on [0, T ] such
that X0 = 0. The space (H 2, ‖ · ‖2) endowed with the norm specified by ‖X‖2

2 :=
E[X2

T ], for X ∈ H 2, is a Hilbert space. We observe that, by Doob’s inequality,
the ‖ · ‖2-norm is equivalent to the norm ‖X‖2

H 2 := E[supt∈[0,T ] X2
t ], X ∈ H 2.

However, (H 2, ‖ · ‖H 2) is not a Hilbert space.
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For X ∈ H 2, we denote by 〈X,X〉 the predictable square variation process of
X. We recall that 〈X,X〉 is the unique predictable increasing process starting at zero
such that the process X2 − 〈X,X〉 is an F-martingale. If X, Y ∈ H 2, we define
〈X, Y 〉 by polarization and say that X and Y are orthogonal if 〈X, Y 〉 = 0.

For X ∈ H 2, we introduce L2(X) as the space of F-predictable processes H

such that
∫ T

0 H 2
s d〈X,X〉s is integrable. For H ∈ L2(X), we denote by

∫ ·
0 HsdXs the

stochastic integral of H with respect to X. It holds
∫ ·

0 HsdXs ∈ H 2, for every H in
L2(X). Furthermore,

∫ ·
0 HsdXs is characterized in the following way: A martingale

Z ∈ H 2 is indistinguishable from
∫ ·

0 HsdXs if and only if 〈Z, Y 〉 = ∫ ·
0 Hsd〈X, Y 〉s ,

for every Y ∈ H 2.
For two semimartingales X and Y , we denote by [X, Y ] the covariation of X and

Y , that is, we define [X, Y ]t := 〈Xc, Y c〉 + ∑
0≤s≤t �Xs�Ys , t ∈ [0, T ], where Xc

and Y c denote the continuous local martingale part of X and Y , respectively.

2 Martingale representation for Lévy processes

A Lévy process with respect to F is an R-valued and F-adapted stochastically con-
tinuous càdlàg process L such that L0 = 0, (Lt+s − Lt) is distributed as Ls and
it is independent of Ft , for all s, t ≥ 0. In this case, we say that (L,F) is a Lévy
process. By FL we denote the completion in F of the filtration generated by L. It is
well known that FL satisfies the usual conditions (see [20]). Clearly, (L,FL) is again
a Lévy process.

Let (L,F) be a Lévy process. We denote by μ the jump measure of L. Recall
that μ is a homogeneous Poisson random measure on [0, T ] × R with respect to F

(see [13], Definition II.1.20). The F-predictable compensator of μ is deterministic
and it is given by λ⊗ ν, where λ is the Lebesgue measure on [0, T ] and ν is the Lévy
measure of L, that is, ν is, in particular, a σ -finite measure such that ν({0}) = 0 and
x 
→ x2 ∧1 is ν-integrable. We call μ := μ−λ⊗ν the compensated Poisson random
measure associated with μ. By Bσ we denote the Gaussian part of L, which is an
F-Brownian motion such that E[(Bσ

t )2] = σ 2t , where σ 2 ≥ 0. By η ∈ R we denote
the drift parameter of L and we call (η, σ 2, ν) the characteristic triplet of L.

A function G on �̃ := [0, T ]×�×R is said to be predictable if G is P ⊗B(R)-
measurable. Let G 2(μ) denote the linear space of the predictable functions G on �̃

such that E[∑s≤T G2(s, ω,�Ls(ω))1{�Ls(ω) =0}] < +∞.
For G ∈ G 2(μ), we denote by

∫
[0,·]×R

G(s, y)μ(ds, dy) the stochastic integral
of G with respect to μ. Recall that

∫
[0,·]×R

G(s, y)μ(ds, dy) is defined as the unique

purely discontinuous Z ∈ H 2 with �Zt(ω) = G(t, ω,�Lt(ω))1{�Lt (ω) =0} (see
[13], II.1.27).

Next, for any f ∈ L 2(ν), we introduce the martingale Xf ∈ H 2 by

X
f
t :=

∫
[0,t]×R

f (y)μ(ds, dy), t ∈ [0, T ].

Let (L,F) be a Lévy process with characteristic triplet (η, σ 2, ν) on [0, T ]. Then,
for any f ∈ L2(ν), the martingale Xf has the following properties:
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(i) For every f ∈ L2(ν), (Xf ,F) is a Lévy process and

E[(Xf
t ) 2] = t

∫
R

f 2(y)ν(dy) < +∞.

(ii) For every f, g ∈ L2(ν), 〈Xf ,Xg〉 t = t
∫
R

f (y)g(y) ν(dy).
(iii) For every f, g ∈ L2(ν), Xf and Xg are orthogonal martingales if and only if

f, g ∈ L 2(ν) are orthogonal functions in L 2(ν).

Let T be an arbitrary subset of L2(ν). Then we set

XT := {Bσ } ∪ {Xf , f ∈ T }. (2.1)

As usual, 	2 denotes the Hilbert space of sequences a = (an)n≥1 of real numbers
for which the norm ‖a‖2

	2 := ∑∞
n=1(a

n)2 is finite.

Definition 2.1. We denote by (M2(	2), ‖ · ‖M2(	2)) the Hilbert space of 	2-valued

F-predictable processes V such that ‖V ‖2
M2(	2)

:= E[∫ T

0 ‖Vs‖2
	2ds] < +∞.

Let T = {fn, n ≥ 1} ⊆ L2(ν) be an orthonormal basis. We remark that the or-
thogonal sum

∑∞
n=1

∫ ·
0 V n

s dX
fn
s converges in (and, therefore, belongs to) the Hilbert

space (H 2, ‖ · ‖2) if and only if V = (V n)n≥1 belongs to M2(	2). In this case we
have the isometry ‖ ∑∞

n=1

∫ ·
0 V n

s dX
fn
s ‖2 = ‖V ‖M2(	2).

For the next theorem, we refer to [6, Section 4.2]. It states that the family XT ,
where T ⊆ L2(ν) is an orthonormal basis, possesses the PRP.

Theorem 2.2. Let (L,FL) be a Lévy process with characteristic triplet (η, σ 2, ν) on
the probability space (�,FL

T ,P). Let T := {fn, n ≥ 1} be an orthogonal basis
of L2(ν) and let XT ⊆ H 2 be the associated family of FL-martingales defined in
(2.1). Then XT consists of pairwise orthogonal martingales and every FL-square
integrable martingale N has the representation

N = N0 +
∫ ·

0
ZsdBσ

s +
∞∑

n=1

∫ ·

0
V n

s dX
fn
s , Z ∈ L2(Bσ ), V n ∈ L2(Xfn), n ≥ 1,

where the spaces L2(Bσ ) and L2(Xfn) are considered with respect to FL.

3 BSDEs for Lévy processes

Let (L,FL) be a Lévy process with characteristic triplet (η, σ 2, ν). We consider the
probability space (�,FL

T ,P). Because of Theorem 2.2, for each orthogonal basis
T = {fn, n ≥ 1} of L2(ν), it is natural to consider the following BSDE:

Yt = ξ +
∫ T

t

f (s, Ys, Zs, Vs)ds −
∫ T

t

ZsdBσ
s −

∞∑
n=1

∫ T

t

V n
s dX

fn
s , (3.1)

where f : [0, T ] × � × R × R × 	2 −→ R is a given random function, called the
generator of BSDE (3.1), and ξ is an FL

T -measurable random variable. We call the
pair (f, ξ) the data of BSDE (3.1).
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In [17] BSDE (3.1) is studied for Teugels martingales under the further assump-
tion of the existence of an exponential moment for L, that is, E[eε|L1|] < +∞, for
an ε > 0. We are going to study BSDE (3.1) for arbitrary Lévy processes L and for a
great variety of families XT = {Bσ } ∪ {Xfn, n ≥ 1}, not restricting the analysis to
Teugels martingales.

We introduce the space S 2 by

S 2 := {
FL-adapted processes Y such that E[supt∈[0,T ] Y 2

t ] < +∞}
.

Definition 3.1. A triplet (Y, Z, V ) ∈ S 2 × L2(Bσ ) × M2(	2) satisfying (3.1) is a
solution of BSDE (3.1).

We now state the assumptions on the generator f of (3.1) which we shall need in
the proof of Theorem 3.3 below.

Assumption 3.2. Let the generator f of BSDE (3.1) fulfil the following properties:
(i) For (y, z, a) ∈ R × R × 	2, f (·, ·, y, z, a) is an FL-progressively measurable

process.
(ii) There exists a constant K > 0 and a nonnegative FL-progressively measurable

process γ such that E[∫ T

0 γ 2
s ds] < +∞ and

|f (t, y, z, a)| ≤ γt + K
(
|y| + |σ ||z| + ‖a‖	2

)
.

(iii) There exists a constant C > 0 such that

|f (t, y1, z1, a1)−f (t, y2, z2, a2)|
≤ C

(
|y1 − y2| + |σ | |z1 − z2| + ‖a1 − a2‖	2

)
.

A generator f fulfilling the properties (i), (ii) and (iii) in Assumption 3.2, will be
called admissible.

Theorem 3.3. Let ξ ∈ L2(�,FL
T ,P) and let f be an admissible generator. Then

BSDE (3.1) with data (f, ξ) admits a unique solution (Y, Z, V ).

Proof. We denote by L2(λ ⊗ P) the space of λ ⊗ P-square integrable adapted pro-
cesses on [0, T ]. We introduce the space K 2 := L2(λ ⊗P) × L2(Bσ ) × M2(	2) en-
dowed with the norm ‖·‖K 2 defined by ‖·‖2

K 2 = ‖·‖2
L2(λ⊗P)

+‖·‖2
L2(Bσ )

+‖·‖2
M2(	2)

.

It is clear that (K 2, ‖ · ‖K 2) is a Banach space. We now define the mapping

 : K 2 −→ K 2

by setting (Y, Z, V ) = (R, S, P ), for (R, S, P ) ∈ K 2, where

Yt := E

[
ξ +

∫ T

t

f (s, Rs, Ss, Ps)ds

∣∣∣FL
t

]
= E

[
ξ +

∫ T

0
f (s, Rs, Ss, Ps)ds

∣∣∣FL
t

]
−

∫ t

0
f (s, Rs, Ss, Ps)ds, (3.2)
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and (Z, V ) is the unique pair in L2(Bσ ) × M2(	2) such that

ξ +
∫ T

0
f (s, Rs, Ss, Ps)ds

= E

[
ξ +

∫ T

0
f (s, Rs, Ss, Ps)ds

]
+

∫ T

0
ZsdBσ

s +
∞∑

n=1

∫ T

0
V n

s dX
fn
s . (3.3)

We observe that from Assumption 3.2 (ii) and ξ ∈ L2(�,FL
T ,P), the random vari-

able ξ + ∫ T

0 f (s, Rs, Ss, Ps)ds is square integrable, since (R, S, P ) ∈ K 2. Hence Y

is well defined by (3.2). Moreover, since ξ +∫ T

0 f (s, Rs, Ss, Ps)ds ∈ L2(�,FL
T ,P),

the existence of the unique pair (Z, V ) ∈ L2(Bσ )×M2(	2) follows by Theorem 2.2.
We also observe that Y ∈ S 2. Indeed, the FL-martingale N satisfying the identity
Nt = E

[
ξ + ∫ T

0 f (s, Rs, Ss, Ps)ds|FL
t ] a.s., t ∈ [0, T ], is square integrable. So,

using Doob’s inequality and Assumption 3.2 (ii), from (3.2) we also get the estimate

E
[

supt∈[0,T ] Y 2
t

] ≤ 2E
[

supt∈[0,T ] N2
t

] + 8T ‖γ ‖2
L2(λ⊗P)

+ 16K2T
(
‖R‖L2(λ⊗P) + ‖S‖2

L2(Bσ )
+ ‖P ‖2

M2(	2)

)
< +∞

meaning that Y ∈ S 2. In particular, we have Y ∈ L2(λ ⊗ P). Finally, we observe
that (Y, Z, V ) satisfies the relation

Yt = ξ +
∫ T

t

f (s, Rs, Ss, Ps)ds −
∫ T

t

ZsdBσ
s −

∞∑
n=1

V n
s dX

fn
s

and hence it satisfies (3.1) if and only if it is a fixed point of . We now define a
β-norm ‖ · ‖β on K 2 equivalent to ‖ · ‖K 2 with respect to which  is a strong
contraction: For any (R, S, P ) ∈ K 2 we define

‖(R, S, P )‖β :=
(
E

[∫ T

0
eβs

(
R2

s + σ 2S2
s + ‖Ps‖2

	2

)
ds

])1/2

, β > 0.

We introduce the notation (Y ′, Z′, V ′) := (R′, S′, P ′) and

(Y , Z, V ) := (Y −Y ′, Z −Z′, V −V ′), (R, S, P ) := (R −R′, S −S′, P −P ′).

Applying twice integration by parts to eβtY
2
t , because YT = 0, yields

eβtY
2
t = −β

∫ T

t

eβsY
2
s−ds − 2

∫ T

t

eβsY s−dY s −
∫ T

t

eβsd[Y , Y ]s . (3.4)

We now compute dY s and d[Y , Y ]s . From (3.2) and (3.3), for s ∈ (t, T ], we deduce

−dY s = (
f (s, Rs, Ss, Ps) − f (s, R′

s , S
′
s , P

′
s )

)
ds − ZsdBσ

s −
∞∑

n=1

V
n

s dX
fn
s . (3.5)



BSDEs and log-utility maximization for Lévy processes 485

Hence,

d[Y , Y ]s = Z
2
s d[Bσ ,Bσ ]s +

∞∑
n,m=1

V
n

s V
m

s d[Xfn,Xfm ]s . (3.6)

Inserting (3.5) and (3.6) in (3.4) gives

eβtY
2
t = − β

∫ T

t

eβsY
2
s−ds + 2

∫ T

t

eβsY s−
(
f (s, Rs, Ss, Ps) − f (s, R′

s , S
′
s , P

′
s )

)
ds

− 2
∫ T

t

eβsY s−ZsdBσ
s − 2

∞∑
n=1

∫ T

t

eβsY s−V
n

s dX
fn
s

−
∫ T

t

eβsZ
2
s d[Bσ ,Bσ ]s −

∞∑
n,m=1

∫ T

t

eβsV
n

s V
m

s d[Xfn,Xfm ]s . (3.7)

Because of Y, Y ′ ∈ S 2 and (R, S, P ), (R′, S′, P ′) ∈ K 2, from Assumption 3.2 (ii)
and the Cauchy–Schwarz inequality, the drift part in (3.7) is integrable. Furthermore,
by the Kunita–Watanabe inequality, observing that 〈Xfn,Xfm〉t = tδnm, t ∈ [0, T ],
δnm denoting the Kronecker symbol, since V and V ′ belong to M2(	2), we get that
the process

∑∞
n,m=1

∫ ·
0 eβsV

n

s V
m

s d[Xfn,Xfm]s is of integrable variation. Let H 1 de-
note the space of local martingales X such that ‖X‖H 1 := E[supt∈[0,T ] |Xt |] < +∞
and X0 = 0. We notice that (H 1, ‖ · ‖H 1) is a Banach space of uniformly integrable
martingales. The local martingales

∫ ·
0 eβs Y s− Zs dBσ

s and
∫ ·

0 eβs Y s− V
n

s dX
fn
s be-

long to (H 1, ‖ · ‖H 1). Indeed, since Z ∈ L2(Bσ ), V ∈ M2(	2) and Y ∈ S 2,
by the Burkholder–Davis–Gundy inequality (see, e.g., [12, Theorem 2.34]) and the
Cauchy–Schwarz inequality, we see that the estimates

E

[
sup

t∈[0,T ]

∣∣∣∣ ∫ t

0
eβs Y s− Zs dBσ

s

∣∣∣∣
]

< +∞ and

E

[
sup

t∈[0,T ]

∣∣∣∣ ∫ t

0
eβs Y s− V

n

s dX
fn
s

∣∣∣∣
]

< +∞

hold. Analogously, since V ∈ M2(	2), it follows that

E

[
sup

t∈[0,T ]

∣∣∣∣ k+m∑
n=k+1

∫ t

0
eβsY s−V

n

s dX
fn
s

∣∣∣∣]

≤ ceβT

(
E

[
sup

t∈[0,T ]
Y

2
t

])1/2 (
E

[ k+m∑
n=k+1

∫ T

0
(V

n

s )
2ds

])1/2

−→ 0

as k,m → +∞, where c > 0 is the constant coming from the Burkholder–Davis–
Gundy inequality. Therefore, we obtain that the sum

∑∞
n=1

∫ ·
0 eβsY s−V

n

s dX
fn
t con-

verges in (H 1, ‖ · ‖H 1) and hence it is, in particular, a centered uniformly integrable
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martingale. Taking the expectation in (3.7) now yields

E

[
eβtY

2
t + σ 2

∫ T

t

eβsZ
2
s ds +

∫ T

t

eβs‖V ‖2
	2ds

]
=

− βE

[∫ T

t

eβsY
2
s−ds

]
+ 2E

[∫ T

t

eβsY s−
(
f (s, Rs, Ss, Ps)− f (s, R′

s , S
′
s , P

′
s )

)
ds

]
. (3.8)

We now use the abbreviation

I := 2E

[ ∫ T

t

eβsY s−
(
f (s, Rs, Ss, Ps) − f (s, R′−, S′

s , P
′
s )

)
ds

]
.

By Assumption 3.2 (iii), we get

|I | ≤ 2CE

[ ∫ T

t

eβsY s−
(|Rs | + |σ | |Ss | + ‖P s‖	2

)
ds

]
. (3.9)

Since the filtration FL is quasi-left continuous, the identity E[Y 2
s ] = E[Y 2

s−] holds.

So, E[∫ T

t
eβsY

2
s−ds] = E[∫ T

t
eβsY

2
s ds] holds by Fubini’s theorem. For h > 0 and

a, b, c ≥ 0, we have the estimates ab ≤ a2 h
2 + b2

2h
and (a+b+c)2 ≤ 4(a2 +b2 +c2).

Applying these inequalities to (3.9), and then choosing h = 8C, we get

|I | ≤ 8C2 E

[ ∫ T

t

eβsY
2
s ds

]
+ 1

2
E

[ ∫ T

t

eβs
(|Rs |2 + σ 2 |Ss |2 + ‖P s‖2

	2 |2
)
ds

]
.

Using the latter estimate in (3.8) and then taking β = 8C2 + 1, we obtain

‖(Y, Z, V ) − (Y ′, Z′, V ′)‖2
8C2+1 ≤ 1

2
‖(R, S, P ) − (R′, S′, P ′)‖2

8C2+1

which means that  is a strong contraction on (K 2, ‖ · ‖β) if β = 8C2 + 1. Hence,
 has a unique fixed point in (K 2, ‖ ·‖8C2+1). The proof of the theorem is complete.

4 Logarithmic utility maximization

4.1 The market model
Let (L,FL) be a Lévy process with characteristics (η, σ 2, ν). We assume σ 2 > 0 and
consider the probability space (�,FL

T ,P). We denote by μ the jump measure of L

and set μ := μ − λ ⊗ ν.
Let b and ζ be bounded predictable processes. We assume furthermore that there

exist ε1 > ε2 > 0 such that ε2 ≤ ζ 2
t (ω) ≤ ε1, for every (t, ω) ∈ [0, T ] × �. Addi-

tionally, let β be a bounded predictable function on �̃ such that β(t, ω, y) ≥ 0 and
β(t, ω, y) ≤ αt (ω)(|y| ∧ 1), for all (t, ω, y) in �̃, where α is a bounded nonnegative
FL-predictable process. By the assumptions on β, we have

E

[ ∑
0≤s≤T

β2(s,�Ls)1{�Ls =0}
]

≤ E

[ ∫ T

0

∫
R

α2
s (y

2 ∧ 1)ν(dy)ds

]
< +∞ .
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Therefore, the process U = (Ut )t∈[0,T ] defined by

Ut :=
∫ t

0
bsds +

∫ t

0
ζsdBσ

s +
∫

[0,t]×R

β(s, y)μ(ds, dy), t ∈ [0, T ] , (4.1)

is a well-defined semimartingale and we can consider the price process S = S0 E (U).
Because of the assumptions on β and from the explicit expression of the stochastic
exponential (see [13, Eq. I.4.64]), it follows that S > 0 and S− > 0. Furthermore, by
the Doléans-Dade equation, for every t ∈ [0, T ], the price process S satisfies

St = S0 +
∫ t

0
Ss−(bsds + ζsdBσ

s ) +
∫

[0,t]×R

Ss−β(s, y)μ(ds, dy). (4.2)

Clearly, since β(t, ω, y) ≥ 0 by assumption, the price process S can only have posi-
tive jumps.

As in [4], the admissible strategies for the market model, described by the locally
bounded semimartingale S, are the predictable processes π such that the stochastic
integral

∫ ·
0 πsdSs is a well-defined semimartingale and

∫ T

0 πsdSs is bounded from be-

low. An admissible strategy π is an arbitrage opportunity if it holds
∫ T

0 πsdSs ≥ 0

a.s. and P[∫ T

0 πsdSs > 0] > 0. It is well known that, in this context, the existence of
an equivalent local martingale measure for S implies the absence of arbitrage oppor-
tunities (see [4, Corollary 1.2]).

We introduce the bounded predictable process θ := ζ−1b. Let now Q be the
measure defined on FL

T by dQ := E (−∫ ·
0 θs/σ

2dBσ
)
T

dP. By Novikov’s condition,
Q is a probability measure on FL

T equivalent to P. According to Girsanov’s theorem,
B̂σ

t := Bσ
t + ∫ t

0 θsds, t ∈ [0, T ], defines a Q-Brownian motion with respect to FL.
Under Q, we consider the process Û defined by

Ût :=
∫ t

0
ζsdB̂σ

s +
∫

[0,t]×R

β(s, y)μ(ds, dy) . (4.3)

Therefore, under Q, we get S = S0 E (Û). We are now going to show that S is a
Q-martingale and, hence, that the market model is free of arbitrage opportunities.

We denote by BMO(Q) the space of adapted BMO martingales with respect to Q

on [0, T ].
Proposition 4.1. Let Q be the equivalent probability measure defined above.

(i) The Q-compensator of the P-Poisson random measure μ coincides with λ⊗ ν.
Hence, μ is also a Q-Poisson random measure relative to FL.

(ii) The process Û from (4.3) belongs to BMO(Q).
(iii) The price process S is a martingale with respect to Q. In particular, the

market model is free of arbitrage opportunities.

Proof. To verify (i), we observe that the density process of Q with respect to P is
a continuous FL-martingale. Hence, from [9, Theorem 12.31], we conclude that the
Q-compensator of μ coincides with λ⊗ν. Therefore, μ is a Poisson random measure
relative to FL with respect to Q (see [13, Theorem II.4.8]) and this proves (i). We
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verify (ii). From (i) and the assumptions on β, Û ∈ H 2(Q) holds. Furthermore, since
�Ût (ω) = β(t, ω,�Lt (ω))1{�Lt (ω)=0}, β being bounded, Û has bounded jumps.
Setting c1 := supt∈[0,T ] |ζt | and c2 := supt∈[0,T ] |αt |, we have

0 < 〈Û , Û 〉t ≤
(

σ 2c2
1 + c2

2

∫
R

(y2 ∧ 1)ν(dy)

)
T =: C(T ), t ∈ [0, T ] .

Hence, 〈Û , Û 〉 is bounded on [0, T ]. So, [9, Theorem 10.9 (2)] yields Û ∈ BMO(Q).
We now come to (iii). Under Q, we have S = S0 E (Û ). Since �Û ≥ 0, by (ii) we can
apply [11, Theorem 2], which yields that S is a uniformly integrable FL-martingale
under Q. The proof of the proposition is complete.

4.2 The optimization problem

We now study the following optimization problem:

V (x) = sup
ρ∈A

E

[
log

(
W

ρ,x
T

)]
, x > 0 , (4.4)

where A and Wρ,x > 0 (both to be defined) represent the sets of admissible strategies
and the wealth process with initial capital x > 0, respectively.

We are going to solve (4.4) by constructing a family of processes {Rρ,x, ρ ∈ A }
fulfilling the martingale optimality principle on [0, T ] (see [10, p. 1697]).

Assumption 4.2 (Martingale Optimality Principle). Suppose that x > 0. The family
{Rρ,x, ρ ∈ A } is FL-adapted and has the following properties:

(1) R
ρ,x
T = log(W

ρ,x
T ) for every ρ ∈ A .

(2) R
ρ,x
0 ≡ rx is a constant not depending on ρ for every ρ ∈ A .

(3) Rρ,x is a supermartingale for every ρ ∈ A .
(4) There exists ρ∗ ∈ A such that Rρ∗,x is a martingale.

Notice that if the family {Rρ,x, ρ ∈ A } satisfies Assumption 4.2, then the strat-
egy ρ∗ in Assumption 4.2 (4) is a solution of (4.4). Indeed, for any ρ ∈ A , we get

E
[

log(W
ρ,x
T )] = E

[
R

ρ,x
T

] ≤ R
ρ,x
0 = rx = E

[
R

ρ∗,x
T

] = E
[

log(W
ρ∗,x
T )

]
.

We now define the set A of admissible strategies and the wealth process Wρ,x .
For ρ ∈ A , we want to consider the wealth process Wρ,x given by

Wρ,x = x E

(∫ ·

0
ρsdUs

)
= x +

∫ ·

0
W

ρ,x
s− ρsdUs, x > 0 , (4.5)

where the process U is defined by (4.1). Therefore, we assume that ρ is a predictable
process such that

∫ T

0 ρ2
s ds < +∞ a.s. To ensure Wρ,x > 0, we assume ρt (ω) ≥ 0

which is, in particular, a short-sell constraint on the admissible strategies.

Definition 4.3 (Admissible strategies). Let C = ∅ be a closed subset of [0,+∞).
The set A of admissible strategies consists of all predictable and C-valued processes
ρ satisfying the integrability condition E[∫ T

0 ρ2
s ds] < +∞.
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In the following proposition, we summarize some properties of the process Wρ,x

for ρ ∈ A .

Proposition 4.4. Let ρ ∈ A (see Definition 4.3), x > 0, and β(ω, t, y) ≥ 0, for
every (ω, t, y) ∈ �̃. The wealth process Wρ,x is the FL-semimartingale given by the
identity (4.5). Furthermore, for every t ∈ [0, T ], we have W

ρ,x
t > 0 and

log
(
W

ρ,x
t

) − log x =
∫ t

0
ρsζsdBσ

s +
∫

[0,t]×R

log
(
1 + ρsβ(s, y)

)
μ(ds, dy)

+
∫

[0,t]×R

(
log(1 + ρsβ(s, y)) − ρsβ(s, y)

)
ν(dy)ds

−
∫ t

0

[σ 2

2

(
ρsζs − θs

σ 2

)2 + θ2
s

2σ 2

]
ds . (4.6)

The local martingale part of log(Wρ,x) is a true martingale and log(W
ρ,x
t ) is inte-

grable, t ∈ [0, T ].
Proof. It is clear that for every ρ ∈ A , the wealth process Wρ,x is a semimartingale
and it satisfies (4.5). Hence, since β(t, ω, y) ≥ 0, we obtain W

ρ,x
t (ω) > 0, for every

ρ ∈ A . Thus, we can consider the process log(Wρ,x). From (4.5), (4.1) and the
explicit expression of the stochastic exponential, it follows

log
(
W

ρ,x
t

) − log x =
∫ t

0
ρsζsdBσ

s +
∫

[0,t]×R

ρsβ(s, y)μ(ds, dy)

+
∫ t

0

[
− σ 2

2

(
ρsζs − θs

σ 2

)2 + θ2
s

2σ 2

]
ds

+
∑

0≤s≤t

{
log(1 + ρsβ(s,�Ls)) − ρsβ(s,�Ls)

}
1{�Ls =0}. (4.7)

We define the processes

A :=
∑

0≤s≤·

{
log(1 + ρsβ(s,�Ls)) − ρsβ(s,�Ls)

}
1{�Ls =0},

B :=
∑

0≤s≤·

∣∣ log(1 + ρsβ(s,�Ls)) − ρsβ(s,�Ls)
∣∣1{�Ls =0}.

The increasing process B is integrable. To see this, we first recall the following esti-
mates:

| log(1 + y)| ≤ |y|, | log(1 + y) − y| ≤ y2, for y ≥ 0 . (4.8)

From (4.8), since ρ ∈ A and ρt (ω)β(ω, t, y) ≥ 0, by the boundedness of α and the
assumptions on β, we get the estimate

E[BT ] ≤ E

[ ∫ T

0
ρ2

s α2
s ds

] ∫
R

(y2 ∧ 1)ν(dy) < +∞ . (4.9)
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So, we can introduce
∫
[0,·]×R

(
log(1 + ρsβ(s, y)) − ρsβ(s, y)

)
μ(ds, dy) which is a

process of integrable variation and indistinguishable from A. Hence, the predictable
compensator of A is Ap := ∫

[0,·]×R

(
log(1 + ρsβ(s, y)) − ρsβ(s, y)

)
ν(dy)ds and,

according to [13, Proposition II.1.28], the identity

A − Ap =
∫

[0,·]×R

(
log(1 + ρsβ(s, y)) − ρsβ(s, y)

)
μ(ds, dy)

holds. In conclusion, by the linearity of the stochastic integral with respect to μ, we
can rewrite (4.7) as in (4.6). It remains to show that log(W

ρ,x
t ) is integrable for every

t ∈ [0, T ]. We observe that, because of (4.9), the boundedness of θ and ζ , since
ρ ∈ A , the drift part in (4.6) is integrable. Furthermore, the local martingale part of
log(Wρ,x) belongs to H 2. Indeed, by the boundedness of ζ , we get that

∫ ·
0 ρsζs dBσ

s

belongs to H 2. From (4.8) we have

log(1 + ρtβ(t, y)) ≤ ρtβ(t, y) ≤ ρtαt (|y| ∧ 1) ∈ L2(λ ⊗ P ⊗ ν) .

Thus, the stochastic integral with respect to μ in (4.6) also belongs to H 2. The proof
is complete.

We notice that, for every ρ ∈ A , we have the identity

W
ρ,x
t = x +

∫ t

0

W
ρ,x
s− ρs

Ss− dSs, x > 0 , (4.10)

where S is the price process of the stock. So, we can interpret an admissible strategy
ρ ∈ A as the part of the wealth invested in the stock, and π := W

ρ,x
− ρ/S− is

the number of shares of the stock. Since from Proposition 4.4 the wealth process
Wρ,x is a positive semimartingale, for every ρ ∈ A , the predictable process π is an
admissible strategy for the market model described by the price process S (see (4.2)).

We now state a measurable selection result, which will be useful in the proof of
Theorem 4.6 below.

Lemma 4.5. Let C ⊆ R be a closed subset and let G : [0, T ] × � × C −→ R be a
mapping such that:

(i) c 
→ G(t, ω, c) is continuous over C for every (t, ω) ∈ [0, T ] × �.
(ii) (t, ω) 
→ G(t, ω, c) is an FL-predictable process for every c ∈ C.
(iii) For all (t, ω) ∈ [0, T ] × �, there exists c∗ ∈ C such that

G(t, ω, c∗) = inf
c∈C

G(t, ω, c).

Then, the infimum is, in fact, the minimum, (t, ω) 
→ minc∈C G(t, ω, c) is a pre-
dictable process and there exists a predictable process ρ∗ such that

G(t, ω, ρ∗
t (ω)) = min

c∈C
G(t, ω, c), for every (t, ω) ∈ [0, T ] × �.

Proof. Clearly, by (iii), the infimum is the minimum and (t, ω) 
→ minc∈C G(t, ω, c)

is a predictable process. Indeed, denoting by Q the set of rational numbers, from the
continuity of G, infc∈C G(t, ω, c) = infc∈C∩Q G(t, ω, c), for (t, ω) ∈ [0, T ] × �,



BSDEs and log-utility maximization for Lévy processes 491

and the second claim is proven. The third claim follows from assumption (iii) and
Filippov’s implicit function theorem as formulated in [3, Theorem 21.3.4] (with U =
C and without the space X). The proof of the lemma is complete.

We are now ready to solve (4.4).

Theorem 4.6. Let S be the price process given in (4.2) with the additional assumption
β(t, ω, y) ≥ 0, (t, ω, y) ∈ �̃. Let A be as in Definition 4.3. Then, for every ρ ∈ A ,
the wealth process Wρ,x satisfies (4.5) and log

(
W

ρ,x
T

) ∈ L1(FL
T ,P). Furthermore,

for x > 0, the explicit expression of the value function V of the optimization problem
(4.4) is V (x) = log(x) + E[∫ T

0 f (s)ds], where f given by

f (t, ω) := − min
c∈C

(
σ 2

2

(
cζt (ω) − θt (ω)

σ 2

)2

+
∫
R

{
cβ(t, ω, y) − log(1 + cβ(t, ω, y))

}
ν(dy)

)
+ θ2

t (ω)

2σ 2 . (4.11)

Moreover, there exists an admissible strategy ρ∗ ∈ A such that, for every (t, ω) in
[0, T ] × �,

ρ∗
t (ω) ∈ arg min

c∈C

(
σ 2

2

(
c ζt (ω) − θt (ω)

σ 2

)2

+
∫
R

{
cβ(t, ω, x) − log(1 + cβ(t, ω, x))

}
ν(dx)

)
(4.12)

holds and ρ∗ is optimal, that is, V (x) = E[log(W
ρ∗,x
T )], x > 0.

Proof. We only need to verify the statements about the optimization problem (4.4),
since the properties of the wealth process Wρ,x come from Proposition 4.4. We prove
the result in two steps. First, using Lemma 4.5, we show that (t, ω) 
→ f (t, ω) in
(4.11) is an admissible generator and that there exists a ρ∗ ∈ A satisfying (4.12). We
then show the optimality of the strategy ρ∗ ∈ A as an application of the martingale
optimality principle.

For each c in the closed subset C ⊆ [0,+∞), we define

G(t, ω, c) := σ 2

2

(
cζt (ω)−σ−2θt (ω)

)2

+
∫
R

{
cβ(t, ω, y) − log(1 + cβ(t, ω, y))

}
ν(dy) .

Since β is a predictable function, the process (t, ω) 
→ G(t, ω, c) is predictable, for
every c ∈ C. We now show the continuity of c 
→ G(t, ω, c) on C for (t, ω) in
[0, T ] × �. Let (cn)n∈N ⊆ C be a convergent sequence and let c ∈ C be its limit. We
have

cnβ(t, ω, y) − log(1 + cnβ(t, ω, y))

−→ cβ(t, ω, y) − log(1 + cβ(t, ω, y)), n → +∞ ,
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pointwise in t , ω and y. From (4.8), we get, as n → +∞,

0 ≤ cnβ(t, ω, y)− log(1+cnβ(t, ω, y)) ≤ (cnαt (ω))2(y2 ∧1) −→ cα2
t (ω)(y2 ∧1) .

By dominated convergence, we get G(t, ω, cn) −→ G(t, ω, c), n → +∞, which
is the statement about the continuity. We now show that there exists a c∗ in C such
that G(t, ω, c∗) = minc∈C G(t, ω, c), for every (t, ω) in [0, T ] × �. By the estimate

G(t, ω, c) ≥ σ 2

2

(
cζt (ω) − σ−2θt (ω)

)2
, we get G(t, ω, c) −→ +∞ as c → ∞, for

every (t, ω) in [0, T ] × �. Hence, C0 := {c ∈ C : G(t, ω, c) ≤ G(t, ω, c0)} is a
closed bounded set and, consequently, compact, where c0 ∈ C is chosen arbitrarily
but fixed. By the continuity of G(t, ω, ·), there exists c∗= c∗(t, ω) in C0 such that
G(t, ω, c∗) = minc∈C0 G(t, ω, c) holds for every (t, ω) in [0, T ] × �. We also have
G(t, ω, c∗) = infc∈C G(t, ω, c) for every (t, ω) ∈ [0, T ] × �. So, by Lemma 4.5,
we get that (t, ω) 
→ minc∈C G(t, ω, c) is a predictable process and that there ex-
ists a C-valued predictable ρ∗ such that, for every (t, ω) in [0, T ] × �, the identity
G(t, ω, ρ∗

t (ω)) = minc∈C G(t, ω, c) holds.

We now show that E[∫ T

0 (ρ∗
s )2ds] < +∞. By 0 < β(t, ω, y) ≤ αt (ω)(|y| ∧ 1)

and (4.8), for c ∈ C, we can estimate∫
R

(
cβ(t, y) − log

(
1 + cβ(t, y)

))
ν(dy) ≤

(∫
R

(y2 ∧ 1)ν(dy)

)
α2

t c
2 < +∞ .

So, α being bounded, we get 0 ≤ G(t, ω, c) ≤ k1c
2 + k2, where k1, k2 > 0 denote

two suitable constants. Using the boundedness of ζ and θ , the minimality property of
ρ∗ and the estimate (4.2), it is therefore straightforward to see that, for two suitable
constants k1, k2 > 0, we have |ρ∗

t (ω)| ≤ k1G(t, ω, c) + k2 for every c ∈ C. Hence,
we get (ρ∗

t (ω))2 ≤ k̃1c
2 + k̃2, c ∈ C, where k̃1, k̃2 > 0 are suitable constants. This

implies ρ∗ ∈ A . We now verify that f in (4.11) satisfies Assumption 3.2 (i) and (ii).
Because of the previous step and the predictability of θ , from the identity

f (t, ω) = − min
c∈C

G(t, ω, c) + θ2
t (ω)

2σ 2 , t ∈ [0, T ],

we deduce that (t, ω) 
→ f (t, ω) is predictable. This shows that f fulfils Assumption
3.2 (i). The estimate

|f (t, ω)| ≤ G(t, ω, c) + θ2
t (ω)

2σ 2 ≤ k1c
2 + k, c ∈ C,

where k > 0 is a suitable constant, implies that f satisfies Assumption 3.2 (ii).
We now construct a family of processes {Rρ,x, ρ ∈ A } which satisfies Assump-

tion 4.2.
Notice that, because f satisfies Assumptions 4.2 (i) and (ii), the process

∫ ·
0 f (s)ds

is FL-adapted, f being predictable and Lebesgue integrable. Hence, we can con-
sider the square integrable martingale N satisfying Nt = E[∫ T

0 f (s)ds|FL
t ] a.s.,

t ∈ [0, T ]. We define the càdlàg semimartingale Y = (Yt )t∈[0,T ] by setting

Yt := Nt −
∫ t

0
f (s)ds, t ∈ [0, T ]. (4.13)
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We observe that, FL
0 being trivial, we have Y0 = N0 = E[∫ T

0 f (s)ds]. Furthermore,

Y satisfies Yt = E[∫ T

t
f (s)ds|FL

t ] a.s., t ∈ [0, T ] and YT = 0.
We now set R

ρ,x
t := log(W

ρ,x
t ) + Yt for t ∈ [0, T ]. Notice that Rρ,x fulfils

Assumption 4.2 (1), since R
ρ,x
T := log(W

ρ,x
T ) holds. From Proposition 4.4, for every

t in [0, T ], we get

R
ρ,x
t = log(x) + Nt +

∫ t

0
ρsζsdBσ

s +
∫

[0,t]×R

log
(
1 + ρsβ(s, y)

)
μ(ds, dy)

−
∫ t

0

{
f (s) + σ 2

2

(
ρsζs − θs

σ 2

)2

+
∫
R

(
ρsβ(s, y) − log(1 + ρsβ(s, y))

)
ν(dy) − θ2

s

2σ 2

}
ds . (4.14)

The first line on the right-hand side of (4.14) consists of true martingales. Because
the drift part on the right-hand side of (4.14) is non-positive and integrable, Rρ,x is a
supermartingale for every ρ ∈ A . Additionally, R

ρ,x
0 does not depend on ρ. Further-

more, if ρ∗ is the admissible strategy introduced above, then ρ∗ satisfies (4.12) and
Rρ∗,x is a true martingale. The martingale optimality principle implies the optimality
of ρ∗. Hence, V (x) = E[log(W

ρ∗,x
T )] = log(x) + Y0 and the proof of the theorem is

complete.

Remark 4.7. It is evident from the first part of the proof of Theorem 4.6, that the
predictable function f defined in (4.11) is an admissible generator. So, because of
Theorem 3.3, the BSDE

Ỹt = 0 +
∫ T

t

f (s)ds −
∫ T

t

ZsdBσ
s −

∞∑
n=1

∫ T

t

V n
s dX

fn
s (4.15)

has a unique solution (Ỹ , Z, V ) ∈ S 2 × L2(Bσ ) × M2(	2), where (Z, V ) is the
unique pair such that for every t ∈ [0, T ]

Nt = E

[∫ T

0
f (s)ds

∣∣∣FL
t

]
= E

[∫ T

0
f (s)ds

]
+

∫ t

0
ZsdBσ

s +
∞∑

n=1

∫ t

0
V n

s dX
fn
s ,

holds and Ỹt = E[∫ T

t
f (s)ds|FL

t ]. Clearly, Ỹ satisfies Ỹt = Nt − ∫ t

0 f (s)ds, for

every t in [0, T ], and Ỹ0 = E[∫ T

0 f (s)ds]. Hence, Ỹ = Y , where Y has been defined
in (4.13). This shows that the martingale optimality principle in Theorem 4.6 can be
also constructed as an application of Theorem 3.3.
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