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Abstract We define power variation estimators for the drift parameter of the stochastic heat
equation with the fractional Laplacian and an additive Gaussian noise which is white in time
and white or correlated in space. We prove that these estimators are consistent and asymptoti-
cally normal and we derive their rate of convergence under the Wasserstein metric.
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1 Introduction

The purpose of this work is to estimate the drift parameter θ > 0 of the fractional
stochastic heat equation

∂uθ

∂t
(t, x) = −θ(−�)

α
2 uθ (t, x) + Ẇ (t, x), t ≥ 0, x ∈ R, (1)

with vanishing initial conditions, where (−�)
α
2 denotes the fractional Laplacian of

order α ∈ (1, 2], θ > 0 and W is a Gaussian noise which is white in time and white
or correlated in space.
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The parameter estimation for stochastic partial differential equations (SPDEs in
the sequel) constitutes a research direction of wide interest in probability theory and
mathematical statistics. We refer, among many others, to the recents surveys [16]
and [4]. On the other side, there are relatively few works that consider the solu-
tion to a SPDE observed at discrete points in time and/or in space. Among the first
works in this direction, we refer to [18] and [17] for the maximum likelihood and
least square estimators for parabolic, respectively elliptic type SPDEs driven by a
space-time white noise. The study in [17] has been then extended in [2], by adding a
time-varying volatility in the noise term and by using power variation techniques to
estimate the parameter of the model. Other recent works on parameter estimates for
discretely sampled SPDEs via power variations are [5, 3, 1, 21] and [24].

In this paper, we extend the above results into two directions. Firstly, we replace
the standard Laplacian operator used in all the above references by a fractional Lapla-
cian. On the other hand, we consider a simpler form, comparing to [2, 17], of the
differential operator. Secondly, we also consider a noise term which is correlated in
space. Our purpose is to propose power variation type estimators for the drift param-
eter in the stochastic model (1), based on discrete observations of the solution in time
or in space, and to analyze the consistency and the limit distribution of the estima-
tors by taking advantage of the link between the solution and the fractional Brownian
motion. Our approach to construct and analyze the estimators for the drift parameter
is based on the asymptotic behavior of the q-variations of the mild solution to (1). It
is well known (see, e.g., [7, 13, 23]) that there exists a strong link between the law
of this mild solution with θ = 1 and the fractional Brownian motion and related pro-
cesses. We will use this connection in order to deduce the behavior of the q-variations
(of suitable order q) of the solutions to (1) and to prove the consistency, asymptotic
normality and Berry–Esséen bounds under the Wasserstein distance for the associated
estimators. For the situation when W is a space-time white noise, we will obtain two
estimators for the drift parameter: one based on the temporal variations and one based
of the spatial variations of the mild solution uθ . Similarly, two estimators are defined
when the Gaussian noise W is white in time and colored in space (with the spatial co-
variance given by the Riesz kernel). Even if the order of the variations which appear
in the definition of the estimator is different in the four cases (this order may depend
on the parameter α of the fractional Laplacian and/or on the spatial correlation), all
the estimators are asymptotically normal, they have the same rate of convergence of

order n− 1
2 and they have the same distance to the Gaussian distribution. The case of

the standard Laplacian (i.e., α = 2) has been studied in [21].

We organize the paper as follows. In Section 2 we present general facts on the
stochastic heat equation with the fractional Laplacian and the behavior of the varia-
tions of the perturbed fractional Brownian motion. In Section 3 we discuss the drift
parameter estimation for the fractional heat equation with a space-time white noise
while in Section 4 we treat the case when the noise is correlated in space.

We will denote by c, C a generic positive constant that may change from line
to line (or even inside of the the same line). By →(d) we denote the convergence in
distribution while ≡(d) stands for the equivalence of finite dimensional distributions.
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2 The fractional heat equation driven by a space-time white noise

We start by treating the fractional stochastic heat equation with a space-time white
noise. We recall the basic properties of the solution, its relation with the fractional
Brownian motion and then we discuss the estimation of the drift parameter θ via the
q-variations.

2.1 General properties of the solution

On the standard probability space (�,F , P ), we consider a centered Gaussian field
(W(t, A), t ≥ 0, A ∈ Bb(R)) with covariance

EW(t,A)W(s, B) = (s ∧ t)λ(A ∩ B) for every s, t ≥ 0, A,B ∈ Bb(R), (2)

where λ denotes the Lebesgue measure on R and Bb(R) is the class of bounded Borel
subsets of R. The Gaussian field W is usually called the space-time white noise.

We will consider the stochastic heat equation

∂uθ

∂t
(t, x) = −θ(−�)

α
2 uθ (t, x) + Ẇ (t, x), t ≥ 0, x ∈ R, (3)

with vanishing initial condition u(0, x) = 0 for every x ∈ R. In the above equation,
(−�)

α
2 represents the fractional Laplacian of order α. We will assume in the sequel

that α ∈ (1, 2]. We refer to [6, 11, 10, 12] for the precise definition and other prop-
erties of the fractional Laplacian operator. We will denote its Green kernel (or the
fundamental solution) by Gα , which represents the deterministic kernel that solves
the heat equation without noise ∂

∂t
u(t, x) = −(−�)

α
2 u(t, x). It is know from the

above references that for t > 0, x ∈ R

Gα(t, x) =
∫
R

eitξ−t |ξ |αdξ. (4)

It is an immediate conclusion that the fundamental solution associated to the op-
erator −θ(−�)

α
2 uθ (t, x) is Gα(θt, x).

The solution to (3) is understood in the mild sense, i.e.,

uθ (t, x) =
∫ t

0

∫
R

Gα(θ(t − s), x − y)W(ds, dy), (5)

where the stochastic integral W(ds, dy) is the usual Wiener integral with respect to
the space-time white noise, which satisfies the isometry

E
(∫ T

0

∫
R

H(s, y)W(ds, dy)

)2

=
∫ T

0

∫
R

H(s, y)2dyds

for every T > 0 and for every measurable square integrable function H .
For θ = 1, the solution to the heat equation (3) has been studied in [13]. This

solution exists only if the spatial dimension is d = 1, and it is connected to the
bifractional Brownian motion. Recall that (see [9, 22]), given constants H ∈ (0, 1)
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and K ∈ (0, 1], the bifractional Brownian motion (bi-fBm for short) (B
H,K
t )t≥0 is a

centered Gaussian process with covariance

RH,K(t, s) := R(t, s) = 1

2K

((
t2H + s2H

)K − |t − s|2HK

)
, s, t ≥ 0. (6)

In particular, for K = 1, BH, := BH,1 is the fractional Brownian motion (fBm in the
sequel) with the Hurst parameter H ∈ (0, 1).

Let us recall some of the results in [13] which will be needed in the sequel.

• The mild solution (5) is well-defined. For every x ∈ R, the process (u1(t, x),
t ≥ 0) coincides in distribution, modulo a constant, with the bifractional Brow-
nian motion, i.e.,

(u1(t, x), t ≥ 0) ≡(d)

(
c2,αB

1
2 ,1− 1

α
t , t ≥ 0

)
,

where B
1
2 ,1− 1

α is a bifractional Brownian motion with the Hurst parameters
H = 1

2 and K = 1 − 1
α

and

c2
2,α = c1,α21− 1

α with c1,α = 1

2π(α − 1)



(
1

α

)
. (7)

• For every t ≥ 0, we have (see Proposition 3.1 in [7])

(u1(t, x), x ∈ R) ≡(d)
(
mαB

α−1
2 (x) + St (x), x ∈ R

)
, (8)

where B
α−1

2 is a fractional Brownian motion with the Hurst parameter α−1
2 ∈

[0, 1
2 ], (St (x))x∈R is a centered Gaussian process with C∞ sample paths and

mα is an explicit numerical constant.

The above facts, combined with the decomposition (18) of the bifractional Brow-
nian motion, show that the solution to the heat equation can be expressed as the sum
of a fBm and a smooth process (we will call this sum as a perturbed fractional Brow-
nian motion).

2.2 Variations of the perturbed fractional Brownian motion
Since the process (5) is connected to the perturbed fBm (i.e., the sum of a fBm and
a smooth Gaussian process), let us recall some facts concerning the asymptotic be-
havior of the variation of the perturbed fBm. Some of the below results are directly
taken from [13] while those concerning the rate of convergence under the Wasserstein
distance are deduced from [19].

We first define the notion of (exact) q-variation for stochastic processes.

Definition 1. Let A1 < A2, and for n ≥ 1, let ti = A1+ i
n
(A2−A1) for i = 0, . . . , n.

A continuous stochastic process (Xt )t≥0 admits a q-variation (or a variation of order
q) over the interval [A1, A2] if the sequence

S
n,q
[A1,A2](X) :=

n−1∑
i=0

∣∣Xti+1 − Xti

∣∣q
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converges in probability as n → ∞. The limit, when it exists, is called the exact
q-variation of X over the interval [A1, A2].

If [A1, A2] = [0, t], we will simply denote S
n,q
t (X) := S

n,q

[0,t](X). Moreover, if

t = 1, we denote Sq,n(X) := S
n,q
t (X). In the case q = 2 the limit of S2,n is called

the quadratic variation, while for q = 3 we have the cubic variation.
Let us recall the following result (see [13]) concerning the exact variation of the

perturbed fractional Brownian motion, i.e., the sum of a fBm and a smooth Gaussian
process. In the rest of this section, we will fix an interval [A1, A2] with A1 < A2
and a partition tj = A1 + j

n
(A2 − A1), n ≥ 1, j = 0, . . . , n, of this interval. Also,

we denote by Z a standard normal random variable, and μq = EZq for q ≥ 1.
Define σ 2

H,q = q!∑v∈Z ρH (v)q , with ρH (v) = 1
2

(|v + 1|2H + |v − 1|2H − 2|v|2H
)

for v ∈ Z.

Lemma 1. Let (BH
t )t≥0 be a fBm with H ∈ (0, 1

2 ] and consider a centered Gaussian
process (Xt )t≥0 such that

E |Xt − Xs |2 ≤ C|t − s|2 for every s, t ≥ 0. (9)

Define
YH

t = aBH
t + Xt for every t ≥ 0

with a �= 0.

1. The process Y has 1
H

-variation over the interval [A1, A2] which is equal to

a− 1
H E|Z|1/H (A2 − A1).

2. Let

Vq,n(Y
H ) :=

n−1∑
i=0

[
nHq

(A2 − A1)qH aq
(YH

ti+1
− YH

ti
)q − μq

]
. (10)

Then, if H ∈ (0, 1
2 ) and q ≥ 2 is an integer,

1√
n
Vq,n(Y

H ) = 1√
n

n−1∑
i=0

[
nHq

(A2 − A1)qH aq
(YH

ti+1
− YH

ti
)q − μq

]
→(d) N(0, σ 2

H,q). (11)

If H = 1
2 , q = 2 and the process (Xt )t≥0 is adapted to the filtration generated

by B, then

1√
n
V2,n(Y

H ) = 1√
n

n−1∑
i=0

[
n

(A2 − A1)a2 (Y
1
2

ti+1
− Y

1
2

ti
)2 − 1

]
→(d) N(0, σ 2

1
2 ,2

).

(12)

Using the recent Stein–Malliavin theory, it is also possible to deduce the rate
of convergence in the above Central Limit Theorem (CLT in the sequel) under the
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Wasserstein distance. Before stating and proving the result, let us briefly recall the
definition of the Wasserstein distance. The Wasserstein distance between the laws of
two R

d -valued random variables F and G is defined as

dW (F,G) = sup
h∈A

|Eh(F ) − Eh(G)| (13)

where A is the class of Lipschitz continuous function h : Rd → R such that ‖h‖Lip ≤
1, where

‖h‖Lip = sup
x,y∈Rd ,x �=y

|h(x) − h(y)|
‖x − y‖Rd

.

Proposition 1. Assume H ≤ 1
2 . Let YH be as in Lemma 1 and let Vq,n(Y

H ) be given
by (10). Then for n large and with σH,q from (11),

dW

(
1√
n
Vq,n(Y

H ),N(0, σ 2
H,q)

)
≤ C

1√
n
.

Proof. From the proof of Lemma 2.1 in [13], we can express the variation of YH and
the variation of the fBm BH plus a rest term, i.e.,

1√
n
Vq,n(Y

H ) = 1√
n
Vq,n(B

H ) + Rn,

where Rn satisfies, for every n ≥ 1,

E|Rn| ≤ cnH−1. (14)

By the definition of the Wasserstein distance, we can write

dW

(
1√
n
Vq,n(Y

H ),N(0, σ 2
H,q)

)
≤ dW

(
1√
n
Vq,n(B

H ),N(0, σ 2
H,q)

)
+ dW

(
1√
n
Vq,n(Y

H ),
1√
n
Vq,n(B

H )

)
≤ dW

(
1√
n
Vq,n(B

H ),N(0, σ 2
H,q)

)
+ E|Rn|.

In order to estimate dW ( 1√
n
Vq,n(B

H ),N(0, σ 2
H,q)), we will use the chaos expansion

of the random variable Vq,n(B
H ) and several results in [19]. Notice that (see, e.g., the

proof of Corollary 3 in [20]),

Vq,n(B
H ) =

q∑
k=1

k!Ck
qμq−k

n−1∑
i=0

Hk

(
nHK

(A2 − A1)HK

(
BH

ti+1
− BH

ti

))
,

where Hk is the k-th probabilists’ Hermite polynomial

Hk(x) = (−1)ke− x2
2

dn

dxn

(
e− x2

2

)
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for k ≥ 1 with H0(x) = 1. We know from [19] that the vector

(F1,n, F2,n, . . . , Fq,n) :=
(

1√
n

n−1∑
i=0

Hk

(
nHK

(A2 − A1)HK

(
BH

ti+1
− BH

ti

)))
k=1,...,q

converges in distribution to a centered Gaussian vector with diagonal covariance ma-
trix C (the explicit expression of C can be found in [19], it is not needed in our work).
Moreover, Proposition 6.2.2 and Corollary 7.4.3 in [19] imply that

dW

(
(Fk,n)k=1,...,q , N(0, C)

) ≤ c
1√
n
.

This will easily lead to

dW

(
1√
n
Vq,n(B

H ),N(0, σ 2
H,q)

)
≤ c

1√
n
. (15)

Since H ≤ 1
2 , we obtain the conclusion via (14) and (15).

2.3 Estimators for the drift parameter

Our purpose is to estimate the parameter θ > 0 based on the observations of the pro-
cess uθ . We will define two estimators: the first is based on the temporal variations of
the process uθ while the second is constructed via its variation in space. Their behav-
ior is strongly related to the law of the process uθ , therefore we start by analyzing the
distribution of this Gaussian process.

2.3.1 The law of the solution
Let Gα(t, x) be the Green kernel associated to the operator −(−�)

α
2 . Then the Green

kernel associated to the operator operator −θ(−�)
α
2 is

Gα(θt, x).

Lemma 2. Suppose that the process (uθ (t, x), t ≥ 0, x ∈ R) satisfies (3). Define

vθ (t, x) := uθ

(
t

θ
, x

)
, t ≥ 0, x ∈ R. (16)

Then the process (vθ (t, x), t ≥ 0, x ∈ R) satisfies

∂vθ

∂t
(t, x) = −(−�)

α
2 vθ (t, x) + (θ)−

1
2 ˙̃W(t, x), t ≥ 0, x ∈ R, (17)

with vθ (0, x) = 0 for every x ∈ R, where ˙̃W is a space-time white noise, i.e., a
centered Gaussian random field with covariance (2).

Proof. From (5), we have for every t ≥ 0, x ∈ R,

vθ (t, x) = uθ

(
t

θ
, x

)
=

∫ t
θ

0

∫
R

Gα(t − θs, x − y)W(ds, dy)
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=
∫ t

0

∫
R

Gα(t − s, x − y)W(d
s

θ
, dy)

= θ− 1
2

∫ t

0

∫
R

Gα(t − s, x − y)W̃ (ds, dy),

where, for t ≥ 0, A ∈ B(R), we denoted W̃ (t, A) := θ
1
2 W
(

t
θ
, A
)
. Notice that W̃

has the same finite dimensional distributions as W , due to the scaling property of the
white noise.

We can deduce the law of the process uθ in time and space.

Proposition 2. For every x ∈ R and θ > 0, we have

(uθ (t, x), t ≥ 0) ≡(d)

(
θ− 1

2α c2,αB
1
2 ,1− 1

α
t , t ≥ 0

)
,

where B
1
2 ,1− 1

α is a bifractional Brownian motion with parameters H = 1
2 and K =

1 − 1
α

and c2,α is given by (7).

Proof. Fix x ∈ R and θ > 0. Then for every s, t ≥ 0, we have

Euθ (t, x)uθ (s, x) = Evθ (θt, x)vθ (θs, x)

= θ−1Eu1(θt, x)u1(θs, x) = θ−1c1,α

[
(θt + θs)1− 1

α − |θt − θs|1− 1
α

]
= θ− 1

α c2
2,αEB

1
2 ,1− 1

α
t B

1
2 ,1− 1

α
s .

Proposition 3. For every t ≥ 0, θ > 0, we have the following equality in distribution

(uθ (t, x), x ∈ R) ≡(d)
(
θ− 1

2 mαB
α−1

2 (x) + Sθt (x), x ∈ R

)
,

where B
α−1

2 is a fractional Brownian motion with the Hurst parameter α−1
2 ∈ (0, 1

2 ],
(Sθt (x))x∈R is a centered Gaussian process with C∞ sample paths and mα from (8).

Proof. The result is immediate since for every t > 0, θ > 0

(uθ (t, x), x ∈ R) = (vθ (θt, x), x ∈ R) ≡(d) θ− 1
2 (u1(θt, x), x ∈ R)

≡(d)
(
θ− 1

2 mαB
α−1

2 (x) + Sθt (x), x ∈ R

)
,

where we used (8).

Notice that the Hurst parameter of the fBm in Proposition 3 may be 1
2 if α = 2.
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2.3.2 Estimators based on the temporal variation
Proposition 2 indicates that the process uθ behaves as a bi-fBm in time. Recall the
following connection between the fBm and the bi-fBm (see [14]): Let H ∈ (0, 1),
K ∈ (0, 1]. If (BHK

t )t≥0 is a fBm with the Hurst parameter HK and (B
H,K
t )t≥0 is a

bi-fBm, then (
C1X

H,K
t + B

H,K
t , t ≥ 0

)
≡(d)

(
C2B

HK
t , t ≥ 0

)
, (18)

with C1 > 0 and C2 = 2
1−K

2 . In (18), XH,K is a Gaussian process, independent
of BH,K with C∞ sample paths. In particular, it satisfies (9). Therefore, the bi-fBm
is a perturbed fBm and the same holds true for the solution (uθ (t, x), t ≥ 0), by
Proposition 2. Therefore, we obtain, by using the notation tj = A1 + j

n
(A2 − A1),

n ≥ 1, j = 0, . . . , n, the following lemma.

Lemma 3. Let uθ be the solution to (3). Then for every x ∈ R,

S
n, 2α

α−1
[A1,A2] :=

n−1∑
i=0

∣∣uθ (tj+1, x) − uθ (tj , x)
∣∣ 2α

α−1

→n→∞ c
2α

α−1
2,α 2

1
α−1 μ 2α

α−1
(A2 − A1)|(θ)| −1

α−1 (19)

in probability.

Relation (19) motivates the definition of the following estimator for the parameter
θ > 0 of the model (3):

θ̂n,1

=
((

c
2α

α−1
2,α 2

1
α−1 μ 2α

α−1
(A2 − A1)

)−1 n−1∑
i=0

∣∣uθ (tj+1, x) − uθ (tj , x)
∣∣ 2α

α−1

)1−α

=
(

c
2α

α−1
2,α 2

1
α−1 μ 2α

α−1
(A2 − A1)

)α−1 (
Sn, 2α

α−1 (uθ (·, x))
)1−α

, (20)

and so

θ̂
1

1−α

n,1 = 1

c
2α

α−1
2,α 2

1
α−1 μ 2α

α−1
(A2 − A1)

n−1∑
i=0

∣∣uθ (tj+1, x) − uθ (tj , x)
∣∣ 2α

α−1 . (21)

We will prove the consistency and the asymptotic normality of the above estima-
tor.

Proposition 4. Assume q := 2α
α−1 is an even integer and consider the estimator θ̂n,1

defined by (20). Then θ̂n,1 →n→∞ θ in probability and

√
n

[
θ̂

1
1−α

n,1 − θ
1

1−α

]
→(d) N(0, s2

1,θ,α) with s2
1,θ,α = σ 2

1
q
,q

θ
2

1−α μ−2
2α

α−1
. (22)

Moreover, for n large enough

dW

(√
n

[
θ̂

1
1−α

n,1 − θ
1

1−α

]
, N(0, s2

θ,α)

)
≤ c

1√
n
.
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Proof. From Proposition 2 and the relation between the fBm and the bi-fBm (18),
we obtain that (

uθ (t, x) + c2,αθ− 1
2α Xt

)
≡(d) c2,αθ− 1

2α 2
1

2α B
α−1
2α ,

where B
α−1
2α is a fBm with the Hurst parameter α−1

2α
∈ (0, 1

2 ). Therefore, uθ is a
perturbed fBm and we obtain, by taking H = α−1

2α
and q = 1

H
= 2α

α−1 ,

1√
n

n−1∑
i=0

⎡⎣ nθ
1

α−1

c
2α

α−1
2,α 2

1
α−1 (A2 − A1)

(
uθ (tj+1, x) − uθ (tj , x)

) 2α
α−1 − θ

1
1−α

⎤⎦
→(d) N(0, σ 2

1
q
,q

).

This means √
nμ 2α

α−1
θ

1
α−1

[
θ̂

1
1−α

n,1 − θ
1

1−α

]
→(d) N(0, σ 2

1
q
,q

)

which is equivalent to (22).

Using the so-called delta-method, we can get the asymptotic behavior of the esti-
mator θ̂n. Recall that if (Xn)n≥1 is a sequence of random variables such that

√
n(Xn − γ0) →(d) N(0, σ 2)

and g is a function such that g′(γ0) exists and does not vanish, then
√

n(g(Xn) − g(γ0)) →(d) N(0, σ 2g′(γ0)
2). (23)

Proposition 5. Consider the estimator (20) and let s1,θ,α be given by (22). Then as
n → ∞, √

n(θ̂n,1 − θ) → N(0, s2
1,θ,α(1 − α)2θ

2α
α−1 ), (24)

and for n large enough,

dW

(√
n(θ̂n,1 − θ),N(0, s2

1,θ,α(1 − α)2θ
2α

α−1 )
)

≤ c
1√
n

.

Proof. By applying the delta-method for the function g(x) = x1−α , Xn = θ̂
1

1−α

n,1

and γ0 = θ
1

1−α , we immediately obtain the convergence (24). Concerning the rate of
convergence, we can write, with γ̃0 a random point located between Xn and γ0,
√

n(g(Xn) − g(γ0)) = √
ng′(γ̃0)(Xn − γ0)

= g′(γ0)
√

n(Xn − γ0) + √
n(Xn − γ0)(g

′(γ̃0) − g′(γ0))

=: g′(γ0)
√

n(Xn − γ0) + Tn.

We have, for n large,

E|Tn| = E
∣∣√n(Xn − γ0)(g

′(γ̃0) − g′(γ0))
∣∣
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≤
(

E
(√

n(Xn − γ0)
)2) 1

2
(

E(g′(γ̃0) − g′(γ0))
2
) 1

2

≤ c
(

E(g′(γ̃0) − g′(γ0))
2
) 1

2 ≤ c

(
E
(

θ̂
α

α−1
n,1 − θ

α
α−1

)2
) 1

2

≤ c

(
E
(

θ̂
1

α−1
n,1 − θ

1
α−1

)2
) 1

2

≤ c
1√
n

where we used the assumption α > 1 for the first inequality of the line above and

relation (22) (which gives in particular the L2(�)-convergence of θ̂
1

α−1
n,1 to θ

α
α−1 as

n → ∞) for the second inequality on the same line. Therefore, by the triangle in-
equality and Proposition 4, for n large enough,

dW

(√
n(θ̂n,1 − θ),N(0, s2

1,θ,α(1 − α)2θ
α

α−1 )
)

≤ cdW

(√
n(Xn − γ0), N(0, s2

1,θ,α)
)

+ E|Tn| ≤ c
1√
n
.

2.3.3 Estimators based on the spatial variation
It is possible to define an estimator for the parameter θ based on the spatial variations
of the solution (5). The result in Proposition 3 says that the process (uθ (t, x), x ∈ R)

is a perturbed fBm, so we know its exact variation in space. Below xj = A1 + j
n
(A2 −

A1), j = 0, . . . , n, will denote a partition of the interval [A1, A2].
Proposition 6. Let uθ be given by (3). Then

n−1∑
i=0

∣∣uθ (t, xj+1) − uθ (t, xj )
∣∣ 2

α−1 →n→∞ m
2

α−1
α μ 2

α−1
(A2 − A1)|θ | −1

α−1

and if q := 2
α−1 is an integer,

1√
n

n−1∑
i=0

⎡⎣⎛⎝ n

m
2

α−1
α (A2 − A1)

⎞⎠ θ
1

α−1 (uθ (t, xi+1) − uθ (t, xi))
2

α−1 − μ 2
α−1

⎤⎦
→(d) N(0, σ 2

α−1
2 , 2

α−1
).

Proposition 6 leads to the definition of the estimator

θ̂n,2 =
[
(m

2
α−1
α μ 2

α−1
(A2 − A1))

−1
n−1∑
i=0

∣∣uθ (t, xj+1) − uθ (t, xj )
∣∣ 2

α−1

]1−α

, (25)

and we can immediately deduce from Proposition 3 its asymptotic proprieties.

Proposition 7. The estimator (25) converges in probability as n → ∞ to the param-
eter θ . Moreover, if q := 2

α−1 is an even integer,

√
n

[
θ̂

1
1−α

n,2 − θ
1

1−α

]
→(d) N(0, s2

2,θ,α) with s2
2,θ,α = σ 2

α−1
2 , 2

α−1
μ−2

2
α−1

θ
2

1−α . (26)
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Moreover, for n large,

dW

(√
n

[
θ̂

1
1−α

n,2 − θ
1

1−α

]
, N(0, s2

2,θ,α)

)
≤ c

1√
n
.

Proof. Using the law of the process (uθ (t, x), x ∈ R) obtained in Proposition 3, we

deduce that the Gaussian process
(
θ

1
2 m−1

α uθ (t, x), x ∈ R

)
is a perturbed fractional

Brownian motion. Therefore, by relation (11) in Lemma 1,

1√
n

n−1∑
i=0

⎛⎝ nθ
1

α−1

(A2 − A1)m
2

α−1
α

(
uθ (t, xj+1) − uθ (t, xj )

) 2
α−1 − μ 2

α−1

⎞⎠
= √

nμ 2
α−1

θ
1

α−1

[
θ̂

1
1−α

n,2 − θ
1

1−α

]
→(d)

n→∞ N

(
0, σ 2

α−1
2 , 2

α−1

)
.

Moreover, Proposition 1 implies that

dW

(√
nμ 2

α−1
θ

1
α−1

[
θ̂

1
1−α

n,2 − θ
1

1−α

]
, N(0, σ 2

α−1
2 , 2

α−1
)

)
≤ c

1√
n

and this obviously leads to the desired conclusion.

By using the delta-method, we can obtain the asymptotic distribution of θ̂n,2.

Proposition 8. Let θ̂n,2 be given by (25). Then, with s2,θ,α from (26), as n → ∞,

√
n(θ̂n,2 − θ) →(d) N

(
0, s2

2,θ,α(1 − α)2θ
2α

α−1

)
,

and for n large enough,

dW

(√
n(θ̂n,2 − θ),N(0, s2

2,θ,α(1 − α)2θ
2α

α−1 )
)

≤ c
1√
n

.

Proof. It suffices to apply (23) to the function g(x) = x1−α and γ0 = θ
1

1−α and to
follow the proof of Proposition 5.

Remark 1.

• The estimators (20) and (25) coincide with the estimators in [21] in the case of
the standard Laplacian α = 2.

• The distance of the estimators (20) and (25) to their limit distribution is of the
same order, although they involve q-variations with different q.

3 Heat equation with the fractional Laplacian and a white-colored noise

In this section, we will consider the stochastic heat equation with an additive Gaus-
sian noise which behaves as a Wiener process in time and as a fractional Brownian
motion in space, i.e. its spatial covariance is given by the so-called Riesz kernel. We
will again study the distribution of the solution, its connection with the fractional
and bifractional Brownian motion and we apply the q-variation method to obtain an
asymptotically normal estimator for the drift parameter.
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3.1 General properties of the solution

We will consider the stochastic heat equation

∂

∂t
uθ (t, x) = −θ(−�)

α
2 uθ (t, x) + Ẇ γ (t, x), t ≥ 0, x ∈ R

d, (27)

with uθ (0, x) = 0 for every x ∈ R
d . In (27), −(−�)

α
2 denotes the fractional Lapla-

cian with exponent α
2 , α ∈ (1, 2], and Wγ is the so-called white-colored noise, i.e.

Wγ (t, A), t ≥ 0, A ∈ B(Rd), is a centered Gaussian field with covariance

EWγ (t, A)Wγ (s, B) = (t ∧ s)

∫
A

∫
B

f (x − y)dxdy, (28)

where f is the so-called Riesz kernel of order γ given by

f (x) = Rγ (x) := gγ,d‖x‖−d+γ , 0 < γ < d, (29)

where gγ,d = 2d−γ πd/2
((d − γ )/2)/
(γ /2). As usual, the mild solution to (27) is
given by

uθ (t, x) =
∫ t

0

∫
Rd

Gα(θ(t − s), x − z)Wγ (ds, dz), (30)

where the above integral Wγ (ds, dz) is a Wiener integral with respect to the Gaussian
noise Wγ .

We know the following facts concerning the mild solution (30) when θ = 1.

• The mild solution (27) is well-defined as a square integrable process satisfying

sup
t∈[0,T ],x∈Rd

E|u1(t, x)|2 < ∞

if and only if
d < γ + α. (31)

In particular, condition (31) shows that the solution exists in any spatial dimen-
sion d , via suitable choice of the parameter γ .

• Assume (31) is satisfied. Then for every x ∈ R
d , we have the following equiv-

alence in distribution

(u1(t, x), t ≥ 0) ≡(d)

(
c2,α,γ B

1
2 ,1− d−γ

α
t , t ≥ 0

)
, (32)

where B
1
2 ,1− d−γ

α is a bifractional Brownian motion with the Hurst parameters
H = 1

2 and K = 1 − d−γ
α

and

c2
2,α,γ = c1,α,γ 21− d−γ

α (33)

with

c1,α,γ = (2π)−d

∫
Rd

dξ‖ξ‖−γ e−‖ξ‖α 1

2(1 − d−γ
α

)
.
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• For every t ≥ 0, we have (see Proposition 4.6 in [13])(
u(t, x), x ∈ R

d
)

≡(d)
(
mα,γ B

α+γ−d
2 (x) + St (x), x ∈ R

d
)

, (34)

where B
α+γ−d

2 is an isotropic d-dimensional fractional Brownian motion (see
the next section) with the Hurst parameter α+γ−d

2 , (St (x))x∈Rd is a centered
Gaussian process with C∞ sample paths and m2

α,γ is an explicit numerical
constant.

3.2 Perturbed isotropic fractional Brownian motion

Since the law of the solution (30) is related to the isotropic fBm, let us recall the
definition of this process. The isotropic d-parameter fBm (also known as the Lévy
fBm) (BH

d (x), x ∈ R
d) with the Hurst parameter H ∈ (0, 1) is defined as a centered

Gaussian process, starting from zero, with covariance function

E(BH
d (x)BH

d (y)) = 1

2

(
‖x‖2H + ‖y‖2H − ‖x − y‖2H

)
for every x, y ∈ R

d,

(35)
where ‖ · ‖ denotes the Euclidean norm in R

d . It can be also represented as a Wiener
integral with respect to the Wiener sheet, see [8, 15].

As in the one-parameter case, we define the q-variation of the isotropic fBm as
the limit in probability as n → ∞ of the sequence

S
n,q
[A1,A2](B

H ) =
n−1∑
i=0

∣∣∣BH
d (xi+1) − BH

d (xi )

∣∣∣q ,

where xi = (x
(1)
i , . . . , x

(d)
i ) with x

(j)
i = A1 + i

n
(A2 − A1) for i = 0, . . . , n and

j = 1, . . . , d . And from [13] we know that the isotropic fBm (BH (x))x∈Rd has 1
H

-
variation over [A1, A2] which is equal to

(A2 − A1)E|BH
d (1)|1/H = (A2 − A1)

√
dE|Z|1/H .

The q-variation of the isotropic fBm perturbed by a regular multiparameter pro-
cess has been obtained in [13], Lemma 4.1.

Lemma 4. Let (BH (x))x∈Rd be a d-parameter isotropic fBm and consider a d-pa-
rameter stochastic process (X(x))x∈Rd , independent of BH , that satisfies

E
∣∣X(x) − X(y)

∣∣2 ≤ C‖x − y‖2, for every x, y ∈ R
d . (36)

Define
Y(x) = BH

d (x) + X(x) for every x ∈ R
d .

Then:

1. The process (Y (x))x∈Rd has 1
H

-variation which is equal to

(A2 − A1)
√

dE|Z|1/H .
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2. If H ∈ (0, 1
2 ) and q ≥ 2,

1√
n
Vq,n(Y

H ) := 1√
n

n−1∑
i=0

[
nHqd−Hq/2

(A2 − A1)qH
(YH (xi+1) − YH (xi ))

q − μq

]
→(d) N(0, σ 2

H,q). (37)

It is immediate to deduce the rate of convergence in the above central limit theo-
rem. Recall that we denoted by dW the Wasserstein distance.

Proposition 9. Let YH be as in the statement of Lemma 4. Then for n large,

dW

(
1√
n
Vq,n(Y

H ),N(0, σ 2
H,q)

)
≤ C

1√
n
.

Proof. We notice that the Gaussian vector
(
BH

d (xi+1) − BH
d (xi )

)
0,1,...,n−1 has the

same law as dH/2(BH (xj+1) − BH (xj ))0,1,...,n−1 where B is a one-parameter fBm
with the Hurst parameter H and we then apply Lemma 1. Therefore, the distribution
of the sequence 1√

n
Vq,n(B

H
d ) is independent of d ≥ 1 and we can use the same

argument as in the proof of Proposition 1 above.

3.3 Estimators for the drift paramater

Throughout this section we will assume (31). As in the previous section, we will
construct and analyze estimators for the drift parameter θ by using the limit behavior
of the variations (in time and in space) of the process (30).

3.3.1 The law of the solution
Let us start by analyzing the distribution of the solution to (27) and its link with the
(bi)fractional Brownian motion.

Proposition 10. For every x ∈ R
d and θ > 0, we have

(uθ (t, x), t ≥ 0) ≡(d)

(
θ− d−γ

2α c2,α,γ B
1
2 ,1− d−γ

α
t , t ≥ 0

)
,

where B
1
2 ,1− d−γ

α is a bifractional Brownian motion with parameters H = 1
2 and

K = 1 − d−γ
α

and the constant c2,α,γ is defined by (33).

Proof. Denote

vθ (t, x) = uθ

(
t

θ
, x
)

for every t ≥ 0, x ∈ R
d .

Then, as in Lemma 2, vθ solves the equation

∂vθ

∂t
(t, x) = −(−�)

α
2 vθ (t, x) + (θ)−

1
2 ˙̃Wγ (t, x), t ≥ 0, x ∈ R

d , (38)

with vθ (0, x) = 0 for every x ∈ R
d , where ˙̃Wγ is a white colored Gaussian noise (i.e.

a Gaussian process with zero mean and covariance (28)).
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Fix x ∈ R
d and θ > 0. For every s, t ≥ 0, we have

Euθ (t, x)uθ (s, x) = Evθ (θt, x)vθ (θs, x)

= θ−1Eu1(θt, x)u1(θs, x)

= θ−1c1,α,γ

[
(θt + θs)1− d−γ

α − |θt − θs|1− d−γ
α

]
= θ− d−γ

α c2
2,α,γ EB

1
2 ,1− d−γ

α
t B

1
2 ,1− d−γ

α
s .

For the behavior with respect to the space variable, we obtain the following result.

Proposition 11. For every t ≥ 0, θ > 0, we have the following equality in distribu-
tion (

uθ (t, x), x ∈ R
d
)

≡(d)
(
θ− 1

2 mα,γ B
α+γ−d

2 (x) + Sθt (x), x ∈ R
d
)

,

where B
α+γ−−d

2 is a fractional Brownian motion with the Hurst parameter α+γ−d
2 ∈

(0, 1
2 ], (Sθt (x))x∈Rd is a centered Gaussian process with C∞ sample paths and mα,γ

from (34).

Proof. The result is immediate since for a fixed time t > 0(
uθ (t, x), x ∈ R

d
)

=
(
vθ (θt, x), x ∈ R

d
)

≡(d) θ− 1
2

(
u1(θt, x), x ∈ R

d
)

≡(d)
(
θ− 1

2 mα,γ B
α+γ−d

2 (x) + Sθt (x), x ∈ R
d
)

.

3.3.2 Estimators based on the temporal variation
Again tj = A1 + j

n
(A2 − A1), j = 0, . . . , n, will denote a partition of the interval

[A1, A2].
Lemma 5. Assume (31). Let uθ be the solution to (27). Then for every x ∈ R

d , the
process (uθ (t, x), t ≥ 0) admits 2α

α+γ−d
-variation over the interval [A1, A2], i.e.

S
n, 2α

α+γ−d

[A1,A2] :=
n−1∑
i=0

∣∣uθ (tj+1, x) − uθ (tj , x)
∣∣ 2α

α+γ−d

→n→∞ c
2α

α+γ−d

2,α,γ 2
d−γ

α+γ−d μ 2α
α+γ−d

(A2 − A1)|θ | γ−d
α+γ−d (39)

in probability.

Proof. Clearly, for fixed x ∈ R
d ,

n−1∑
i=0

∣∣uθ (tj+1, x) − uθ (tj , x)
∣∣ 2α

α+γ−d =
n−1∑
i=0

∣∣v(θtj+1, x) − v(θtj , x)
∣∣ 2α

α+γ−d ,
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where (vθ (t, x), t ≥ 0) ≡(d) (θ− 1
2 u1(t, x), t ≥ 0). And from Proposition 4.3 in [13]

we know that u1 admits a variation of order 2α
α+γ−d

which is equal to

c
2α

α+γ−d

2,α,γ C 1
2 ,1− d−γ

α

(A2 − A1) with C 1
2 ,1− d−γ

α

= 2
d−γ

α+γ−d μ 2α
α+γ−d

and it means that

n−1∑
i=0

∣∣uθ (tj+1, x) − uθ (tj , x)
∣∣ 2α

α+γ−d

→n→∞ c
2α

α+γ−d

2,α,γ 2
d−γ

α+γ−d μ 2α
α+γ−d

(θA2 − θA1)|θ− 1
2 | 2α

α+γ−d

c
2α

α+γ−d

2,α,γ 2
d−γ

α+γ−d μ 2α
α+γ−d

(A2 − A1)|θ | γ−d
α+γ−d .

From relation (39) we can naturally define the following estimator for the param-
eter θ > 0 of the stochastic partial differential equation (27)

θ̂n,3 =
((

c
2α

α+γ−d

2,α,γ 2
d−γ

α+γ−d μ 2α
α+γ−d

(A2 − A1)

)−1

×
n−1∑
i=0

∣∣uθ (tj+1, x) − uθ (tj , x)
∣∣ 2α

α+γ−d

) α+γ−d
γ−d

=
(

c
2α

α+γ−d

2,α,γ 2
d−γ

α+γ−d μ 2α
α+γ−d

(A2 − A1)

) d−γ
α+γ−d

×
(
S

n, 2α
α+γ−d (uθ (·, x))

) α+γ−d
γ−d

, (40)

and so

θ̂

γ−d
α+γ−d

n,3 = 1

c
2α

α+γ−d

2,α,γ 2
d−γ

α+γ−d μ 2α
α+γ−d

(A2 − A1)

n−1∑
i=0

∣∣uθ (tj+1, x) − uθ (tj , x)
∣∣ 2α

α+γ−d .

(41)
We have the following asymptotic behavior.

Proposition 12. Assume 2α
α+γ−d

:= q is an even integer and consider the estimator

θ̂n,3 in (40). Then θ̂n,3 →n∞ θ in probability and

√
n

[
θ̂

γ−d
α+γ−d

n,3 − θ
γ−d

α+γ−d

]
→(d) N(0, s2

3,θ,α,γ ) with s2
3,θ,α,γ = σ 2

1
q
,q

θ
2(γ−d)
α+γ−d μ−2

2α
α+γ−d

,

(42)
and for n large enough,

dW

(√
n

[
θ̂

γ−d
α+γ−d

n,3 − θ
γ−d

α+γ−d

]
, N(0, s2

θ,α)

)
≤ c

1√
n
. (43)

Proof. From Proposition 10 and the relation between the fractional and bifractional
Brownian motion (see (18)), we can see that, as n → ∞,(

c−1
2,α,γ 2

d−γ
2α θ

d−γ
2α uθ (t, x), t ≥ 0

)
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converges to a perturbed fBm with Hurst parameter H = α−d+γ
2α

. By taking H =
α+γ−d

2α
and q = 1

H
= 2α

α+γ−d
in Lemma 1, we get

1√
n

n−1∑
i=0

⎡⎢⎣ nθ
d−γ

α+γ−d

c
2α

α+γ−d

2,α,γ 2
d−γ

α+γ−d (A2 − A1)

(
uθ (tj+1, x) − uθ (tj , x)

) 2α
α+γ−d − μ 2α

α+γ−d

⎤⎥⎦
→ N(0, σ 2

1
q
,q

)

or, equivalently

√
nμ 2α

α+γ−d
θ

d−γ
α+γ−d

[
θ̂

γ−d
α+γ−d

n,3 − θ
γ−d

α+γ−d

]
→ N(0, σ 2

1
q
,q

),

which is equivalent to (22). The bound (43) follows easily from Proposition 1.

We finally obtain the asymptotic normality and the rate of convergence for the
estimator θ̂n,3.

Proposition 13. Let θ̂n,3 be given by (40) and s3,θ,α,γ be given by (42). Then as
n → ∞,

√
n
(
θ̂n,3 − θ

)→(d) N

(
0, s3,θ,α,γ

(
α + γ − d

γ − d

)2

θ
2α

α+γ−d

)
and

dW

(√
n
(
θ̂n,3 − θ

)
, N

(
0, s3,θ,α,γ

(
α + γ − d

γ − d

)2

θ
2α

α+γ−d

))
≤ c

1√
n
.

Proof. It suffices to apply (23) with g(x) = x
α+γ−d

γ−d and γ0 = θ
γ−d

γ+α−d and to follow
the proof of Proposition 5.

3.4 Estimators based on the spatial variation

We will repeat the method employed in the previous parts of our work in order to
define an estimator expressed in terms of the variations in space of the process (30)
for the parameter θ in (27).

Recall that we proved in Proposition 11 that for every fixed time t > 0,(
θ

1
2 m−1

α,γ uθ (t, x), x ∈ R
d
)

is a perturbed multiparameter isotropic fractional Brownian motion as defined in
Lemma 4. Then we can deduce the variation in space of uθ recalling that xi =
(x

(1)
i , . . . , x

(d)
i ) with x

(j)
i = A1 + i

n
(A2 − A1) for i = 0, . . . , n and j = 1, . . . , d .

Proposition 14. Let uθ be given by (30). Then

n−1∑
i=0

∣∣uθ (t, xj+1) − u(θ t, xj )
∣∣ 2

α+γ−d →n→∞ m
2

α+γ−d
α,γ (A2 − A1)

√
dμ 2

α+γ−d
|θ | −1

α+γ−d
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Proof. We use Lemma 4, point 1.

For every n ≥ 1, define

θ̂n,4 =
[
(m

2
α+γ−d
α,γ μ 2

α+γ−d

√
d(A2 − A1))

−1

×
n−1∑
i=0

∣∣uθ (t, xj+1) − uθ (t, xj )
∣∣ 2

α+γ−d

]−(α+γ−d)

, (44)

and so

θ̂
−1

α+γ−d

n,4 = 1

m
2

α+γ−d
α,γ μ 2

α+γ−d

√
d(A2 − A1)

n−1∑
i=0

∣∣uθ (t, xj+1) − uθ (t, xj )
∣∣ 2

α+γ−d . (45)

We can deduce the asymptotic properties of the estimator by using Lemma 4 and
Proposition 9.

Proposition 15. The estimator (44) converges in probability as n → ∞ to the pa-
rameter θ . Moreover, if 2

α+γ−d
is an even integer, then

√
n

[
θ̂

−1
α+γ−d

n,4 − θ
−1

α+γ−d

]
→ N(0, s2

4,θ,α,γ )

with s2
4,θ,α,γ = σ 2

α+γ−1
2 , 2

α+γ−d

μ−2
2

α+γ−d

θ
−2

α+γ−d .

We also have, for n large enough,

dW

(√
n

[
θ̂

−1
α+γ−d

n,4 − θ
−1

α+γ−d

]
, N(0, s2

4,θ,α,γ )

)
≤ c

1√
n
.

Finally, we get the following proposition.

Proposition 16. With θ̂n,4 from (44), as n → ∞,

√
n
(
θ̂n,4 − θ

)→(d) N

(
0, s4,θ,α,γ

(
α + γ − d

γ − d

)2

θ
2α

α+γ−d

)
and

dW

(√
n, 4

(
θ̂n − θ

)
, N

(
0, s4,θ,α,γ

(
α + γ − d

γ − d

)2

θ
2α

α+γ−d

))
≤ c

1√
n
.

Proof. Apply again (23) with g(x) = x
α+γ−d

γ−d and γ0 = θ
γ−d

γ+α−d .

Remark 2. Notice that in the case γ = 1 (i.e., there is no spatial correlation and in
this case d has to be 1), we retrieve the results of Section 2. Observe, as in Section
2, that the distance of the estimators (40) and (44) to their limit distribution is of the
same order, although they involve q-variations of different orders.
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4 Conclusion

To conclude, in this paper we provide estimators based on power variation for the drift
parameter θ of the solution to the fractional stochastic heat equation (3). The novelty
of our approach is that it allows, comparing with the literature on statistical inference
for SPDEs (see [4, 17, 2], etc.), to consider the case of a Gaussian noise with non-
trivial spatial correlation and to treat the situation when the differential operator in the
heat equation (3) is the fractional Laplacian instead of the standard Laplacian. The
proofs of the asymptotic behavior of the estimators are relatively simple and they are
based on the link between the law of the solution and the fractional Brownian motion,
using known results on the behavior of the power variations of the fBm. Our approach
also gives the rate of convergence of the estimators under the Wasserstein distance via
some recent results in Stein–Malliavin calculus (see [19]). We assumed for simplicity
a vanishing initial condition in (3) but the case of a notrivial initial value, whose power
variations are dominated by those of the fBm, can be also treated by our approach.
Another open problem of interest that could by treated via our techniques is adding an
unknown volatility parameter in the disturbance term and jointly estimating the drift
and the volatility parameters. The case of the fractional heat equation on bounded
domains is also interesting but in this case the fundamental solution and implicitly
the law of the mild solution changes. Consequently, the relation between the law of
the solution and the fBm is not obvious and therefore new techniques are needed.
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