
Modern Stochastics: Theory and Applications 6 (3) (2019) 311–331
https://doi.org/10.15559/19-VMSTA137

Taylor’s power law for the N -stars network evolution
model

István Fazekas∗, Csaba Noszály, Noémi Uzonyi

Faculty of Informatics, University of Debrecen, P.O. Box 12, 4010 Debrecen,
Hungary

fazekas.istvan@inf.unideb.hu (I. Fazekas), noszaly.csaba@inf.unideb.hu (Cs. Noszály),
unomi95@gmail.com (N. Uzonyi)

Received: 13 March 2019, Revised: 9 August 2019, Accepted: 9 August 2019,
Published online: 16 September 2019

Abstract Taylor’s power law states that the variance function decays as a power law. It is ob-
served for population densities of species in ecology. For random networks another power law,
that is, the power law degree distribution is widely studied. In this paper the original Taylor’s
power law is considered for random networks. A precise mathematical proof is presented that
Taylor’s power law is asymptotically true for the N -stars network evolution model.
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function
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1 Introduction

Taylor’s power law is a well-known empirical pattern in ecology. Its general form is

V (μ) ≈ aμb,

where μ is the mean and V (μ) is the variance of a non-negative random variable,
a and b are constants. V (μ) is also called the variance function (see [15]). Taylor’s
power law is called after the British ecologist L. R. Taylor (see [18]). Taylor’s power
law is observed for population densities of hundreds of species in ecology. It is ob-
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served in medical sciences, demography ([6]), physics, finance (for an overview see
[11]). Most papers on the topic present empirical studies, but some of them offer mod-
els as well (e.g. [6] for mortality data, [7] for population dynamics, [11] for complex
systems). We mention that in the theory of complex systems Taylor’s power law is
called ‘fluctuation scaling’, V (μ) is called the fluctuation and μ is the average. There
are papers studying Taylor’s power law on networks (see, e.g. [9]). In those papers
Taylor’s law concerns some random variable produced by a certain process on the
network.

However, there is another power law for networks. There are large networks sat-
isfying pk ∼ Ck−γ as k → ∞, where pk is the probability that a node has degree
k. This relation is often referred to as a power-law degree distribution or a scale-free
network. Here and in what follows ak ∼ bk means that limk→∞ ak/bk = 1. In their
seminal paper [3] Barabási and Albert list several scale-free large networks (actor
collaboration, WWW, power grid, etc.), they introduce the preferential attachment
model and give an argument and numerical evidence that the preferential attachment
rule leads to a scale-free network. A short description of the preferential attachment
network evolution model is the following. At every time step t = 2, 3, . . . a new
vertex with N edges is added to the existing graph so that the N edges link the new
vertex to N old vertices. The probability πi that the new vertex will be connected
to the old vertex i depends on the degree di of vertex i, so that πi = di/

∑
j dj ,

where
∑

j dj is the cumulated sum of degrees. A rigorous definition of the prefer-
ential attachment model was given in [4], where a mathematical proof of the power
law degree distribution was also presented. The idea of preferential attachment and
the scale-free property incited enormous research activity. The mathematical theory
is described in the monograph [19] written by van der Hofstad (see also [10] and [5]).
The general aspects of network theory are included in the comprehensive book [2] by
A. L. Barabási.

There are lot of modifications of the preferential attachment model, here we can
list only a few of them. The following general graph evolution model was introduced
by Cooper and Frieze in [8]. At each time step either a new vertex or an old one gener-
ates new edges. In both cases the terminal vertices can be chosen either uniformly or
according to the preferential attachment rule. In [1, 13] and [12] the ideas of Cooper
and Frieze [8] were applied, but instead of the original preferential attachment rule,
the terminal vertices were chosen according to the weights of certain cliques.

In several cases the connection of two edges in a network can be interpreted as
co-operation (collaboration). For example in the movie actor network two actors are
connected by an edge if they have appeared in a film together. In the collaboration
graph of scientists an edge connects two people if they have been co-authors of a
paper (see, e.g. [10]). In social networks, besides connections of two members, other
structures are also important. In [17] or [1] cliques are considered to describe co-
operations. In a clique any two vertices are connected, that is, any two members of
the clique co-operate. However, in real-life examples, in a co-operation the members
can play different roles. In a team usually one person plays central role and the other
ones play peripheral roles. Trying to handle this situation and to find a mathematically
tractable model leads to the study of star-like structures, see [14].

In [14] the concept of [13] was applied but instead of cliques, star-like structures
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were considered. A team has star structure if there is a head of the team and all other
members are connected to him/her. We call a graph N -star graph if it has N vertices,
one of them is called the central vertex, the remaining N − 1 vertices are called
peripheral vertices, and it has N − 1 edges. The edges are directed, they start from
the N − 1 peripheral vertices and their end point is the central vertex. In [14] the
following N -stars network evolution model was presented. In this model at each step
either a new N -star is constructed or an old one is selected (activated) again. When
N vertices form an N star, then we say that they are in interaction (in other words
they co-operate). During the evolution, a vertex can be in interaction several times.
We define for any vertex its central weight and its peripheral weight. The central
weight of a vertex is w1, if the vertex is a central vertex in interactions w1 times. The
peripheral weight of a vertex is w2, if the vertex is a peripheral vertex in interactions
w2 times. In [14] asymptotic power law distribution was proved both for w1 and w2.

We are interested in the following general question. Is the original Taylor’s power
law true for random networks? First we considered data sets of real life networks.
We analysed them and the statistical analysis showed that there are cases when Tay-
lor’s law is true and there are cases when it is not true (our empirical results will be
published elsewhere). So we encountered the following more specific problem: Find
network structures where Taylor’s power law is true. To this end we analysed the
above N -stars network evolution model.

In this paper we prove an asymptotic Taylor’s power law for the N -stars network
evolution model. We shall calculate the mean and the variance of w2 when w1 is
fixed, and we shall see that the variance function is asymptotically quadratic. In Sec-
tion 2, the precise mathematical description of the model and the results are given.
We recall from [14] the asymptotic joint distribution of w1 and w2 (Proposition 2.1).
Then we calculate the marginal distribution (Proposition 2.2), the expectation (Propo-
sition 2.3), and the second moment (Proposition 2.4). The main result is Theorem 2.1.
The proofs are presented in Section 3. Besides mathematical proofs, we give also a
numerical evidence. In Section 4 simulation results are presented supporting our the-
oretical results.

2 The N-stars network evolution model and the main results

First we give a short mathematical description of our random graph model from [14].
Let N ≥ 3 be a fixed number. We start at time 0 with an N -star graph. Throughout

the paper we call a graph N -star graph if it has N vertices, one of them is the central
vertex, the remaining N − 1 vertices are peripheral ones, and the graph has N − 1
directed edges. The edges start from the N − 1 peripheral vertices and their end point
is the central vertex. So the central vertex has in-degree N − 1, and each of the N − 1
peripheral vertices has out-degree 1. The evolution of our graph is governed by the
weights of the N -stars and the (N − 1)-stars. In our model, the initial weight of the
N -star is 1, and the initial weights of its (N − 1)-star sub-graphs are also 1. (An
(N − 1)-star sub-graph is obtained if a peripheral vertex is deleted from the N -star
graph. The number of these (N − 1)-star sub-graphs is N − 1.)

We first explain the model on a high level, before giving a formal definition in the
next paragraphs. The general rules of the evolution of our graph are the following.
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At each time step, N vertices interact, that is, they form an N -star. It means that we
draw all edges from the peripheral vertices to the central vertex so that the vertices
will form an N -star graph. During the evolution we allow parallel edges. When N

vertices interact, not only new edges are drawn, but the weights of the stars are also
increased. At the first interaction of N vertices the newly created N -star gets weight
1, and its new (N −1)-star sub-graphs also get weight 1. If an (N −1)-star sub-graph
is not newly created, then its weight is increased by 1. When an existing N -star is
selected (activated) again, then its weight and the weights of its (N − 1)-star sub-
graphs are increased by 1. So the weight of an N -star is the number of its activations.
We can see that the weight of an (N − 1)-star is equal to the sum of the weights
of the N -stars containing it. The weights will play crucial role in our model. The
higher the weight of a star the higher the chance that it will be selected (activated)
again.

Now we describe the details of the evolution steps of our graph. We have two
options in every step of the evolution. Option I has probability p. In this case we
add a new vertex, and it interacts with N−1 old vertices. Option II has probability
1 − p. In this case we do not add any new vertex, but N old vertices interact. Here
0 < p ≤ 1 is fixed.

Option I. In this case, that is, when a new vertex is born, we have again two
possibilities: I/1 and I/2.

I/1. The first possibility, which has probability r , is the following. (Here 0 ≤
r ≤ 1 is fixed.) We choose one of the existing (N − 1)-star sub-graphs according
to the preferential attachment rule, and its N − 1 vertices and the new vertex will
interact. Here the preferential attachment rule means that an (N − 1)-star of weight
vt is chosen with probability vt/

∑
h vh, where

∑
h vh is the cumulated weight of

the (N − 1)-stars. The interaction of the new vertex and the old (N − 1)-star means
that they establish a new N -star. In this newly created N -star the center will be the
vertex which was the center in the old (N − 1)-star, the former N − 2 peripheral
vertices remain peripheral and the newly born vertex will be also peripheral. A new
edge is drawn from each peripheral vertex to the central one, and then the weights
are increased by 1. More precisely, the just created N -star gets weight 1, among its
(N − 1)-star sub-graphs there are (N − 2) new ones, so each of them gets weight 1,
finally the weight of the only old (N − 1)-star sub-graph is increased by 1.

I/2. The second possibility has probability 1 − r . In this case we choose N −
1 old vertices uniformly at random, and they will form an N -star graph with the
new vertex, so that the new vertex will be the center. The edges are drawn from the
peripheral vertices to the center. As here the newly created N -star graph and all of its
(N − 1)-star sub-graphs are new, so all of them get weight 1.

Option II. In this case, that is, when we do not add any new vertex, we have
two ways again: II/1 and II/2.

II/1. The first way has probability q. (Here 0 ≤ q ≤ 1 is fixed.) We choose
one of the existing N -star sub-graphs by the preferential attachment rule, then draw
a new edge from each of its peripheral vertices to its center vertex. Then the weight
of the N -star and the weights of its (N − 1)-star sub-graphs are increased by 1. Here
the preferential attachment rule means that an N -star of weight vt is chosen with
probability vt/

∑
h vh, where

∑
h vh is the cumulated weight of the N -stars.
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II/2. The second way has probability 1 − q. In this case we choose N old
vertices uniformly at random, and they establish an N -star graph. Its center is chosen
again uniformly at random out of the N vertices. Then, as before, new edges are
drawn from the peripheral vertices to the central one, and the weights of the N -star
and its (N − 1)-star sub-graphs are increased by 1.

Remark 2.1. For every vertex we shall use its central weight and its peripheral
weight. The central weight of a vertex is w1, if the vertex was a central vertex in
interactions w1 times. The peripheral weight of a vertex is w2, if the vertex was a
peripheral vertex in interactions w2 times. We can see that the central weight of a

vertex is equal to w1 = d1

N − 1
and the peripheral weight of a vertex is equal to

w2 = d2, where d1 denotes the in-degree of the vertex and d2 denotes its out-degree.
The weights w1 and w2 describe well the role of a vertex in the network. Moreover,
we use w1 and w2 instead of degrees to obtain symmetric formulae that allow us to
translate the result from w1 to w2 and vice versa without having to change the proofs.

Throughout the paper 0 < p ≤ 1, 0 ≤ r ≤ 1, 0 ≤ q ≤ 1 are fixed numbers. In
our formulae the following parameters are used.

α11 = pr, α12 = (1 − p)q,

α1 = α11 + α12, α2 = pr
N − 2

N − 1
+ (1 − p)q,

β1 = (1 − p)(1 − q)

p
, β2 = (N − 1)

[
(1 − r) + (1 − p)(1 − q)

p

]
,

α = α1 + α2, β = β1 + β2. (2.1)

In [14] it was shown that the above evolution leads to a scale-free graph. To de-
scribe the result, let Vn denote the number of all vertices and let X(n,w1, w2) denote
the number of vertices with central weight w1 and peripheral weight w2 after the nth
step.

Proposition 2.1 (Theorem 2.1 of [14]). Let 0 < p < 1, 0 < q < 1, 0 < r < 1. Then
for any fixed w1 and w2 with either w1 = 0 and 1 ≤ w2 or 1 ≤ w1 and w2 ≥ 0 we
have

X(n,w1, w2)

Vn

→ xw1,w2 (2.2)

almost surely as n → ∞, where xw1,w2 are fixed non-negative numbers.
Let w2 be fixed, then as w1 → ∞

xw1,w2 ∼ A(w2)w
−(1+ β2+1

α1
)

1 , (2.3)

where

A(w2) = 1 − r

α1

1

w2!
Γ (w2 + β2

α2
)

Γ (
β2
α2

)

Γ (1 + β+1
α1

)

Γ (1 + β1
α1

)
. (2.4)

Let w1 be fixed. Then, as w2 → ∞,

xw1,w2 ∼ C(w1)w
−(1+ β1+1

α2
)

2 , (2.5)
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where

C(w1) = r

α2

1

w1!
Γ (w1 + β1

α1
)

Γ (
β1
α1

)

Γ (1 + β+1
α2

)

Γ (1 + β2
α2

)
. (2.6)

Here Γ denotes the Gamma function.

Remark 2.2. Using w1 and w2, we obtained symmetric formulae in the following
sense. If we interchange subscripts 1 and 2 of α and β (and use r instead of 1 − r),
then we obtain formulae (2.5)–(2.6) from formulae (2.3)–(2.4). Therefore we do not
need new proofs when we interchange the roles of w1 and w2. (Of course the basic
relations (2.3)–(2.4) and (2.5)–(2.6) were proved separately. To do it we applied the
properties of our model and introduced the appropriate parametrization given in (2.1),
see [14].)

Remark 2.3. We see that xw1,w2 is the asymptotic joint distribution of the central
weight and the peripheral weight. To obtain Taylor’s power law, we have to find the
conditional expectation Ew1 and the conditional second moment Mw1 given that w1 is
fixed. Then the asymptotic behaviour of Ew1 and Mw1 will imply that Taylor’s power
law is satisfied asymptotically. We underline that the asymptotic relations (2.3) and
(2.5) do not provide enough information to find the asymptotics of Ew1 and Mw1 . So
we need deep analysis of the joint distribution xw1,w2 to obtain Taylor’s power law.

Now we turn to the new results of this paper. First we consider the marginals of
the asymptotic joint distribution xw1,w2 . Let

xw1,· =
∞∑
l=0

xw1,l (2.7)

be the first marginal distribution.

Proposition 2.2. Let 0 < p < 1, 0 < q < 1, 0 < r < 1. Then

x0,· = r

β1 + 1
, (2.8)

and for w1 > 0

xw1,· =
∞∑
i=1

xw1−1,i

(w1 − 1)α1 + β1

w1α1 + β1 + 1
+ xw1,0

(
β2

w1α1 + β1 + 1
+ 1

)
. (2.9)

Moreover

x1,· = β1

α1 + β1 + 1

(
r

β1 + 1
+ 1 − r

β1

)
, (2.10)

and

xw1,· = Γ (w1 + β1
α1

)

Γ (
β1
α1

)

Γ (1 + β1+1
α1

)

Γ (w1 + 1 + β1+1
α1

)

1 − r + β1

β1(β1 + 1)
(2.11)

for w1 > 1. We have a proper distribution, that is,
∑∞

w1=0 xw1,· = 1.
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Now we turn to the conditional expectations of the asymptotic distribution. Let

Ew1 =
∞∑
l=0

xw1,l l/xw1,· (2.12)

be the expectation when the central weight w1 is fixed.

Proposition 2.3. Let 0 < p < 1, 0 < q < 1, 0 < r < 1. Then for w1 > 1 we have

Ew1 = Γ (2 + β1+1−α2
α1

)

Γ (2 + β1+1
α1

)

Γ (w1 + 1 + β1+1
α1

)

Γ (w1 + 1 + β1+1−α2
α1

)

A1

x1,·
− β2

α2
, (2.13)

where

A1 = r

β1 + 1 − α2

(
1 + β2

α2

)
β1

α1 + β1 + 1 − α2

+ (1 − r)
β2

α2

1

α1 + β1 + 1 − α2
. (2.14)

Moreover

Ew1 ∼ A1

x1,·
Γ (2 + β1+1−α2

α1
)

Γ (2 + β1+1
α1

)
w

α2
α1
1 . (2.15)

That is, the magnitude of Ew1 approaches w

α2
α1
1 when w1 → ∞.

Now we turn to the conditional second moments of the asymptotic distribution.
Let

Mw1 =
∞∑
l=0

xw1,l l
2/xw1,· (2.16)

be the second moment when the central weight w1 is fixed.

Proposition 2.4. Let 0 < p < 1, 0 < q < 1, 0 < r < 1. Assume that β1 + 1 > 2α2.
Then for w1 > 1 we have

Mw1 = Γ (2 + β1+1−2α2
α1

)

Γ (2 + β1+1
α1

)

Γ (w1 + 1 + β1+1
α1

)

Γ (w1 + 1 + β1+1−2α2
α1

)

B1

x1,·

−
(

1 + 2
β2

α2

)
Ew1 − β2

α2

(
1 + β2

α2

)
, (2.17)

where

B1 = β1

α1 + β1 + 1 − 2α2

r

β1 + 1 − 2α2

(
1 + β2

α2

)(
2 + β2

α2

)

+ β2

α2

(
1 + β2

α2

)
1 − r

α1 + β1 + 1 − 2α2
.
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Moreover

Mw1 ∼ B1

x1,·
Γ (2 + β1+1−2α2

α1
)

Γ (2 + β1+1
α1

)
w

2
α2
α1

1 , (2.18)

that is, the magnitude of Mw1 approaches w
2

α2
α1

1 when w1 → ∞.

Now Propositions 2.3, 2.4 imply the main result of this paper, that is, we obtain
that Taylor’s law is satisfied asymptotically.

Theorem 2.1. Let 0 < p < 1, 0 < q < 1, 0 < r < 1. Assume that β1 + 1 > 2α2.
Then

Mw1 ∼ CE2
w1

(2.19)

as w1 → ∞, where C is an appropriate constant. So Taylor’s law is satisfied asymp-
totically with exponent 2.

Remark 2.4. How can we observe the above Taylor’s law in practice? As xw1,w2 is
the asymptotic joint distribution of the central weight and the peripheral weight, we
should consider a network large enough for asymptotic properties to show up. Fix the
central weight at w1, calculate the expectation Ew1 and the second moment Mw1 of
the peripheral weight. Then we shall find that Mw1 is approximately equal to CE2

w1
for large w1. Our simulation results in Section 4 will show a bit more, that is, the
result takes place for small w1, too.

Remark 2.5. If β1 + 1 ≤ 2α2, then Mw1 is not finite, so Taylor’s law is not satisfied.

Remark 2.6. Now we consider the case when we interchange the roles of w1 and
w2. Let w2 be fixed and let

x·,w2 =
∞∑
l=0

xl,w2 , Ew2 =
∞∑
l=0

xl,w2 l/x·,w2, Mw2 =
∞∑
l=0

xl,w2 l
2/x·,w2

be the other marginal distribution, conditional expectation and conditional second
moment. By Remark 2.2, if we interchange subscripts 1 and 2 of α and β (and use r

instead of 1−r), then from Proposition 2.2 we obtain the description of the behaviour
of x·,w2 . Similarly, from Proposition 2.3 (resp. Proposition 2.4) we get the appropriate
results for Ew2 (resp. Mw2 ). Finally, Theorem 2.1 implies the following. If β2 + 1 >

2α1, then Taylor’s law is satisfied asymptotically with exponent 2 for Ew2 and Mw2 ,
too.

Remark 2.7. For the in-degree d1 of a vertex we have d1 = (N − 1)w1 and for the
out-degree we have d2 = w2. Let Ed1 be the conditional expectation of the out-degree
if d1 is fixed and let Md1 be the conditional second moment of the out-degree if d1
is fixed. Then Theorem 2.1 implies that Md1 ∼ const.E2

d1
as d1 → ∞. Similarly,

Remark 2.6 implies that Md2 ∼ const.E2
d2

as d2 → ∞. So Taylor’s power law is true
for the in-degrees and the out-degrees.

3 Proofs and auxiliary results

For the joint limiting distribution we have the following result.
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Lemma 3.1 (Lemma 3.2 of [14]). Let p > 0 and let w1 ≥ 0, w2 ≥ 0 with w1 +w2 ≥
1. Then xw1,w2 are positive numbers satisfying the following recurrence relation

x1,0 = 1 − r

α1 + β + 1
, x0,1 = r

α2 + β + 1
,

xw1,w2 = (α1(w1 − 1) + β1)xw1−1,w2 + (α2(w2 − 1) + β2)xw1,w2−1

α1w1 + α2w2 + β + 1
(3.1)

if 1 < w1 + w2.

Throughout the proof we shall use the following facts on the Γ -function.

n∑
i=0

Γ (i + a)

Γ (i + b)
= 1

a − b + 1

[
Γ (n + a + 1)

Γ (n + b)
− Γ (a)

Γ (b − 1)

]
, (3.2)

see [16]. Stirling’s formula implies that

Γ (n + a)

Γ (n + b)
∼ n−(b−a). (3.3)

The above two formulae imply that

∞∑
i=0

Γ (i + a)

Γ (i + b)
= 1

b − a − 1

Γ (a)

Γ (b − 1)
(3.4)

if b > a + 1. The following facts on xw1,w2 will be useful.

Lemma 3.2 (See the proof of Theorem 3.2 of [14]). Let w1 = 0, then

x0,1 = r

α2 + β + 1
> 0, (3.5)

x0,l = 1

lα2 + β + 1

(
(l − 1)α2 + β2

)
x0,l−1, l > 1, (3.6)

and

x0,l = r

α2

Γ (1 + β+1
α2

)

Γ (1 + β2
α2

)

Γ (l + β2
α2

)

Γ (l + α2+β+1
α2

)
= C(0)

Γ (l + β2
α2

)

Γ (l + α2+β+1
α2

)
. (3.7)

When w2 = 0, then we have

x1,0 = 1 − r

α1 + β + 1
> 0, (3.8)

xk,0 = 1

kα1 + β + 1

(
(k − 1)α1 + β1

)
xk−1,0, k > 1, (3.9)

and

xk,0 = (1 − r)Γ (1 + β+1
α1

)

α1Γ (1 + β1
α1

)

Γ (k + β1
α1

)

Γ (k + α1+β+1
α1

)
= A(0)

Γ (k + β1
α1

)

Γ (k + α1+β+1
α1

)
. (3.10)
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If w1 > 0 and l > 0, then

xw1,l =
l∑

i=1

b
(l)
w1−1,ixw1−1,i + b

(l)
w1,0

xw1,0, (3.11)

where

b
(l)
w1−1,i = (w1 − 1)α1 + β1

α2

Γ (l + β2
α2

)

Γ (l + 1 + w1α1+β+1
α2

)

Γ (i + w1α1+β+1
α2

)

Γ (i + β2
α2

)
, (3.12)

for 1 ≤ i ≤ l, and

b
(l)
w1,0

= Γ (1 + w1α1+β+1
α2

)

Γ (
β2
α2

)

Γ (l + β2
α2

)

Γ (l + 1 + w1α1+β+1
α2

)
. (3.13)

Now we turn to the proofs of the new results. First we deal with the marginal
distribution.

Proof of Proposition 2.2. To calculate the marginal distribution xw1,· = ∑∞
l=0 xw1,l

we shall use mathematical induction. So first consider x0,·. Because x0,0 = 0, by
equation (3.7) we have

x0,· =
∞∑
l=1

x0,l = r

α2

Γ (1 + β+1
α2

)

Γ (1 + β2
α2

)

∞∑
l=1

Γ (l + β2
α2

)

Γ (l + α2+β+1
α2

)

= r

α2

Γ (1 + β+1
α2

)

Γ (1 + β2
α2

)

∞∑
l=0

Γ (l + 1 + β2
α2

)

Γ (l + 2 + β+1
α2

)
.

By (3.4), the sum in the above formula is always finite, and we have

x0,· = r

α2

Γ (1 + β+1
α2

)

Γ (1 + β2
α2

)

α2

β1 + 1

Γ (1 + β2
α2

)

Γ (1 + β+1
α2

)
= r

β1 + 1
. (3.14)

For w1 > 0, by (3.11), we have

xw1,· =
∞∑
l=1

l∑
i=1

b
(l)
w1−1,ixw1−1,i +

∞∑
l=1

b
(l)
w1,0

xw1,0 + xw1,0

=
∞∑
i=1

xw1−1,i

∞∑
l=i

b
(l)
w1−1,i + xw1,0

∞∑
l=1

b
(l)
w1,0

+ xw1,0. (3.15)

The coefficients bk,i satisfy formulae (3.12) and (3.13). Therefore we shall use (3.4)
for the two sums in the above expression. We can see that both sums are always finite
and

∞∑
l=i

b
(l)
w1−1,i

= (w1 − 1)α1 + β1

α2

Γ (i + w1α1+β+1
α2

)

Γ (i + β2
α2

)

∞∑
l=0

Γ (l + i + β2
α2

)

Γ (l + i + 1 + w1α1+β+1
α2

)
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= (w1 − 1)α1 + β1

α2

Γ (i + w1α1+β+1
α2

)

Γ (i + β2
α2

)

α2

w1α1 + β1 + 1

Γ (i + β2
α2

)

Γ (i + w1α1+β+1
α2

)

= (w1 − 1)α1 + β1

w1α1 + β1 + 1
.

For the other sum, a similar calculation shows that

∞∑
l=1

b
(l)
w1,0

= β2

w1α1 + β1 + 1
.

Insert these expressions into (3.15) to obtain

xw1,· =
∞∑
i=1

xw1−1,i

(w1 − 1)α1 + β1

w1α1 + β1 + 1
+ xw1,0

β2

w1α1 + β1 + 1
+ xw1,0. (3.16)

From this point we should proceed carefully, as we should distinguish the case of x1,0

and the case of xw1,0 for w1 > 1. From equation (3.14) x0,· = r

β1 + 1
, from equation

(3.8) x1,0 = 1 − r

α1 + β + 1
and x0,0 = 0, so equation (3.16) gives that

x1,· = β1

α1 + β1 + 1
x0,· + x1,0

(
β2

α1 + β1 + 1
+ 1

)

= β1

α1 + β1 + 1

r

β1 + 1
+ 1 − r

α1 + β + 1

α1 + β + 1

α1 + β1 + 1

= β1

α1 + β1 + 1

(
r

β1 + 1
+ 1 − r

β1

)
. (3.17)

For w1 > 1 equation (3.9) gives us xw1,0 = (w1 − 1)α1 + β1

w1α1 + β + 1
xw1−1,0, so equation

(3.16) implies

xw1,· = (w1 − 1)α1 + β1

w1α1 + β1 + 1

∞∑
i=0

xw1−1,i = (w1 − 1)α1 + β1

w1α1 + β1 + 1
xw1−1,·.

Therefore, using (3.17) and recursion, for w1 > 1 we obtain that

xw1,· = (w1 − 1)α1 + β1

w1α1 + β1 + 1
xw1−1,· =

w1∏
k=2

k − 1 + β1
α1

k + β1+1
α1

x1,·

= Γ (w1 + β1
α1

)

Γ (1 + β1
α1

)

Γ (2 + β1+1
α1

)

Γ (w1 + 1 + β1+1
α1

)

β1

α1 + β1 + 1

(
r

β1 + 1
+ 1 − r

β1

)

= Γ (w1 + β1
α1

)

Γ (
β1
α1

)

Γ (1 + β1+1
α1

)

Γ (w1 + 1 + β1+1
α1

)

1 − r + β1

β1(β1 + 1)
. (3.18)
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Now we check if the sum of the values of xw1,· is equal to 1.

x0,· + x1,· +
∞∑

w1=2

xw1,· = r

β1 + 1
+ β1

α1 + β1 + 1

(
r

β1 + 1
+ 1 − r

β1

)

+
∞∑

w1=2

Γ (w1 + β1
α1

)

Γ (
β1
α1

)

Γ (1 + β1+1
α1

)

Γ (w1 + 1 + β1+1
α1

)

1 − r + β1

β1(β1 + 1)
.

Here
∞∑

w1=2

Γ (w1 + β1
α1

)

Γ (w1 + 1 + β1+1
α1

)
= α1

Γ (2 + β1
α1

)

Γ (2 + β1+1
α1

)
.

Therefore, after some calculation, we get

∞∑
w1=0

xw1,· = 1, (3.19)

so we have a proper distribution.

Now we consider the expectation.

Proof of Proposition 2.3. We calculate

Ew1 =
∞∑
l=0

xw1,l l/xw1,·

that is, the expectation when the central weight w1 is fixed. We shall calculate the
value of

Aw1 =
∞∑
l=0

xw1,l

(
l + β2

α2

)
. (3.20)

As

Aw1 = xw1,·
(

Ew1 + β2

α2

)
, (3.21)

using Aw1 , we shall find the value of Ew1 .
Let us start with A0. Because x0,0 = 0, and using equation (3.7), we have

A0 =
∞∑
l=1

x0,l

(
l + β2

α2

)
= r

α2

Γ (1 + β+1
α2

)

Γ (1 + β2
α2

)

∞∑
l=1

Γ (l + β2
α2

)(l + β2
α2

)

Γ (l + α2+β+1
α2

)

= r

α2

Γ (1 + β+1
α2

)

Γ (1 + β2
α2

)

∞∑
l=0

Γ (l + 2 + β2
α2

)

Γ (l + 2 + β+1
α2

)
.

By (3.4), the sum in the above formula is always finite, moreover

A0 = r

β1 + 1 − α2

Γ (2 + β2
α2

)

Γ (1 + β2
α2

)
= r

β1 + 1 − α2

(
1 + β2

α2

)
. (3.22)
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If w1 > 0, then by (3.11) we have

Aw1 =
∞∑
l=1

l∑
i=1

b
(l)
w1−1,ixw1−1,i

(
l + β2

α2

)
+

∞∑
l=1

b
(l)
w1,0

xw1,0

(
l + β2

α2

)
+ xw1,0

β2

α2

=
∞∑
i=1

xw1−1,i

∞∑
l=i

b
(l)
w1−1,i

(
l + β2

α2

)
+ xw1,0

∞∑
l=1

b
(l)
w1,0

(
l + β2

α2

)
+ xw1,0

β2

α2
.

(3.23)

We know that the coefficients bk,i satisfy formulae (3.12) and (3.13). Therefore we
can apply (3.4) for the first two terms in the above expression. So we can see that
both sums are always finite and

∞∑
l=i

b
(l)
w1−1,i

(
l + β2

α2

)

= (w1 − 1)α1 + β1

α2

Γ (i + w1α1+β+1
α2

)

Γ (i + β2
α2

)

∞∑
l=0

Γ (l + i + 1 + β2
α2

)

Γ (l + i + 1 + w1α1+β+1
α2

)

= (w1 − 1)α1 + β1

α2

Γ (i + w1α1+β+1
α2

)

Γ (i + β2
α2

)

× α2

w1α1 + β1 + 1 − α2

Γ (i + 1 + β2
α2

)

Γ (i + w1α1+β+1
α2

)

= (w1 − 1)α1 + β1

w1α1 + β1 + 1 − α2

(
i + β2

α2

)
.

Similarly

∞∑
l=1

b
(l)
w1,0

(
l + β2

α2

)
= α2

w1α1 + β1 + 1 − α2

Γ (2 + β2
α2

)

Γ (
β2
α2

)
.

Using these expressions, from (3.23) we get

Aw1 =
∞∑
i=1

xw1−1,i

(
i + β2

α2

)
(w1 − 1)α1 + β1

w1α1 + β1 + 1 − α2

+ xw1,0
α2

w1α1 + β1 + 1 − α2

β2

α2

(
1 + β2

α2

)
+ xw1,0

β2

α2
. (3.24)

Now we should distinguish the case of w1 = 1 and the case of w1 > 1. For w1 = 1

we use that from equation (3.8) x1,0 = 1 − r

α1 + β + 1
and x0,0 = 0, so equation (3.24)

implies that

A1 = A0
β1

α1 + β1 + 1 − α2
+ x1,0

α2

α1 + β1 + 1 − α2

β2

α2

(
1 + β2

α2

)
+ x1,0

β2

α2
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= r

β1 + 1 − α2

(
1 + β2

α2

)
β1

α1 + β1 + 1 − α2

+ 1 − r

α1 + β + 1

β2

α2

α1 + β + 1

α1 + β1 + 1 − α2

= r

β1 + 1 − α2

(
1 + β2

α2

)
β1

α1 + β1 + 1 − α2
+ (1 − r)

β2

α2

1

α1 + β1 + 1 − α2
.

(3.25)

For w1 > 1 we know that xw1,0 = (w1−1)α1+β1
w1α1+β+1 xw1−1,0, therefore equation (3.24)

implies that

Aw1 = (w1 − 1)α1 + β1

w1α1 + β1 + 1 − α2

∞∑
i=0

xw1−1,i

(
i + β2

α2

)
.

From this equation we obtain that

Aw1 = (w1 − 1)α1 + β1

w1α1 + β1 + 1 − α2
Aw1−1 =

w1∏
k=2

k − 1 + β1
α1

k + β1+1−α2
α1

A1

= Γ (w1 + β1
α1

)

Γ (1 + β1
α1

)

Γ (2 + β1+1−α2
α1

)

Γ (w1 + 1 + β1+1−α2
α1

)
A1. (3.26)

Therefore, by equation (3.21), we have

Ew1 = Aw1

xw1,·
− β2

α2

= Γ (2 + β1+1−α2
α1

)

Γ (2 + β1+1
α1

)

Γ (w1 + 1 + β1+1
α1

)

Γ (w1 + 1 + β1+1−α2
α1

)

A1

x1,·
− β2

α2
. (3.27)

Therefore, by (3.3), the magnitude of Ew1 approaches w

β1+1
α1

− β1+1−α2
α1

1 = w

α2
α1
1 when

w1 → ∞. More precisely,

Ew1 ∼ A1

x1,·
Γ (2 + β1+1−α2

α1
)

Γ (2 + β1+1
α1

)
w

α2
α1
1 . (3.28)

Now we turn to the second moment.

Proof of Proposition 2.4. To find the second moment

Mw1 =
∞∑
l=0

xw1,l l
2/xw1,·

when the central weight w1 is fixed, we shall calculate the value of

Bw1 =
∞∑
l=0

xw1,l

(
l + β2

α2

)(
l + 1 + β2

α2

)
. (3.29)
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We can see that

Bw1 = xw1,·
(

Mw1 +
(

1 + 2
β2

α2

)
Ew1 + β2

α2

(
1 + β2

α2

))
. (3.30)

Therefore, using Bw1 , we shall find the value of Mw1 .
We start with B0. As x0,0 = 0, applying equation (3.7), we obtain

B0 =
∞∑
l=1

x0,l

(
l + β2

α2

)(
l + 1 + β2

α2

)
= r

α2

Γ (1 + β+1
α2

)

Γ (1 + β2
α2

)

∞∑
l=0

Γ (l + 3 + β2
α2

)

Γ (l + 2 + β+1
α2

)
.

By (3.4), the sum in the above formula is finite if β1 + 1 > 2α2, and in this case

B0 = r

β1 + 1 − 2α2

Γ (3 + β2
α2

)

Γ (1 + β2
α2

)
. (3.31)

Now turn to Bw1 when w1 > 0. By (3.11),

Bw1 =
∞∑
l=1

l∑
i=1

b
(l)
w1−1,ixw1−1,i

(
l + β2

α2

)(
l + 1 + β2

α2

)

+
∞∑
l=1

b
(l)
w1,0

xw1,0

(
l + β2

α2

)(
l + 1 + β2

α2

)
+ xw1,0

β2

α2

(
1 + β2

α2

)

=
∞∑
i=1

xw1−1,i

∞∑
l=i

b
(l)
w1−1,i

(
l + β2

α2

)(
l + 1 + β2

α2

)

+ xw1,0

∞∑
l=1

b
(l)
w1,0

(
l + β2

α2

)(
l + 1 + β2

α2

)
+ xw1,0

β2

α2

(
1 + β2

α2

)
. (3.32)

We use formulae (3.12) and (3.13), then apply (3.4) for the first two terms in the
above expression. So we obtain that both sums are finite if w1α1 +β1 +1 > 2α2, and

∞∑
l=i

b
(l)
w1−1,i

(
l + β2

α2

)(
l + 1 + β2

α2

)

= (w1 − 1)α1 + β1

α2

Γ (i + w1α1+β+1
α2

)

Γ (i + β2
α2

)

∞∑
l=0

Γ (l + i + 2 + β2
α2

)

Γ (l + i + 1 + w1α1+β+1
α2

)

= (w1 − 1)α1 + β1

α2

Γ (i + w1α1+β+1
α2

)

Γ (i + β2
α2

)

× α2

w1α1 + β1 + 1 − 2α2

Γ (i + 2 + β2
α2

)

Γ (i + w1α1+β+1
α2

)

= (w1 − 1)α1 + β1

w1α1 + β1 + 1 − 2α2

Γ (i + 2 + β2
α2

)

Γ (i + β2
α2

)
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and
∞∑
l=1

b
(l)
w1,0

(
l + β2

α2

)(
l + 1 + β2

α2

)

= Γ (1 + w1α1+β+1
α2

)

Γ (
β2
α2

)

∞∑
l=1

Γ (l + 2 + β2
α2

)

Γ (l + 1 + w1α1+β+1
α2

)

= α2

w1α1 + β1 + 1 − 2α2

Γ (3 + β2
α2

)

Γ (
β2
α2

)
.

Inserting these expressions into (3.32), we get

Bw1 =
∞∑
i=1

xw1−1,i

(
i + β2

α2

)(
i + 1 + β2

α2

)
(w1 − 1)α1 + β1

w1α1 + β1 + 1 − 2α2

+ xw1,0
α2

w1α1 + β1 + 1 − 2α2

β2

α2

(
1 + β2

α2

)(
2 + β2

α2

)
+ xw1,0

β2

α2

(
1 + β2

α2

)
.

(3.33)

When w1 = 1, we use that from equation (3.8) x1,0 = 1 − r

α1 + β + 1
and x0,0 = 0, so

equation (3.33) implies that

B1 = B0
β1

α1 + β1 + 1 − 2α2
+ x1,0

β2

α2

(
1 + β2

α2

)[
1 + 2α2 + β2

α1 + β1 + 1 − 2α2

]

= β1

α1 + β1 + 1 − 2α2

r

β1 + 1 − 2α2

(
1 + β2

α2

)(
2 + β2

α2

)

+ β2

α2

(
1 + β2

α2

)
1 − r

α1 + β1 + 1 − 2α2
. (3.34)

When w1 > 1, equation (3.33) implies that

Bw1 = (w1 − 1)α1 + β1

w1α1 + β1 + 1 − 2α2

∞∑
i=0

xw1−1,i

(
i + β2

α2

)(
i + 1 + β2

α2

)
, (3.35)

where we applied that xw1,0 = (w1−1)α1+β1
w1α1+β+1 xw1−1,0. From equation (3.35) we obtain

that

Bw1 = (w1 − 1)α1 + β1

w1α1 + β1 + 1 − 2α2
Bw1−1 =

w1∏
k=2

k − 1 + β1
α1

k + β1+1−2α2
α1

B1

= Γ (w1 + β1
α1

)

Γ (1 + β1
α1

)

Γ (2 + β1+1−2α2
α1

)

Γ (w1 + 1 + β1+1−2α2
α1

)
B1. (3.36)

So from equation (3.30) we obtain that

Mw1 = Bw1

xw1,·
−

(
1 + 2

β2

α2

)
Ew1 − β2

α2

(
1 + β2

α2

)
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= Γ (2 + β1+1−2α2
α1

)

Γ (2 + β1+1
α1

)

Γ (w1 + 1 + β1+1
α1

)

Γ (w1 + 1 + β1+1−2α2
α1

)

B1

x1,·

−
(

1 + 2
β2

α2

)
Ew1 − β2

α2

(
1 + β2

α2

)
. (3.37)

Therefore (3.3) implies that the magnitude of Mw1 approaches w

β1+1
α1

− β1+1−2α2
α1

1 =
w

2
α2
α1

1 as w1 → ∞. More precisely,

Mw1 ∼ B1

x1,·
Γ (2 + β1+1−2α2

α1
)

Γ (2 + β1+1
α1

)
w

2
α2
α1

1 . (3.38)

Proof of Theorem 2.1. Propositions 2.3 and 2.4 imply

Mw1

E2
w1

∼ B1x1,·
A2

1

Γ (2 + β1+1−2α2
α1

)Γ (2 + β1+1
α1

)

(Γ (2 + β1+1−α2
α1

))2
(3.39)

as w1 → ∞. So Taylor’s law is satisfied asymptotically.

4 Numerical results

Here we present some numerical evidence supporting our result. The scheme of our
computer experiment is the following. We fixed the size N of the stars, the values
of the probabilities p, q and r and generated the graph as described in Section 2 up
to a fixed step n. Then we calculated Ew1 and Mw1 , that is, the expectation and the
second moment of peripheral weight w2 of the vertices when their central weight w1
is fixed. We visualized the function Ew1 → Mw1 using the logarithmic scale on both
axes. According to Theorem 2.1 the result should approximately be a straight line
with slope 2. We also calculated Ew2 and Mw2 , that is, the expectation and the second
moment of central weight w1 of the vertices when their peripheral weight w2 was
fixed. We visualized the function Ew2 → Mw2 using the logarithmic scale on both
axes. This curve also should approximately be a straight line with slope 2.

In the following five experiments we used various parameter sets. The step size
was always n = 108. One can check that in these five examples the conditions β1 +
1 > 2α2 and β2 + 1 > 2α1 are satisfied. In each case we see that both Ew1 → Mw1

and Ew2 → Mw2 are approximately straight lines on the log-log scale.

Experiment 4.1. Here N = 4, p = 0.4, q = 0.4, r = 0.4. On Figure 1 we see that
both Ew1 → Mw1 (left) and Ew2 → Mw2 (right) are approximately straight lines on
the log-log scale.

Experiment 4.2. N = 5, p = 0.4, q = 0.4 and r = 0.4. The results can be seen on
Figure 2.

Experiment 4.3. N = 5, p = 0.5, q = 0.5 and r = 0.5. The results can be seen on
Figure 3.
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Fig. 1. Ew1 → Mw1 (left) and Ew2 → Mw2 (right) on the log-log scale, when N = 4,
p = 0.4, q = 0.4, r = 0.4, and n = 108

Fig. 2. Ew1 → Mw1 (left) and Ew2 → Mw2 (right) on the log-log scale, when N = 5,
p = 0.4, q = 0.4, r = 0.4, and n = 108

Fig. 3. Ew1 → Mw1 (left) and Ew2 → Mw2 (right) on the log-log scale, when N = 5,
p = 0.5, q = 0.5, r = 0.5, and n = 108

Experiment 4.4. N = 6, p = 0.3, q = 0.6 and r = 0.3. The results can be seen on
Figure 4.

Experiment 4.5. N = 10, p = 0.4, q = 0.2 and r = 0.7. The results can be seen on
Figure 5.

Finally, we show a numerical result when the conditions of Theorem 2.1 are not
satisfied.
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Fig. 4. Ew1 → Mw1 (left) and Ew2 → Mw2 (right) on the log-log scale, when N = 6,
p = 0.3, q = 0.6, r = 0.3, and n = 108

Fig. 5. Ew1 → Mw1 (left) and Ew2 → Mw2 (right) on the log-log scale, when N = 10,
p = 0.4, q = 0.2, r = 0.7, and n = 108

Fig. 6. A case when Taylor’s power law is not satisfied. Ew1 → Mw1 (left) and Ew2 → Mw2

(right) on the log-log scale, when N = 5, p = 0.9, q = 0.5, r = 0.9, and n = 108

Experiment 4.6. Let N = 5, p = 0.9, q = 0.5 and r = 0.9, n = 108. On Figure 6
one can see that Taylor’s power law is not satisfied.
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