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Abstract It was recently proved that any strictly stationary stochastic process can be viewed
as an autoregressive process of order one with coloured noise. Furthermore, it was proved
that, using this characterisation, one can define closed form estimators for the model parameter
based on autocovariance estimators for several different lags. However, this estimation proce-
dure may fail in some special cases. In this article, a detailed analysis of these special cases is
provided. In particular, it is proved that these cases correspond to degenerate processes.

Keywords AR(1)-characterisation, stationary processes, covariance functions

2010 MSC 60G10, 62M10

1 Introduction

Stationary processes are an important tool in many practical applications of time se-
ries analysis, and the topic is extensively studied in the literature. Traditionally, sta-
tionary processes are modelled by using autoregressive moving average processes or
linear processes (see monographs [2, 4] for details).
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One of the most simple example of an autoregressive moving average process is
an autoregressive process of order one. That is, a process (Xt )t∈Z defined by

Xt = φXt−1 + εt , t ∈ Z, (1)

where φ ∈ (−1, 1) and (εt )t∈Z is a sequence of independent and identically dis-
tributed square integrable random variables. The continuous time analogue of (1) is
called the Ornstein–Uhlenbeck process, which can be defined as the stationary solu-
tion of the Langevin-type stochastic differential equation

dUt = −φUtdt + dWt, (2)

where φ > 0 and (Wt)t∈R is a two-sided Brownian motion. Such equations have also
applications in mathematical physics.

Statistical inference for AR(1)-process or Ornstein–Uhlenbeck process is well-
established in the literature. Furthermore, recently a generalised continuous time
Langevin equation, where the Brownian motion W in (2) is replaced with a more
general driving force G, have been a subject of an active study. Especially, the so-
called fractional Ornstein–Uhlenbeck processes introduced by [3] have been studied
extensively. For the parameter estimation in such models, we mention a recent mono-
graph [6] dedicated to the subject, and the references therein.

When the model becomes more complicated, the number of parameters increases
and the estimation may become a challenging task. For example, it may happen that
standard maximum likelihood estimators cannot be expressed in closed form [2].
Even worse, it may happen that classical estimators such as maximum likelihood
or least squares estimators are biased and not consistent (cf. [1] for discussions on
the generalised ARCH-model with liquidity given by fractional Brownian motion).
One way to tackle such problems is to consider one parameter model, and to replace
the white noise in (1) with some other stationary noise. It was proved in [8] that each
discrete time strictly stationary process can be characterised by

Xt = φXt−1 + Zt , (3)

where φ ∈ (0, 1). This representation can be viewed as a discrete time analogue
of the fact that Langevin-type equation characterises strictly stationary processes in
continuous time [7].

The authors in [8] applied characterisation (3) to model fitting and parameter
estimation. The presented estimation procedure is straightforward to apply with the
exception of certain special cases. The purpose of this paper is to provide a compre-
hensive analysis of these special cases. In particular, we show that such cases do not
provide very useful models. This highlights the wide applicability of characterisation
(3) and the corresponding estimation procedure.

The rest of the paper is organised as follows. In Section 2 we briefly discuss
the motivating estimation procedure of [8]. We also present and discuss our main
results together with some illustrative figures. All the proofs and technical lemmas
are postponed to Section 3. Section 4 provides a small simulation study comparing an
estimator of quadratic type arising out of (3) with the classical Yule–Walker estimator
in the case of an AR(1)-process. We end the paper with discussion.
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2 Motivation and formulation of the main results

Let X = (Xt )t∈Z be a stationary process. It was shown in [8] that equation

Xt = φXt−1 + Zt , (4)

where φ ∈ (0, 1) and Zt is another stationary process, characterises all discrete time
(strictly) stationary processes. Throughout this paper we suppose that X and Z are
square integrable processes with autocovariance functions γ (·) and r(·), respectively.
Using Equation (4), one can derive the quadratic equations of the Yule–Walker type
for the parameter φ, which can be solved in an explicit form. Namely, for any m ∈ Z

such that γ (m) �= 0 we have

φ = γ (m+ 1)+ γ (m− 1)± √
(γ (m+ 1)+ γ (m− 1))2 − 4γ (m)(γ (m)− r(m))

2γ (m)
.

(5)
The estimation of the parameter φ is obvious from (5) provided that one can deter-
mine which sign, plus or minus, should be chosen. In practice, this can be done by
choosing different lags m for which the covariance function γ (m) is estimated. Then
one can determine the correct value φ by comparing different signs in (5) for different
lags m (We refer to [8, p. 387] for detailed discussion). However, this approach fails,
i.e. one cannot find suitable lags leading to the correct choice of the sign and only one
value φ, if, for m ∈ Z such that γ (m) = 0 we also have r(m) = 0, and for any m ∈ Z

such that γ (m) �= 0, the ratio

am = r(m)

γ (m)
= a (6)

for some constant a ∈ (0, 1). The latter is equivalent [8, p. 387] to the fact that

γ (m + 1) + γ (m − 1)

γ (m)
= b

for some constant b with φ < b < φ + φ−1. This leads to

γ (m + 1) = bγ (m) − γ (m − 1). (7)

Moreover, if γ (m) = r(m) = 0 for some m, it is straightforward to verify that (7)
holds in this case as well. Thus (7) holds for all m ∈ Z. Since covariance functions
are necessarily symmetric, we obtain an “initial” condition γ (1) = b

2γ (0). Thus (7)
admits a unique symmetric solution.

By the Cauchy–Schwarz inequality and equality γ (1) = b
2γ (0), it is clear that (7)

does not define covariance function for b > 2. Furthermore, since φ > 0, we conduct
a comprehensive analysis of the special cases by studying the functions given by
(7) with b ∈ [0, 2] (we include the trivial case b = 0). For b = 2 Equation (7)
corresponds to the case Xt = X0 for all t ∈ Z which is hardly interesting. Similarly,
the case b = 0 leads to a process (. . . , X0, X1,−X0,−X1, X0, X1, . . .) which again
does not provide a practical model. On the other hand, it is not clear whether for some
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other values b ∈ (0, 2) Equation (7) can lead to some non-trivial model in which the
estimation procedure explained above cannot be applied. By our first main theorem,
for any b ∈ [0, 2], Equation (7) defines a covariance function. On the other hand,
the resulting covariance function, denoted by γb, leads to a model that is not very
interesting either.

Theorem 2.1. Let b ∈ (0, 2) and γb be the (unique) symmetric function satisfying
(7). Then

1. Let b = 2 sin ( k
l

π
2 ), where k and l are strictly positive integers such that k

l
∈

(0, 1). Then γb(m) is periodic.

2. Let b = 2 sin (r π
2 ), where r ∈ (0, 1)\Q. Then for any M ≥ 0, the set {γb(M +

m) : m ≥ 0} is dense in [−γ (0), γ (0)].
3. For any b ∈ [0, 2], γb(·) is a covariance function.

In many applications of stationary processes, it is assumed that the covariance
function γ (·) vanishes at infinity, or that γ (·) is periodic. Note that the latter case cor-
responds simply to the analysis of finite-dimensional random vectors with identically
distributed components. Indeed, γ (m) = γ (0) implies Xn = X0 almost surely, so
periodicity of γ (·) with period N implies that there exists at most N random vari-
ables as the source of randomness. By items (2) and (3) of Theorem 2.1, we observe
that, for suitable values of b, (7) can be used to construct covariance functions that
are neither periodic nor vanishing at infinity. On the other hand, in this case there are
arbitrary large lags m such that γb(m) is arbitrary close to γb(0). Consequently, due
to the strong dependency structure, it is expected that different estimation procedures
will fail. Indeed, even the standard covariance estimators are not consistent. A conse-
quence of Theorem 2.1 is that only a little structure in the noise Z is needed in order
to apply the estimation procedure of the parameter φ introduced in [8], provided that
one has consistent estimators for the covariances of X. The following is a precise
mathematical formulation of this observation.

Theorem 2.2. Let X be given by (4) for some φ ∈ (0, 1) and noise Z. Assume that
there exists ε > 0 and M ∈ N such that r(m) ≤ r(0)(1 − ε) or r(m) ≥ −r(0)(1 − ε)

for all m ≥ M . Then the covariance function γ of X does not satisfy (7) for any
b ∈ [0, 2].

In most situations, a natural assumption regarding the covariance of the noise is
r(m) → 0 as m → ∞. In this case, Theorem 2.2 gets obviously satisfied. We end
this section by visual illustrations of the covariance functions defined by (7). In these
examples we have set γb(0) = 1. In Figures 1a and 1b we have illustrated the case of
item (1) of Theorem 2.1. Note that in Figure 1a we have b = 2 sin( 1

3
π
2 ) = 1. Figures

1c and 1d demonstrate how k can affect the shape of the covariance function. Finally,
Figures 1e and 1f illustrate the case of item (2) of Theorem 2.1.

3 Proofs

Throughout this section, without loss of generality, we assume γb(0) = 1. We also
drop the subscript and simply write γ for γb. The following first result gives explicit
formula for the solution to (7).
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Fig. 1. Examples of covariance functions corresponding to b = 2 sin( k
l

π
2 ) and b = 2 sin(r π

2 )

Proposition 3.1. The unique symmetric solution to (7) is given by

γ (m) =
{

(−1)
m
2 cos (m arcsin ( b

2 )), for m is even

(−1)
(m−1)

2 sin (m arcsin ( b
2 )), for m is odd.

(8)
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Proof. Clearly, γ (m) given by (8) is symmetric, and thus it suffices to consider m ≥
0. Moreover γ (0) = 1 and γ (1) = b

2 . We use the short notation A = arcsin ( b
2 ), so

that sin A = b
2 . Assume first m + 2 ≡ 2 (mod 4). Then

γ (m + 2) = − cos
(
(m + 2)A

) = − cos (mA) cos (2A) + sin (mA) sin (2A)

= − cos (mA)
(
1 − 2 sin2 A

) + 2 sin (mA) sin A cos A

= − cos (mA)(1 − b sin A) + b sin (mA) cos A

= b
(
cos (mA) sin A + sin (mA) cos A

) − cos (mA)

= b sin
(
(m + 1)A

) − cos (mA) = bγ (m + 1) − γ (m).

Treating the cases m+ 2 ≡ 3 (mod 4), m+ 2 ≡ 0 (mod 4) and m+ 2 ≡ 1 (mod 4)

similarly, we deduce that (8) satisfies (7).

Remark 3.2. Using (7) directly, we observe, for even m ≥ 1, that

γ (m) = bm +
m−1∑
n= m

2

(−1)m−n

((
n

m − n

)
b2n−m +

(
n

m − n − 1

)
b2n−m+2

2

)
. (9)

Similarly, for odd m ≥ 1, we obtain

γ (m) =
m∑

n= m+1
2

(−1)m−n

(
n

m − n

)
b2n−m +

m−1∑
n= m−1

2

(−1)m−n

(
n

m − n − 1

)
b2n−m+2

2
.

(10)
These formulas are finite polynomial expansions, in variable b, of the functions pre-
sented in (8) which could have been deduced also by using some well-known trigono-
metric identities.

Before proving our main theorems we need several technical lemmas.

Definition 3.3. We denote with Q a subset of rationals defined by

Q :=
{

k

l
: k, l ∈ N,

k

l
∈ (0, 1), k − l ≡ 1 (mod 2)

}
.

Remark 3.4. The modulo condition above means only that either k is even and l is
odd, or vice versa.

Lemma 3.5. Let x = k
l

π
2 , where k

l
∈ Q. Then

2l−1∑
j=1

cos2 (jx)(−1)j = −1.

Proof. We write

2l−1∑
j=1

cos2 (jx)(−1)j = cos2 (lx)(−1)l +
l−1∑
j=1

cos2 (jx)(−1)j +
2l−1∑

j=l+1

cos2 (jx)(−1)j .
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Change of variable t = j − l gives

2l−1∑
j=l+1

cos2 (jx)(−1)j =
l−1∑
t=1

cos2 (
(t + l)x

)
(−1)t+l

=
l−1∑
t=1

cos2
(

tx + k
π

2

)
(−1)t+l =

{ ∑l−1
t=1 cos2 (tx)(−1)t+l , k even∑l−1
t=1 sin2 (tx)(−1)t+l , k odd.

Consequently, for even k and odd l we have

2l−1∑
j=1

cos2 (jx)(−1)j = − cos2
(

k
π

2

)
= −1.

Similarly, for odd k and even l,

2l−1∑
j=1

cos2 (jx)(−1)j = cos2
(

k
π

2

)
+

l−1∑
j=1

(−1)j = −1.

Lemma 3.6. Let γ (·) be given by (8) with b = 2 sin ( k
l

π
2 ) for some k

l
∈ Q. Then the

non-zero eigenvalues of the matrix

C :=

⎡
⎢⎢⎢⎣

γ (0) γ (1) · · · γ (4l − 1)

γ (1) γ (0) · · · γ (4l − 2)
...

...
. . .

...

γ (4l − 1) γ (4l − 2) · · · γ (0)

⎤
⎥⎥⎥⎦ (11)

are either 2l of multiplicity 2 or 4l of multiplicity 1.

Proof. Let ci denote the ith column of C. Then, by the defining equation (7), ci =
bci−1 − ci−2 for any i ≥ 3. Consequently, there exists at most two linearly inde-
pendent columns. Thus rank(C) ≤ 2, which in turn implies that there exists at most
two non-zero eigenvalues λ1 and λ2. In order to compute λ1 and λ2, we recall the
following identities:

tr(C) = λ1 + λ2 = 4l, (12)

tr
(
C2) = λ2

1 + λ2
2 = ||C||2F , (13)

where || · ||F is the Frobenius norm. If rank(C) = 1, then λ2 = 0, implying the
second part of the claim. Suppose then rank(C) = 2. Observing that the squared
sum of the diagonals is 4l and, for j = 1, 2, . . . , 4l − 1, a term γ (j) appears in C

exactly 2(4l − j) times, we obtain

||C||2F = 4l + 2
4l−1∑
j=1

(4l − j)γ (j)2.
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Dividing the sum into two parts and using sin2(x) = 1 − cos2(x) we have

||C||2F = 4l + 2
2l−1∑
j=0

(
4l − (2j + 1)

)
γ (2j + 1)2 + 2

2l−1∑
j=1

(4l − 2j)γ (2j)2

= 4l + 2
2l−1∑
j=0

(
4l − (2j + 1)

)
sin2 (

(2j + 1)x
) + 2

2l−1∑
j=1

(4l − 2j) cos2 (2jx)

= 4l + 2
2l−1∑
j=0

(
4l − (2j + 1)

) + 2
4l−1∑
j=1

(4l − j) cos2 (jx)(−1)j

= 8l2 + 4l + 2
4l−1∑
j=1

(4l − j) cos2 (jx)(−1)j ,

where in the last equality we have used

2l−1∑
j=0

(
4l − (2j + 1)

) =
2l−1∑
j=0

(4l − 1) − 2
2l−1∑
j=0

j = 2l(4l − 1) + 2l(2l − 1) = 4l2.

Now

4l−1∑
j=1

(4l − j) cos2 (jx)(−1)j = 2l +
2l−1∑
j=1

(4l − j) cos2(jx)(−1)j

+
4l−1∑

j=2l+1

(4l − j) cos2(jx)(−1)j , (14)

where substitution j = 4l − t yields

4l−1∑
j=2l+1

(4l − j) cos2(jx)(−1)j =
2l−1∑
t=1

t cos2(tx)(−1)t . (15)

Now (14), (15), and Lemma 3.5 imply

||C||2F = 8l2 + 4l + 2

(
2l + 4l

2l−1∑
j=1

cos2(jx)(−1)j
)

= 8l2.

Finally, using (12) and (13) together with ||C||2F = 8l2, we obtain

λ2
1 + (4l − λ1)

2 − 8l2 = 2λ2
1 − 8lλ1 + 8l2 = (

√
2λ1 − √

8l)2 = 0.

Hence λ1 = λ2 = 2l.

We are now ready to prove Theorem 2.1 and Theorem 2.2.
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Proof the Theorem 2.1. Throughout the proof we denote a2 ≡ a1 (mod 2π) if
a2 = a1 + 2kπ for some k ∈ Z. That is, a1 and a2 are identifiable when regarding
them as points on the unit circle. By a3 ∈ (a1, a2) (mod 2π) we mean that a3 ≡ a

(mod 2π) for some a ∈ (a1, a2).

1. Since arcsin ( b
2 ) = k

l
π
2 , the first claim follows from Proposition 3.1 together

with the fact that functions sin(·) and cos(·) are periodic. In particular, we have
γ (4l + m) = γ (m) for every m ∈ Z.

2. Denote A = arcsin( b
2 ) = r π

2 . By Proposition 3.1, mA is the corresponding
angle for γ (m) on the unit circle. Note first that, due the periodic nature of cos
and sin functions, it suffices to prove the claim only in the case M = 0. In
what follows, we assume that m ≥ 0. We show that the function γ (m),m ≡ 0
(mod 4) is dense in [−1, 1], while a similar argument could be used for other
equivalence classes as well. That is, we show that the function cos(mA),m ≡ 0
(mod 4) is dense in [−1, 1]. Essentially this follows from the observation that,
as r /∈ Q, the function m �→ cos(mA) is injective. Indeed, if cos(m̃A) =
cos(mA) for some m̃,m ≥ 0, m̃ �= m, it follows that

m̃A = m̃r
π

2
= ±mr

π

2
+ k2π = ±mA + k2π for some k ∈ Z.

This implies

r = 4k

m̃ ± m
,

which contradicts r /∈ Q. Since cos(mA) is injective, it is intuitively clear that
cos(mA),m ≡ 0 (mod 4) is dense in [−1, 1]. For a precise argument, we argue
by contradiction and assume there exists an interval (c1, d1) ⊂ [−1, 1] such
that cos(mA) /∈ (c1, d1) for any m ≡ 0 (mod 4). This implies that there exists
an interval (c2, d2) ⊂ [0, 2π] such that for every m ≡ 0 (mod 4) it holds that
mA /∈ (c2, d2) (mod 2π). Without loss of generality, we can assume c2 = 0
and that for some m0 ≡ 0 (mod 4) we have m0A ≡ 0 (mod 2π). Let mn =
m0 + 4n with n ∈ N and denote by 
·� the standard floor function. Suppose
that for some n ∈ N and pn ∈ (−d2, 0) we have mnA ≡ pn (mod 2π). Since
by injectivity 2π

|pn| /∈ N, we get m
n
 2π

|pn| �A ∈ (0, d2) (mod 2π) leading to a

contradiction. This implies that for every n ∈ N we have mnA /∈ (−d2, d2)

(mod 2π) (for a visual illustration, see Figure 2a). Similarly, assume next that
mn1A ≡ pn1 (mod 2π) and mn1+n2A − mn1A ∈ (−d2, d2) (mod 2π). Then
mn2A ∈ (−d2, d2) (mod 2π) which again leads to a contradiction (see Figure
2b). This means that for an arbitrary point pn on the unit circle such that mnA ≡
pn (mod 2π), we get an interval (pn − d2, pn + d2) (understood as an angle
on the unit circle) such that this interval cannot be visited later. As the whole
unit circle is covered eventually, we obtain the expected contradiction.

3. Consider first the case b = 2 sin ( k
l

π
2 ), where k

l
∈ Q. By Lemma 3.6, the

symmetric matrix C defined by (11) has non-negative eigenvalues, and thus
C is a covariance matrix of some random vector (X0, X1, . . . , X4l−1). Now it
suffices to extend this vector to a process X = (Xt )t∈Z by the relation X4l+t =
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Fig. 2. Examples of excluded intervals. In part (a) we have set n∗ = 
 2π
|pn| � and visualized the

points on the unit circle corresponding to the steps 0, n, 2n, (n∗ − 1)n and n∗n. In part (b) we
have visualised excluded intervals around zero and an angle mn1A

Xt . Indeed, it is straightforward to verify that X has the covariance function γ .
Assume next b = 2 sin (r π

2 ), where r ∈ (0, 1) \ Q. We argue by contradiction
and assume that there exists k ∈ N, and vectors t = (t1, t2, . . . , tk)

T ∈ Zk and
a = (a1, a2, . . . , ak)

T ∈ Rk such that

k∑
i,j=1

aiγ (ti − tj )aj = −ε for some ε > 0,

where γ (·) is the covariance function corresponding to the value b. Since Q

is dense in [0, 1], it follows that there exists (qn)n∈N ⊂ Q such that qn → r .
Denote the corresponding sequence of covariance functions with (γn(·))n∈N.
By definition,

k∑
i,j=1

aiγn(ti − tj )aj ≥ 0 for every n.

On the other hand, continuity implies γn(m) → γ (m) for every m. This leads
to

lim
n→∞

k∑
i,j=1

aiγn(ti − tj )aj =
k∑

i,j=1

aiγ (ti − tj )aj = −ε

giving the expected contradiction.

Remark 3.7. Note that in the periodic case the covariance matrix C defined by (11)
satisfies rank(C) ≤ 2. Thus, in this case, the process (Xt )t∈Z is driven linearly by
only two random variables Y1 and Y2. In other words, we have

Xt = a1(t)Y1 + a2(t)Y2, t ∈ Z,

for some deterministic coefficients a1(t) and a2(t).
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Proof of Theorem 2.2. Suppose γ satisfies (7) and r(m) ≤ r(0)(1 − ε) for all m ≥
M . By Theorem 2.1, there exists m∗ ≥ M such that

γ
(
m∗) ≥ γ (0)

(
1 − ε

2

)
.

Furthermore, (7) implies (6) for every m such that γ (m) �= 0. Now

am∗ = r(m∗)
γ (m∗)

≤ r(0)(1 − ε)

γ (0)(1 − ε
2 )

<
r(0)

γ (0)
= a0

leads to a contradiction. Treating the case r(m) ≥ −r(0)(1 − ε) for all m ≥ M

similarly concludes the proof.

4 Simulations

In this section we present a simulation study in order to compare the classical Yule–
Walker estimator with our quadratic type estimator in the case of an AR(1)-process.

If (Zt )t∈Z is chosen to be white noise in the characterisation (4), the process is
an AR(1)-process with φ > 0 and equations (5) provide natural estimators for the
AR(1)-parameter. In this case, it can be verified that the minus sign in (5) is the
correct choice whenever m �= 0 (see the discussion about determining the correct
sign based on the ratio r(m)

γ (m)
in [8]). If m = 0, then the discriminant of (5) equals to

zero yielding

φ = γ (1)

γ (0)
, (16)

which is the classical Yule–Walker equation for the model parameter. The same equa-
tion is also given by Theorem 2 of [8]. We would also like to point out that, when
k = 0 is chosen, the other Yule–Walker equation

γ (0) = φγ (1) + r(0)

related to AR(1)-processes is given by Equation 7 of [8].
Figure 3 displays histograms comparing efficiencies of the Yule–Walker estima-

tor given by (16) and the alternative estimator given by (5) with m = 1. We simu-
lated data from an AR(1)-process with φ = 0.5. The used sample size and number
of iterations were 10000 and 1000, respectively. The sample mean and sample vari-
ance of the alternative estimates (3a) are 0.5000318 and 0.0001030415. For classical
Yule–Walker estimates (3b), the corresponding sample statistics are 0.4998632 and
7.771528e-05. Thereby it seems that, in this setting, the variances of the two esti-
mators are of the same order. Moreover, the slightly better performance of the Yule–
Walker estimator is something that could have been expected. Indeed, the autoco-
variance function of an AR(1)-process is exponentially decreasing and consequently,
the denominator γ (m) acts as an variance increasing factor in the estimators as m

grows. For asymptotic distributions of estimators given by (5) and a more extensive
simulation study, we refer to [8].
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Fig. 3. Classical Yule–Walker estimates of an AR(1)-process and alternative estimates corre-
sponding to the lag m = 1

5 Discussion

We have shown (Theorem 2.2) that the estimation method arising out of the AR(1)-
characterisation introduced in [8] is applicable except in a very special class of pro-
cesses. These processes are highly degenerate, namely, they are either driven by two
random variables only (Remark 3.7) or their covariance functions can be approxi-
mated with covariance functions of such processes (proof of Theorem 2.1 item 3).

The discussed estimation procedure has recently been applied in practice in [5],
where we considered a generalized ARCH model with stationary liquidity. As men-
tioned in [1], the usual approaches of LS and ML methods fail even in the case of liq-
uidity given by the squared increments of a fractional Brownian motion with H �= 1

2 .
However, with our method, we were able to derive estimators for the model param-
eters in the case of liquidity given by a general class of stationary processes. In a
more general context, it could be argued that whenever it is possible to derive the
maximization problem related, e.g., to ML and QL methods in an adequate way, then
these methods provide more efficient estimators. However, deriving ML or QL esti-
mators may turn out to be a difficult task to accomplish. Moreover, unlike our method,
these approaches require that the practitioner knows the underlying distribution up to
the parameters of interest.

In addition to the above mentioned generalized ARCH model, it would be inter-
esting to study whether our method can be applied in modeling and estimation of
different temporal (stationary) models. For example, one could consider GARCH-X
models or even integer valued processes such as INAR(1). However, caution should
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be taken when comparing different methods and interpreting the results since, in gen-
eral, the parameters arising out of the AR(1)-characterisation do not coincide with
the parameters of the original model.
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