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Abstract Moment inequalities for a class of functionals of i.i.d. random fields are proved.
Then rates are derived in the central limit theorem for weighted sums of such randoms fields
via an approximation by m-dependent random fields.
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1 Introduction and main results

1.1 Goal of the paper
In its simplest form, the central limit theorem states that if (Xi)i�1 is an independent
identically distributed (i.i.d.) sequence of centered random variables having variance
one, then the sequence (n−1/2 ∑n

i=1 Xi)n�1 converges in distribution to a standard
normal random variable. If X1 has a finite moment of order three, Berry [2] and
Esseen [12] gave the following convergence rate:

sup
t∈R

∣∣∣∣P
{
n−1/2

n∑
i=1

Xi � t

}
− P{N � t}

∣∣∣∣ � CE
[|X1|3

]
n−1/2, (1)

where C is a numerical constant and N has the standard normal distribution. The
question of extending the previous result to a larger class of sequences has received
a lot of attention. When Xi can be represented as a function of an i.i.d. sequence,
optimal convergence rates are given in [13].
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In this paper, we will focus on random fields, that is, collections of random vari-
ables indexed by Z

d and more precisely in Bernoulli random fields, which are defined
as follows.

Definition 1. Let d � 1 be an integer. The random field (Xn)n∈Zd is said to be
Bernoulli if there exist an i.i.d. random field (εi)i∈Zd and a measurable function

f : RZ
d → R such that Xn = f ((εn−i)i∈Zd ) for each n ∈ Z

d .

We are interested in the asymptotic behavior of the sequence (Sn)n�1 defined by

Sn :=
∑
i∈Zd

bn,iXi, (2)

where bn := (bn,i)i∈Zd is an element of �2(Zd). Under appropriated conditions on
the dependence of the random field (Xi)i∈Zd and the sequence of weights (bn)n�1
that will be specified later, the sequence (Sn/‖bn‖2)n�1 converges in law to a normal
distribution [15]. The goal of this paper is to provide bounds of the type Berry–Esseen
in order to give convergence rates in the central limit theorem.

This type of question has been addressed for the so-called BL(θ)-dependent ran-
dom fields [5], martingale differences random fields [19], positively and negatively
dependent random fields [4, 20] and mixing random fields [1, 6].

In order to establish results of this kind, we need several ingredients. First, we
need convergence rates for m-dependent random fields. Second, a Bernoulli ran-
dom field can be decomposed as the sum of an m-dependent random field and a
remainder. The control of the contribution of the remainder is done by a moment
inequality in the spirit of Rosenthal’s inequality [24]. One of the main applications
of such an inequality is the estimate of the convergence rates in the central limit
theorem for random fields that can be expressed as a functional of an i.i.d. random
field. The method consists of approximating the considered random field by an m-
dependent one and controlling the approximation with the help of the established
moment inequality. In the one-dimensional case, probability and moment inequali-
ties have been established in [16] for maxima of partial sums of Bernoulli sequences.
The techniques used therein permit to derive results for weighted sums of such se-
quences.

The paper is organized as follows. In Subsection 1.2, we give the material which is
necessary to understand the moment inequality stated in Theorem 1. We then give the
results on convergence rates in Subsection 1.3 (for weighted sums, sums on subsets of
Z

d and in a regression model) and compare the obtained results in the case of linear
random fields with some existing ones. Section 2 is devoted to the proofs.

1.2 Background

The following version of Rosenthal’s inequality is due to Johnson, Schechtman and
Zinn [14]: if (Yi)

n
i=1 are independent centered random variables with a finite moment

of order p � 2, then

∥∥∥∥
n∑

i=1

Yi

∥∥∥∥
p

� 14.5p

log p

(( n∑
i=1

‖Yi‖2
2

)1/2

+
( n∑

i=1

‖Yi‖p
p

)1/p)
, (3)
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where ‖Y‖q := (E[|Y |q ])1/q for q � 1.
It was first establish without explicit constant in Theorem 3 of [24].
Various extensions of Rosenthal-type inequalities have been obtained under mix-

ing conditions [25, 22] or projective conditions [21, 23, 17]. We are interested in
extensions of (3) to the setting of dependent random fields.

Throughout the paper, we shall use the following notations.

(N.1) For a positive integer d , the set {1, . . . , d} is denoted by [d].
(N.2) The coordinatewise order is denoted by �, that is, for i = (iq)dq=1 ∈ Z

d and

j = (jq)dq=1 ∈ Z
d , i � j means that ik � jk for any k ∈ [d].

(N.3) For q ∈ [d], eq denotes the element of Zd whose qth coordinate is 1 and all
the others are zero. Moreover, we write 0 = (0, . . . , 0) and 1 = (1, . . . , 1).

(N.4) For n = (nk)
d
k=1 ∈ N

d , we write the product
∏d

k=1 nq as |n|.
(N.5) The cardinality of a set I is denoted by |I |.
(N.6) For a real number x, we denote by [x] the unique integer such that [x] � x <

[x] + 1.

(N.7) We write Φ for the cumulative distribution function of the standard normal
law.

(N.8) If Λ is a subset of Zd and k ∈ Z
d , then Λ − k is defined as {l − k, l ∈ Λ}.

(N.9) For q � 1, we denote by �q(Zd) the space of sequences a := (ai)i∈Zd such
that ‖a‖�q := (

∑
i∈Zd |ai |q)1/q < +∞.

(N.10) For i = (iq)dq=1, the quantity ‖i‖∞ is defined as max1�q�d |iq |.
Let (Yi)i∈Zd be a random field. The sum

∑
i∈Zd Yi is understood as the L

1-limit
of the sequence (Sk)k�1 where Sk = ∑

i∈Zd ,‖i‖∞�k Yi .
Following [27] we define the physical dependence measure.

Definition 2. Let (Xi)i∈Zd := (f ((εi−j ))j∈Zd )i∈Zd be a Bernoulli random field,
p � 1 and (ε′

u)u∈Zd be an i.i.d. random field which is independent of the i.i.d. random
field (εu)u∈Zd and has the same distribution as (εu)u∈Zd . For i ∈ Z

d , we introduce
the physical dependence measure

δi,p := ∥∥Xi − X∗
i

∥∥
p
, (4)

where X∗
i = f ((ε∗

i−j )j∈Zd ) and ε∗
u = εu if u �= 0, ε∗

0 = ε′
0.

In [11, 3], various examples of Bernoulli random fields are given, for which the
physical dependence measure is either computed or estimated. Proposition 1 of [11]
also gives the following moment inequality: if Γ is a finite subset of Zd , (ai)i∈Γ is a
family of real numbers and p � 2, then for any Bernoulli random field (Xn)n∈Zd ,∥∥∥∥∑

i∈Γ

aiXi

∥∥∥∥
p

�
(

2p
∑
i∈Γ

a2
i

)1/2

·
∑
j∈Zd

δj ,p. (5)
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This was used in [11, 3] in order to establish functional central limit theorems. Tru-
quet [26] also obtained an inequality in this spirit. If (Xi)i∈Zd is an i.i.d. and centered
random field, (3) would give∥∥∥∥∑

i∈Γ

aiXi

∥∥∥∥
p

� C

(∑
i∈Γ

a2
i

)1/2

‖X1‖p, (6)

while Rosenthal’s inequality (3) would give∥∥∥∥∑
i∈Γ

aiXi

∥∥∥∥
p

� C

(∑
i∈Γ

a2
i

)1/2

‖X1‖2 + C

(∑
i∈Γ

|ai |p
)1/p

‖X1‖p, (7)

what is a better result in this context.
In the case of linear processes, equality δj ,p � Kδj ,2 holds for a constant K

which does not depend on j . However, there are processes for which such an in-
equality does not hold.
Example 1. We give an example of a random field for which there is no constant
K such that δj ,p � Kδj ,2 holds for all j ∈ Z

d . Let p � 2 and let (εi)i∈Zd be an
i.i.d. random field and for each k ∈ Z

d , let fk : R → R be a function such that the
random variable Zk := fk(ε0) is centered and has a finite moment of order p, and∑

k∈Zd ‖Zk‖2
2 < +∞. Define Xn := limN→+∞

∑
−N1�j�N1 fk(εn−k), where the

limit is taken in L
2. Then Xi − X∗

i = fi(ε0) − fi(ε
′
0), hence δi,2 is of order ‖Zi‖2

while δi,p is of order ‖Zi‖p.
Consequently, having the �p-norm instead of the �2-norm of the (ai)i∈Γ is more

suitable.

1.3 Mains results
We now give a Rosenthal-like inequality for weighted sums of Bernoulli random
fields in terms of the physical dependence measure.

Theorem 1. Let (εi)i∈Zd be an i.i.d. random field. For any measurable function

f : RZ
d → R such that Xj := f ((Xj−i)i∈Zd ) has a finite moment of order p � 2

and is centered, and any (ai)i∈Zd ∈ �2(Zd),

∥∥∥∥∑
i∈Zd

aiXi

∥∥∥∥
p

� 14.5p

log p

(∑
i∈Zd

a2
i

)1/2 +∞∑
j=0

(4j + 4)d/2‖X0,j‖2

+ 14.5p

log p

(∑
i∈Zd

|ai |p
)1/p +∞∑

j=0

(4j + 4)d(1−1/p)‖X0,j‖p, (8)

where for j � 1,

X0,j = E
[
X0 | σ

{
εu, ‖u‖∞ � j

}] − E
[
X0 | σ

{
εu, ‖u‖∞ � j − 1

}]
(9)

and X0,0 = E[X0 | σ {ε0}].
We can formulate a version of inequality (8) where the right-hand side is ex-

pressed in terms of the coefficients of the physical dependence measure. The obtained
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result is not directly comparable to (5) because of the presence of the �p-norm of the
coefficients.

Corollary 1. Let {εi, i ∈ Z
d} be an i.i.d. set of random variables. Then for any

measurable function f : RZ
d → R such that Xj := f ((Xj−i)i∈Zd ) has a finite

moment of order p � 2 and is centered, and any (ai)i∈Zd ∈ �2(Zd),

∥∥∥∥∑
i∈Zd

aiXi

∥∥∥∥
p

�
√

2
14.5p

log p

(∑
i∈Zd

a2
i

)1/2 +∞∑
j=0

(4j + 4)d/2
( ∑

‖i‖∞=j

δ2
i,2

)1/2

+ √
2

14.5p

log p

√
p − 1

(∑
i∈Zd

|ai |p
)1/p +∞∑

j=0

(4j + 4)d(1−1/p)

( ∑
‖i‖∞=j

δ2
i,p

)1/2

. (10)

Let (Xj )j∈Zd = f ((εj−i)i∈Zd ) be a centered square integrable Bernoulli random
field and for any positive integer n, let bn := (bn,i)i∈Zd be an element of �2(Zd). We
are interested in the asymptotic behavior of the sequence (Sn)n�1 defined by

Sn :=
∑
i∈Zd

bn,iXi . (11)

Let us denote for k ∈ Z
d the map τk : �2(Zd) → �2(Zd) defined by

τk

(
(xi)i∈Zd

) := (xi+k)i∈Zd .

In [15], Corollary 2.6 gives the following result: under a Hannan type condition on
the random field (Xi)i∈Zd and under the condition on the weights that for any q ∈ [d],

1

‖bn‖�2

∥∥τeq (bn) − bn

∥∥
�2 = 0, (12)

the series
∑

i∈Zd | Cov(X0, Xi)| converges, and the sequence (Sn/‖bn‖�2)n�1 con-
verges in distribution to a centered normal distribution with variance σ 2, where

σ :=
(∑

i∈Zd

Cov(X0, Xi)

)1/2

. (13)

The argument relies on an approximation by an m-dependent random field.
The purpose of the next theorem is to give a general rates of convergence. In order

to measure it, we define

Δn := sup
t∈R

∣∣∣∣P
{

Sn

‖bn‖�2
� t

}
− Φ(t/σ )

∣∣∣∣. (14)

The following quantity will also play an important role in the estimation of conver-
gence rates:

εn :=
∑
j∈Zd

∣∣E[X0Xj ]∣∣ ∑
i∈Zd

∣∣∣∣bn,ibn,i+j

‖bn‖�2
− 1

∣∣∣∣. (15)

Theorem 2. Let p > 2, p′ := min{p, 3} and let (Xj )j∈Zd = (f ((εj−i)i∈Zd ))j∈Zd

be a centered Bernoulli random field with a finite moment of order p and for any
positive integer n, let bn := (bn,i)i∈Zd be an element of �2(Zd) such that for any
n � 1, the set {k ∈ Z

d, bn,k �= 0} is finite and nonempty, limn→+∞‖bn‖�2 = +∞



256 D. Giraudo

and (12) holds for any q ∈ [d]. Assume that for some positive α and β, the following
series are convergent:

C2(α) :=
+∞∑
i=0

(i + 1)d/2+α‖X0,i‖2 and Cp(β) :=
+∞∑
i=0

(i + 1)d(1−1/p)+β‖X0,i‖p.

(16)
Let Sn be defined by (11).
Assume that

∑
i∈Zd | Cov(X0, Xi)| is finite and that σ be given by (13) is positive.

Let γ > 0 and let

n0 := inf
{
N � 1 | ∀n � N,

√
σ 2 + εn − 29(log 2)−1C2(α)

([‖bn‖�2

]γ )−α � σ/2
}
.

(17)
Then for each n � n0,

Δ̃n � 150
(
29

([‖bn‖�2

] + 21
)γ + 21

)(p′−1)d‖X0‖p′
p′

(‖bn‖�p′

‖bn‖�2

)p′

(σ/2)−p′

+
(

2
|εn|
σ 2 + 80(log 2)−1

‖bn‖−γα

�2

σ 2 C2(α)2
)

(2πe)−1/2

+
(

14.5p

σ log p
4d/2‖bn‖−γα

�2 C2(α)

) p
p+1

+
( ‖bn‖�p

σ‖bn‖�2

14.5p

log p
4d(1−1/p)‖bn‖−γβ

�2 Cp(β)

) p
p+1

. (18)

In particular, there exists a constant κ such that for all n � n0,

Δn � κ
(‖bn‖γ (p′−1)d−p′

�2 ‖bn‖p′
�p′ + |εn|

)
+ κ

(‖bn‖−γα
p

p+1

�2 + ‖bn‖
p

p+1
�p ‖bn‖− p

p+1 (γβ+1)

�2

)
. (19)

Remark 1. If (12), limn→+∞‖bn‖�2 = +∞ and the family (δi,2)i∈Zd is summable,
then the sequence (εn)n�1 converges to 0 hence n0 is well defined. However, it is not
clear to us whether the finiteness of C2(α) combined with (12) and limn→+∞‖bn‖�2 =
+∞ imply that

∑
j∈Zd |E[X0Xj ]| is finite. Nevertheless, we can show an analogous

result in terms of coefficients δi,p with the following changes in the statement of
Theorem 2:

1. the definition of C2(α) should be replaced with

C2(α) := √
2

+∞∑
j=0

(j + 1)d/2+α

( ∑
‖i‖∞=j

δ2
i,2

)1/2

; (20)

2. the definition of Cp(β) should be replaced with

Cp(β) := √
2(p − 1)

+∞∑
j=0

(j + 1)d(1−1/p)+β

( ∑
‖i‖∞=j

δ2
i,2

)1/2

. (21)

In this case, the convergence of
∑

i∈Zd | Cov(X0, Xi)| holds (cf. Proposition 2 in [11]).
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Recall the notation (N.8). Let (Λn)n�1 be a sequence of subsets of Zd . The choice
bn,j = 1 if j ∈ Λn and 0 otherwise yields the following corollary for set-indexed
partial sums.

Corollary 2. Let (Xi)i∈Zd be a centered Bernoulli random field with a finite moment
of order p � 2, p′ := min{p, 3} and let (Λn)n�1 be a sequence of subset of Zd

such that |Λn| → +∞ and for any k ∈ Z
d , limn→+∞ |Λn ∩ (Λn − k)|/|Λn| = 1.

Assume that the series defined in (16) are convergent for some positive α and β, that∑
i∈Zd | Cov(X0, Xi)| is finite and that σ defined by (13) is positive. Let γ > 0 and

n0 be defined by (17). There exists a constant κ such that for any n � n0,

sup
t∈R

∣∣∣∣P
{∑

i∈Λn
Xi

|Λn|1/2 � t

}
− Φ(t/σ )

∣∣∣∣
� κ

(
|Λn|q +

∑
j∈Zd

∣∣E[X0Xj ]∣∣∣∣∣∣ |Λn ∩ (Λn − j)|
|Λn| − 1

∣∣∣∣
)

, (22)

where

q := max

{
γ (p′ − 1)d − p′

2
+ 1; −γ α

p

2(p + 1)
; 2 − p − pγβ

2(p + 1)

}
. (23)

We consider now the following regression model:

Yi = g

(
i

n

)
+ Xi, i ∈ Λn := {1, . . . , n}d, (24)

where g : [0, 1]d → R is an unknown smooth function and (Xi)i∈Zd is a zero mean
stationary Bernoulli random field. Let K be a probability kernel defined on R

d and
let (hn)n�1 be a sequence of positive numbers which converges to zero and which
satisfies

lim
n→+∞ nhn = +∞ and lim

n→+∞ nhd+1
n = 0. (25)

We estimate the function g by the kernel estimator gn defined by

gn(x) =
∑

i∈Λn
YiK(

x−i/n
hn

)∑
i∈Λn

K(
x−i/n

hn
)

, x ∈ [0, 1]d . (26)

We make the following assumptions on the regression function g and the probability
kernel K:

(A) The probability kernel K fulfills
∫
Rd K(u)du = 1, is symmetric, non-negative,

supported by [−1, 1]d . Moreover, there exist positive constants r , c and C such
that for any x, y ∈ [−1, 1]d , |K(x)−K(y)| � r‖x−y‖∞ and c � K(x) � C.

We measure the rate of convergence of ((nhn)
d/2(gn(x) − E[gn(x)]))n�1 to a

normal distribution by the use of the quantity

Δ̃n := sup
t∈R

∣∣∣∣P{
(nhn)

d/2(gn(x) − E
[
gn(x)

])
� t

} − Φ

(
t

σ‖K‖2

)∣∣∣∣. (27)
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Two other quantities will be involved, namely,

An := (nhn)
d/2

( ∑
i∈Λn

K2
(

x − i/n

hn

))1/2

‖K‖−1
L2(Rd )

( ∑
i∈Λn

K

(
x − i/n

hn

))−1/2

(28)
and

εn :=
∑
j∈Zd

∣∣E[X0Xj ]∣∣( ∑
i∈Λn∩(Λn−j)

K(
x−i/n

hn
)K(

x−(i−j)/n
hn

)∑
k∈Λn

K2(
x−k/n

hn
)

− 1

)
. (29)

Theorem 3. Let p > 2, p′ := min{p, 3} and let (Xj )j∈Zd = (f ((εj−i)i∈Zd ))j∈Zd

be a centered Bernoulli random field with a finite moment of order p. Assume that for
some positive α and β, the following series are convergent:

C2(α) :=
+∞∑
i=0

(i + 1)d/2+α‖X0,i‖2 and Cp(β) :=
+∞∑
i=0

(i + 1)d(1−1/p)+β‖X0,i‖p.

(30)
Let gn(x) be defined by (26), (hn)n�1 be a sequence which converges to 0 and

satisfies (25).
Assume that

∑
i∈Zd | Cov(X0, Xi)| is finite and that σ := ∑

j∈Zd Cov(X0, Xj ) >

0. Let n1 ∈ N be such that for each n � n1,

1

2
� (nhn)

−dK

(
x − i/n

hn

)
� 3

2
(31)

and
1

2
‖K‖L2(Rd ) � (nhn)

−dK2
(

x − i/n

hn

)
� 3

2
‖K‖L2(Rd ). (32)

Let n0 be the smallest integer for which for all n � n0,

√
σ 2 + εn − 29(log 2)−1C2(α)

([( ∑
i∈Λn

K

(
1

hn

(
x − i

n

))2)1/2]γ )−α

� σ/2.

(33)
Then there exists a constant κ such that for each n � max{n0, n1},

Δn � κ|An − 1| p
p+1 + |εn| + κ(nhn)

d
2 (γ (p′−1)d−p′+2)

+ (nhn)
− d

2 γα
p

p+1 + (nhn)
2d−p(γβ+1)

2(p+1) . (34)

Lemma 1 in [10] shows that under (25), the sequence (An)n�1 goes to 1 as n goes
to infinity and that the integer n1 is well defined.

We now consider the case of linear random fields in dimension 2, that is,

Xj1,j2 =
∑

i1,i2∈Z
ai1,i2εj1−i1,j2−i2 , (35)

where (ai1,i2)i1,i2Z ∈ �1(Z2) and (εu1,u2)u1,u2∈Z2 is an i.i.d. centered random field
and ε0,0 has a finite variance. We will focus on the case where the weights are of the
form bn,i1,i2 = 1 if 1 � i1, i2 � n and bn,i1,i2 = 0 otherwise.
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Mielkaitis and Paulauskas [18] established the following convergence rate. De-
noting

Δ′
n := sup

r�0

∣∣∣∣P
{∣∣∣∣1

n

n∑
i1,i2=1

Xi1,i2

∣∣∣∣ � r

}
− P

{|N | � r
}∣∣∣∣ (36)

and assuming that E[|ε0,0|2+δ] is finite and∑
k1,k2∈Z

(|k1| + 1
)2(|k2| + 1

)2
a2
k1,k2

< +∞, (37)

the following estimate holds for Δ′
n:

Δ′
n = O

(
n−r

)
, r := 1

2
min

{
δ, 1 − 1

3 + δ

}
. (38)

In the context of Corollary 2, the condition on the coefficients reads as follows:

+∞∑
i=0

(
i1+α + i2−2/p+β

)( ∑
(j1,j2):‖(j1,j2)‖∞=i

a2
j1,j2

)1/2

< +∞, (39)

where p = 2 + δ. Let us compare (37) with (39). Let s := max{1 + α, 2 − 2/p + β}.
When s � 2, (39) implies (37). However, this implication does not hold if s < 3/2.
Indeed, let r ∈ (s + 1, 5/2) and define ak1,k2 := k−r

1 if k1 = k2 � 1 and ak1,k2 := 0
otherwise. Then (39) holds whereas (37) does not.

Let us discuss the convergence rates in the following example. Let ak1,k2 :=
2−|k1|−|k2| and let p = 2 + δ, where δ ∈ (0, 1]. In our context,∣∣∣∣ |Λn ∩ (Λn − j)|

|Λn| − 1

∣∣∣∣ � n2 − (n − j1)(n − j2)

n2 � j1 + j2

n
, (40)

hence the convergence of
∑

j1,j2∈Z | Cov(X0,0, Xj1,j2)|(j1 +j2) guarantees that εn in
Corollary 2 is of order 1/n. Moreover, since (39) holds for all α and β, the choice of
γ allows to reach rates of the form n−δ+r0 for any fixed r0. In particular, when δ = 1,
one can reach for any fixed r0 rates of the form n−1+r0 . In comparison, with the same
assumptions, the result of [18] gives n−3/8.

2 Proofs

2.1 Proof of Theorem 1

We define for j � 1 and i ∈ Z
d ,

Xi,j = E
[
Xi | σ

(
εu, ‖u − i‖∞ � j

)] − E
[
Xi | σ

(
εu, ‖u − i‖∞ � j − 1

)]
. (41)

In this way, by the martingale convergence theorem,

Xi − E[Xi | εi] = lim
N→+∞

N∑
j=1

Xi,j , (42)
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hence ∥∥∥∥∑
i∈Zd

aiXi

∥∥∥∥
p

�
+∞∑
j=1

∥∥∥∥∑
i∈Zd

aiXi,j

∥∥∥∥
p

+
∥∥∥∥∑

i∈Zd

aiE[Xi | εi]
∥∥∥∥

p

. (43)

Let us fix j � 1. We divide Z
d into blocks. For v ∈ Z

d , we define

Av :=
d∏

q=1

([
(2j + 2)vq, (2j + 2)(vq + 1) − 1

] ∩ Z
)
, (44)

and if K is a subset of [d], we define

EK := {
v ∈ Z

d, vq is even if and only if q ∈ K
}
. (45)

Therefore, the following inequality takes place∥∥∥∥∑
i∈Zd

aiXi,j

∥∥∥∥
p

�
∑

K⊂[d]

∥∥∥∥ ∑
v∈EK

∑
i∈Av

aiXi,j

∥∥∥∥
p

. (46)

Observe that the random variable
∑

i∈Av
aiXi,j is measurable with respect of the

σ -algebra generated by εu, where u satisfies (2j + 2)vq − (j + 1) � uq � j + 1 +
(2j + 2)(vq + 1) − 1 for all q ∈ [d]. Since the family {εu,u ∈ Z

d} is independent,
the family {∑i∈Av

aiXi,j , v ∈ EK} is independent for each fixed K ⊂ [d]. Using
inequality (3), it thus follows that

∥∥∥∥ ∑
v∈EK

∑
i∈Av

aiXi,j

∥∥∥∥
p

� 14.5p

log p

( ∑
v∈EK

∥∥∥∥∑
i∈Av

aiXi,j

∥∥∥∥2

2

)1/2

+ 14.5p

log p

( ∑
v∈EK

∥∥∥∥∑
i∈Av

aiXi,j

∥∥∥∥p

p

)1/p

. (47)

By stationarity, one can see that ‖Xi,j‖q = ‖X0,j‖q for q ∈ {2, p}, hence the triangle
inequality yields

∥∥∥∥ ∑
v∈EK

∑
i∈Av

aiXi,j

∥∥∥∥
p

� 14.5p

log p
‖X0,j‖2

( ∑
v∈EK

(∑
i∈Av

|ai |
)2)1/2

+ 14.5p

log p
‖X0,j‖p

( ∑
v∈EK

(∑
i∈Av

|ai |
)p)1/p

. (48)

By Jensen’s inequality, for q ∈ {2, p},
(∑

i∈Av

|ai |
)q

� |Av|q−1
∑
i∈Av

|ai |q � (2j + 2)d(q−1)
∑
i∈Av

|ai |q (49)
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and using
∑N

i=1 x
1/q
i � N

q−1
q (

∑N
i=1 xi)

1/q , it follows that

∑
K⊂[d]

∥∥∥∥ ∑
v∈EK

∑
i∈Av

aiXi,j

∥∥∥∥
p

� 14.5p

log p
‖X0,j‖2

(∑
i∈Zd

a2
i

)1/2

(4j + 4)d/2

+ 14.5p

log p
‖X0,j‖p

(∑
i∈Zd

|ai |p
)1/p

(4j + 4)d(1−1/p). (50)

Combining (43), (46) and (50), we derive that

∥∥∥∥∑
i∈Zd

aiXi

∥∥∥∥
p

� 14.5p

log p

+∞∑
j=1

‖X0,j‖2

(∑
i∈Zd

a2
i

)1/2

(4j + 4)d/2

+ 14.5p

log p

+∞∑
j=1

‖X0,j‖p

(∑
i∈Zd

|ai |p
)1/p

(4j + 4)d(1−1/p) +
∥∥∥∥∑

i∈Zd

aiE[Xi | εi]
∥∥∥∥

p

.

(51)

In order to control the last term, we use inequality (3) and bound ‖E[Xi | εi]‖q by
‖X0,0‖q for q ∈ {1, 2}. This ends the proof of Theorem 1.

Proof of Corollary 1. The following lemma gives a control of the L
q -norm of X0,j

in terms of the physical measure dependence.

Lemma 1. For q ∈ {2, p} and j ∈ N, the following inequality holds

‖X0,j‖q �
(

2(q − 1)
∑

i∈Zd ,‖i‖∞=j

δ2
i,q

)1/2

. (52)

Proof. Let j be fixed. Let us write the set of elements of Zd whose infinite norm is
equal to j as {vs, 1 � s � Nj } where Nj ∈ N. We also assume that vs − vs−1 ∈
{ek, 1 � k � d} for all s ∈ {2, . . . , Nj }.

Denote
Fs := σ

(
εu, ‖u‖∞ � j, εvt , 1 � t � s

)
, (53)

and F0 := σ(εu, ‖u‖∞ � j). Then X0,j = ∑Nj

s=1 E[X0 | Fs] − E[X0 | Fs−1], from
which it follows, by Theorem 2.1 in [23], that

‖X0,j‖2
q � (q − 1)

Nj∑
s=1

∥∥E[X0 | Fs] − E[X0 | Fs−1]
∥∥2

q
. (54)

Then arguments similar as in the proof of Theorem 1 (i) in [27] give the bound
‖E[X0 | Fs]−E[X0 | Fs−1]‖q � δvs ,q+δvs−1,q . This ends the proof of Lemma 1.

Now, Corollary 1 follows from an application of Lemma 1 with q = 2 and q = p

respectively.
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2.2 Proof of Theorem 2

Denote for a random variable Z the quantity

δ(Z) := sup
t∈R

∣∣P{Z � t} − Φ(t)
∣∣. (55)

We say that a random field (Yi)i∈Zd is m-dependent if the collections of random
variables (Yi, i ∈ A) and (Yi, i ∈ B) are independent whenever

inf
{‖a − b‖∞, a ∈ A, b ∈ B

}
> m.

The proof of Theorem 2 will use the following tools.

(T.1) By Theorem 2.6 in [7], if I is a finite subset of Zd , (Yi)i∈I an m-dependent
centered random field such that E[|Yi |p] < +∞ for each i ∈ I and some
p ∈ (2, 3] and Var(

∑
i∈I Yi) = 1, then

δ

(∑
i∈I

Yi

)
� 75(10m + 1)(p−1)d

∑
i∈I

E
[|Yi |p

]
. (56)

(T.2) By Lemma 1 in [8], for any two random variables Z and Z′ and p � 1,

δ
(
Z + Z′) � 2δ(Z) + ∥∥Z′∥∥ p

p+1
p

. (57)

Let (εu)u∈Zd be an i.i.d. random field and let f : RZ
d → R be a measurable

function such that for each i ∈ Z
d , Xi = f ((εi−u)u∈Zd ). Let γ > 0 and n0 defined

by (17).
Let m := ([‖bn‖�2] + 1)γ and let us define

X
(m)
i := E

[
Xi | σ(εu, i − m1 � u � i + m1)

]
. (58)

Since the random field (εu)u∈Zd is independent, the following properties hold.

(P.1) The random field (X
(m)
i )i∈Zd is (2m + 1)-dependent.

(P.2) The random field (X
(m)
i )i∈Zd is identically distributed and ‖X(m)

i ‖p′ � ‖X0‖p′ .

(P.3) For any (ai)i∈Zd ∈ �2(Zd) and q � 2, the following inequality holds:

∥∥∥∥∑
i∈Zd

ai

(
Xi − X

(m)
i

)∥∥∥∥
q

� 14.5q

log q

(∑
i∈Zd

a2
i

)1/2 ∑
j�m

(4j + 4)d/2‖X0,j‖2

+ 14.5q

log q

(∑
i∈Zd

|ai |q
)1/q ∑

j�m

(4j + 4)d(1−1/q)‖X0,j‖q . (59)

In order to prove (59), we follow the proof of Theorem 1 and start from the
decomposition Xi − X

(m)
i = limN→+∞

∑N
j=m Xi,j instead of (42).
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Define S
(m)
n := ∑

i∈Zd bn,iX
(m)
i . An application of (T.2) to Z := S

(m)
n ‖bn‖−1

�2 σ−1

and Z′ := (Sn − S
(m)
n )‖bn‖−1

�2 σ−1 yields

Δn � 2δ

(
S

(m)
n

σ‖bn‖�2

)
+ σ

− p
p+1

1

‖bn‖
p

p+1

�2

∥∥Sn − S(m)
n

∥∥ p
p+1
p

. (60)

Moreover,

δ

(
S

(m)
n

σ‖bn‖�2

)
= sup

t∈R

∣∣∣∣P
{

S
(m)
n

σ‖bn‖�2
� t

}
− Φ(t)

∣∣∣∣ (61)

= sup
u∈R

∣∣∣∣P
{

S
(m)
n

‖S(m)
n ‖2

� u

}
− Φ

(
u

‖S(m)
n ‖2

σ‖bn‖�2

)∣∣∣∣ (62)

� δ

(
S

(m)
n

‖S(m)
n ‖2

)
+ sup

u∈R

∣∣∣∣Φ
(

u
‖S(m)

n ‖2

σ‖bn‖�2

)
− Φ(u)

∣∣∣∣, (63)

hence, by (P.1) and (T.1) applied with Yi := X
(m)
i /‖S(m)

n ‖2, p′ instead of p and 2m+1
instead of m, we derive that

Δn � (I ) + (II ) + (III ) (64)

where

(I ) := 150(20m + 21)(p
′−1)d

∑
i∈Zd

|bn,i |p′∥∥X
(m)
i

∥∥p′
p′

∥∥S(m)
n

∥∥−p′
2 , (65)

(II ) := 2 sup
u∈R

∣∣∣∣Φ
(

u
‖S(m)

n ‖2

σ‖bn‖�2

)
− Φ(u)

∣∣∣∣ and (66)

(III ) := σ
− p

p+1
1

‖bn‖
p

p+1

�2

∥∥Sn − S(m)
n

∥∥ p
p+1
p

. (67)

By (P.2) and the reversed triangular inequality, the term (I ) can be bounded as

(I ) � 150(20m + 21)(p
′−1)d‖X0‖p′

p′‖bn‖p′
�p′

(‖Sn‖2 − ∥∥Sn − S(m)
n

∥∥
2

)−p′
(68)

and by (P.3) with q = 2, we obtain that

(‖Sn‖2 − ∥∥Sn − S(m)
n

∥∥
2

)−p′
�

(‖Sn‖2 − 29(log 2)−1m−α‖bn‖�2C2(α)
)−p′

. (69)

By (15), we have

‖Sn‖2
2

‖bn‖2
�2

= σ 2 + εn, (70)
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and we eventually get

(I ) � 150(20m + 21)(p
′−1)d‖X0‖p′

p′

(‖bn‖�p′

‖bn‖�2

)p′

· (√
σ 2 + εn − 29(log 2)−1m−αC2(α)

)−p′
.

Since n � n0, we derive, in view of (17),

(I ) � 150(20m + 21)(p
′−1)d‖X0‖p′

p′

(‖bn‖�p′

‖bn‖�2

)p′

(σ/2)−p′
. (71)

In order to bound (II ), we argue as in [28] (p. 456). Doing similar computations
as in [9] (p. 272), we obtain that

(II ) � (2πe)−1/2
(

inf
k�1

ak

)−1∣∣a2
n − 1

∣∣, (72)

where an := ‖S(m)
n ‖2σ

−1‖bn‖−1
�2 . Observe that for any n, by (P.3),

an � ‖Sn‖2 − ‖Sn − S
(m)
n ‖2

σ‖bn‖�2
�

√
σ 2 + εn − 29(log 2)−1C2(α)m−α

σ
(73)

and using again (P.3) combined with Theorem 1 for p = q = 2,

∣∣a2
n − 1

∣∣ =
∣∣∣∣ ‖S(m)

n ‖2
2

σ 2‖bn‖2
�2

− 1

∣∣∣∣ (74)

�
∣∣∣∣ ‖Sn‖2

2

σ 2‖bn‖2
�2

− 1

∣∣∣∣ + |‖S(m)
n ‖2

2 − ‖Sn‖2
2|

σ 2‖bn‖2
�2

(75)

� |εn|
σ 2 + |‖S(m)

n ‖2 − ‖Sn‖2|(‖S(m)
n ‖2 + ‖Sn‖2)

σ 2‖bn‖2
�2

(76)

� |εn|
σ 2 + ‖S(m)

n − Sn‖2(‖S(m)
n ‖2 + ‖Sn‖2)

σ 2‖bn‖2
�2

(77)

� |εn|
σ 2 + 40(log 2)−1 m−α

σ 2 C2(α)2. (78)

This leads to the estimate

(II ) � (2πe)−1/2√
σ 2 + εn − 29(log 2)−1C2(α)m−α

( |εn|
σ

+ 40(log 2)−1 m−α

σ
C2(α)2

)
,

(79)
and since n � n0, we derive, in view of (17),

(II ) �
(

2
|εn|
σ 2 + 80(log 2)−1

‖bn‖−γα

�2

σ 2 C2(α)2
)

(2πe)−1/2. (80)
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The estimate of (III ) relies on (P.3):

(III ) � σ
− p

p+1

(
14.5p

log p

∑
j�m

(4j + 4)d/2‖X0,j‖2

) p
p+1

+ σ
− p

p+1 ‖bn‖− p
p+1

�2 ‖bn‖
p

p+1
�p

(
14.5p

log p

∑
j�m

(4j + 4)d(1−1/p)‖X0,j‖p

) p
p+1

(81)

hence

(III ) �
(

14.5p

σ log p
4d/2‖bn‖−γα

�2 C2(α)

) p
p+1

+
( ‖bn‖�p

σ‖bn‖�2

14.5p

log p
4d(1−1/p)‖bn‖−γβ

�2 Cp(β)

) p
p+1

. (82)

The combination of (64), (71), (80) and (82) gives (18).

2.3 Proof of Theorem 3
Since the random variables Xi are centered, we derive by definition of gn(x) that

(nhn)
d/2(gn(x) − E

[
gn(x)

]) = (nhn)
d/2

∑
i∈Λn

XiK(
x−i/n

hn
)∑

i∈Λn
K(

x−i/n
hn

)
. (83)

We define

bn,i = K

(
1

hn

(
x − i

n

))
, i ∈ Λn, (84)

and bn,i = 0 otherwise. Denote bn = (bn,i)i∈Zd and ‖bn‖�2 := (
∑

i∈Zd b2
n,i)

1/2. In
this way, by (83) and (28),

1

‖K‖L2(Rd )σ
(nhn)

d/2(gn(x) − E
[
gn(x)

]) = 1

σ

∑
i∈Zd

bn,iXi‖bn‖−1
�2 An. (85)

Applying (T.2) to

Z =
∑
i∈Zd

bn,iXi‖bn‖−1
�2 and Z′ =

∑
i∈Zd

bn,iXi‖bn‖−1
�2 σ−1(An − 1) (86)

and using Theorem 1, we derive that

Δ̃n � cpΔ′
n + cp

(
σ−1C2(α) + Cp(β)

) p
p+1 |An − 1| p

p+1 , (87)

where

Δ′
n = sup

t∈R

∣∣∣∣P{Z � t} − Φ

(
t

σ

)∣∣∣∣. (88)

We then use Theorem 2 to handle Δ′
n (which is allowed, by (A)). Using boundedness

of K , we control the �p and �p′
norms by a constant times the �2-norm. This ends the

proof of Theorem 3.
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