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Abstract The problem of European-style option pricing in time-changed Lévy models in the
presence of compound Poisson jumps is considered. These jumps relate to sudden large drops
in stock prices induced by political or economical hits. As the time-changed Lévy models, the
variance-gamma and the normal-inverse Gaussian models are discussed. Exact formulas are
given for the price of digital asset-or-nothing call option on extra asset in foreign currency.
The prices of simpler options can be derived as corollaries of our results and examples are
presented. Various types of dependencies between stock prices are mentioned.
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1 Introduction

In recent years, more realistic models than the classic Brownian motion for the speci-
fication of financial markets were suggested and investigated. The generalized hyper-
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bolic distributions were introduced in Barndorff-Nielsen [3]. These distributions are
infinitely divisible and hence generate a particular class of Lévy processes which can
be represented as time-changed Brownian motions, see the monographs by Barndorff-
Nielsen and Shiryaev [6] or Cont and Tankov [9] for details. Another important class
is the generalized tempered stable distributions which were firstly introduced in Ko-
ponen [23] and then investigated in particular by Bianchi et al. [8] and Rosinski [37].
The generalized tempered stable processes are not always time-changed Brownian
motions (see Küchler and Tappe [24] or Küchler and Tappe [25] on the bilateral
gamma processes), although for example the variance-gamma process and CGMY
process can be decomposed in this way. We refer on these facts to Madan et al. [33]
and Madan and Yor [32], respectively.

The variance-gamma process is the one of the most popular examples of the gen-
eralized tempered stable processes. The variance-gamma distribution was firstly pro-
posed as a model for financial market data in Madan and Seneta [31] and Madan
and Milne [30]. They discussed the symmetric case of the distribution. The prop-
erties of the variance-gamma process defined as the time-changed by gamma sub-
ordinator Brownian motion with drift were considered in Madan et al. [33]. Also,
Madan et al. [33] gave the analytical expression for the European call option price in
the variance-gamma model together with the definition of the process as the differ-
ence of two gamma ones. Further, a number of papers confirmed statistically the idea
of using the variance-gamma process for the modeling financial indexes. Daal and
Madan [10] and Finlay and Seneta [14] approved the variance-gamma model for the
currency option pricing and the exchange rate modeling. Linders and Stassen [26],
Moosbrucker [34] and Rathgeber et al. [36] simulated by the variance-gamma distri-
bution the Dow Jones index returns. Mozumder et al. [35] considered the S&P500
index options in the variance-gamma model. Luciano and Schoutens [27] modeled
the S&P500, the Nikkei225 and the Eurostoxx50 financial indexes by the variance-
gamma process. Luciano et al. [29] and Wallmeier and Diethelm [43] confirmed the
using of variance-gamma distribution for the modeling of the US and the Swiss stock
markets, respectively.

The normal-inverse Gaussian distribution was introduced in Barndorff-Nielsen [3]
to model some facts in geology as a member of the class of generalized hyperbolic
distributions. Financial market data, including the Danish and the German ones, was
specified then by the normal-inverse Gaussian process in Barndorff-Nielsen [4] and
Rydberg [38]. Properties of the normal-inverse Gaussian process discussed as the
time-changed by inverse-Gaussian subordinator Brownian motion were considered
in Barndorff-Nielsen [5] and Shiryaev [41]. The normal-inverse Gaussian distribu-
tion in the context of risk modeling was discussed in Aas et al. [1] and Ivanov and
Temnov [21]. Figueroa et al. [13] showed that the normal-inverse Gaussian distribu-
tion specifies well a high frequency data from the US equity markets. Teneng [42]
proved that the normal-inverse Gaussian process fits to the dynamics of many various
foreign exchange rates. Göncü et al. [15] confirmed that this distribution also relates
to the statistics of emerging market stock indexes. The modeling of Bloomberg clos-
ing prices by the variance-gamma and the normal-inverse Gaussian distributions was
discussed in Luciano and Semeraro [28].

If we discuss the problem of computing in Lévy models, the basic method is the
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Fourier transform one, see for details the review paper by Eberlein [11]. However,
it puts some restrictions on the properties of the process or the type of the deriva-
tive payoffs. In particular, it can be shown that this method cannot be applied to the
pricing of digital options in the volatile variance-gamma model or in the normal-
inverse Gaussian one. The method of closed form solutions which had been intro-
duced by Madan et al. [33] was proceeded then in the papers by Ivanov and Ano [20],
Ivanov [18] and Ivanov [19] for the variance-gamma distribution and by Ivanov [17]
and Ivanov and Temnov [21] for the normal-inverse Gaussian one. This paper con-
tinues the elements of the research by Madan et al. [33]. We discuss the problem of
multi-asset digital option pricing in the variance-gamma model in the presence of ex-
tra downside compound Poisson jumps. These jumps reflect the influence of events
which can evoke dramatic drops of assets on financial markets. The examples are the
terror attack of 9/11, the Subprime mortgage crisis of 2007, the collapse of Lehman
Brothers or the recent deep fall of oil prices. In Sections 3 and 4 the variance-gamma
and the normal inverse-Gaussian models are considered, respectively. The obtained
formulas give the option prices under different types of dependencies between the
asset dynamics.

2 Setup and notations

We suggest that the risky asset log-returns H
j
t = log S

j
t , j = 1, 2, 3, t ≤ T , follow

the sums of time-changed Brownian motions and independent compound Poisson
processes which are supposed to be mutually independent, too. That is,

H
j
t = μj t + βjϑ

j
t + σjB

j

ϑ
j
t

− Z
j
t , H

j
0 = 0, (1)

where μj , βj ∈ R, σj ≥ 0, (B
j
t )t≥0 are the Wiener processes correlated with co-

efficients ρjl , (ϑ
j
t )t≤T are independent with the Wiener processes subordinators and

Z
j
t = ∑N

j
t

l=0 ξjl , ξj0 ≡ 0, where (N
j
t )t≤T , N

j

0 = 0, are the Poisson processes with
intensities λj and ξjl ≥ 0, l = 1, 2, . . ., are independent arbitrary identically dis-
tributed for every j random variables, where j is the number of asset. Throughout
this paper, the problem of pricing of digital asset-or-nothing call option in foreign
currency, namely which has the payoff function

DCT = S3
T S2

T I{S1
T ≥K}, K > 0, (2)

is discussed. The dynamics S3
t relates here to the exchange rate between the domestic

and the foreign currencies. The stock prices S1
t and S2

t are measured in the domestic
currency. It is supposed that the non-risky assets (bank accounts) in domestic and
foreign currencies Rd

t and R
f
t , t ≤ T , have fixed interest rates rd , r ≥ 0 and Rd

t =
erd t , R

f
t = ert .

It is easy to observe that the problem of pricing the options with payoffs (2) in-
cludes the same problem for digital asset-or-nothing and cash-or-nothing call options
with payoffs S1

T I{S1
T ≥K} and K̃I{S1

T ≥K}, K̃ > 0, for the options in foreign currency
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with payoffs S3
T (S1

T − K)+ and for many other options. Indeed, if we discuss for ex-
ample the payoffs S3

T (S1
T − K)+, we just suppose in (1)–(2) that μ2 = β2 = σ2 = 0

and ξ2l ≡ 0.
Next, it is suggested in our model that the stock prices satisfy the inequality

E
(
S3

T S2
T

)
< ∞. (3)

Let

X
j
t = μj t + βjϑ

j
t + σjB

j

ϑ
j
t

. (4)

Then

E
(
eX2

T +X3
T |ϑ2

T , ϑ3
T

) = e
∑3

j=2(μj T +βj ϑ
j
T )+

∑3
j=2 σ2

j
ϑ

j
T

+2ρ23σ2σ3

√
ϑ2
T

ϑ3
T

2

and hence (3) is equivalent to

E
(
e
∑3

j=2 βj ϑ
j
T +

∑3
j=2 σ2

j
ϑ

j
T

+2ρ23σ2σ3

√
ϑ2
T

ϑ3
T

2

)
< ∞. (5)

Since our model is not the classical two-asset financial market model (see for
example the book by Shiryaev [41]), we need to consider at first the question of
hedging of the option with payoffs (2). There are four hedging instruments in our
situation. Namely, the bank account in foreign currency R

f
t , the bank account in

domestic currency transferred in foreign currency with the dynamics S3
t Rd

t and the
two stocks in foreign currency S3

t S1
t and S3

t S2
t . Leaving aside a well-investigated in

literature question of change of measure (see for example Eberlein et al. [12], Kallsen
and Shiryaev [22], Madan and Milne [30], Ch. VII.3 of Shiryaev [41] and Ch. 6
of Schoutens [39]), let us assume that the all four assets discounted with respect to
the bank account in foreign currency (i.e., the processes R

f
t /R

f
t ≡ 1, S3

t Rd
t /R

f
t ,

S3
t S1

t /R
f
t , S3

t S2
t /R

f
t ) are martingales with respect to the initial probability measure.

Then the price of the option with payoffs (2) is

DC = e−rT E(DCT ) = e−rT E
(
S3

T S2
T I{S1

T ≥K}
)
. (6)

Remark 1. Similarly to (2), the digital asset-or-nothing put option in foreign cur-
rency has the payoffs at expiry

DPT = S3
T S2

T I{S1
T <K}, K > 0.

Hence its price

DP = e−rT E(DPT ) = e−rT E
(
S3

T S2
T I{S1

T <K}
)

= e−rT E
(
S3

T S2
T

) − e−rT E
(
S3

T S2
T I{S1

T ≥K}
) = e−rT E

(
S3

T S2
T

) − DC.

For the typical case of put option in foreign currency we have for its price the identity

P = e−rT E
(
S3

T

(
K − S1

T

)+) = e−rT E
(
S3

T

(
K − S1

T

)) − e−rT E
(
S3

T

(
K − S1

T

)−)
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= e−rT E
(
S3

T

(
K − S1

T

)) + e−rT E
(
S3

T

(
S1

T − K
)+)

= e−rT KE
(
S3

T

) − e−rT E
(
S3

T S1
T

) + C,

where C is the price of call option in foreign currency. That is, results for the prices
of call options in foreign currency can be exploited for the computing of prices of put
options as well.

Next, we introduce some necessary notations. We denote as

N(u), u ∈ R, Γ (u), u > 0, B(u1, u2), u1 > 0, u2 > 0

and

Mu1(u2), u1 ∈ R, u2 > 0,

the normal distribution function, the gamma function, the beta function and the Mac-
Donald function (the modified Bessel function of the second kind), respectively. The
hypergeometric Gauss function is denoted as

G(u1, u2, u3; u4), u1, u2, u3 ∈ R, u4 < 1.

Also, the degenerate Appell function (or the Humbert series) which is the double sum

A(u1, u2, u3; u4, u5) =
∞∑

m=0

∞∑
n=0

(u1)m+n(u2)m

m!n!(u3)m+n

um
4 un

5

with u1, u2, u3, u5 ∈ R and |u4| < 1, where (u)l , l ∈ N ∪ {0}, is the Pochhammer’s
symbol, is exploited. For more information on the special mathematical functions
above, see Bateman and Erdélyi [7], Gradshteyn and Ryzhik [16], Whittaker and
Watson [44].

3 Gamma time change

The gamma process γt = γt (a, b), a > 0, b > 0, is a purely discontinuous Lévy
process with gamma-distributed increments and γ0 = 0. It is the subordinator with
the probability density function

f (γt , x) = batxat−1e−bx

Γ (at)
, x > 0.

The gamma process has mean at/b and variance at/b2. If u < b, the moment-
generating function of the gamma process is

Eeuγt =
(

b

b − u

)at

. (7)

For more properties of this process, see the paper by Yor [45] or the monograph by
Applebaum [2].
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Throughout this section, we assume that the subordinators in (1) and (4) are the
gamma processes with unit mean rate, i.e.

ϑ
j
t = γ

j
t (aj ) = γ

j
t (aj , aj ). (8)

Then the processes X
j
t in (4) become the variance-gamma processes, see Madan et

al. [33] or Seneta [40] for more details.
To model dependencies in the subordinators, let us assume that in (8) the subor-

dinators

γ
j
t = κjγt (a) + κj1γ

1
t + κ̃j γ̃

j
t (ãj ), j = 2, 3, (9)

where all the gamma processes with unit mean rate γt , γ
1
t , γ̃ 2

t , γ̃ 3
t are mutually inde-

pendent, κj , κj1, κ̃j ≥ 0 and κj + κj1 + κ̃j = 1, j = 2, 3.
Since for a gamma distribution γ the identity

uγ (u1, u2)
Law= γ

(
u1,

u2

u

)

is satisfied, we have from (9) that aj = a
κj

if κj 
= 0, aj = a1
κj1

if κj1 
= 0, aj = ãj

κ̃j
if

κ̃j 
= 0 and hence the equality(
aj − a

κj

)
I{κj >0} =

(
aj − a1

κj1

)
I{κj1>0} =

(
aj − ãj

κ̃j

)
I{κ̃j >0} = 0 (10)

holds. Next, because the identity

γ (u1, u) + γ̃ (u2, u)
Law= γ (u1 + u2, u)

holds for arbitrary independent gamma distributions γ and γ̃ , one could observe
from (9), as γt , γ

1
t , γ̃

j
t are mutually independent, that

aj = aI{κj >0} + a1I{κj1>0} + ãj I{κ̃j >0} (11)

in our model, j = 2, 3. Alternatively, the identities (10) and (11) can be seen from
the equality for characteristic functions of (9)

(
aj

aj − iu

)aj t

=
(

a/κj

a/κj − iu

)at( a1/κj1

a1/κj1 − iu

)a1t
(

ãj /κ̃j

ãj /κ̃j − iu

)ãj t

if all κj > 0, κj1 > 0, κ̃j > 0. The theorem below gives us the price (6) in the case
of the independent Brownian motions in (1).

Theorem 1. Let the stock log-returns be defined in (1), the subordinators ϑ
j
t be

gamma distributed, satisfy (8)–(9), and ρ12 = ρ13 = ρ23 = 0. Set

b =
3∑

j=2

κj1

(
βj + σ 2

j

2

)
.
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Then the double inequality for the price (6)

N1∑
n1=0

N2∑
n2=0

N3∑
n3=0

λ
n1
1 λ

n2
2 λ

n3
3 T n1+n2+n3e−(λ1+λ2+λ3)T DC(n1, n2, n3)

n1!n2!n3!
≤ DC

≤
N1∑

n1=0

N2∑
n2=0

N3∑
n3=0

λ
n1
1 λ

n2
2 λ

n3
3 T n1+n2+n3e−(λ1+λ2+λ3)T DC(n1, n2, n3)

n1!n2!n3!

+ DC(N1, N2, N3)

(
1 −

N1∑
n1=0

λ
n1
1 e−λ1T

n1!
)

×
(

1 −
N2∑

n2=0

λ
n2
2 e−λ2T

n2!
)(

1 −
N3∑

n3=0

λ
n3
3 e−λ3T

n3!
)

(12)

holds for any N1, N2, N3 with a decreasing function DC(n1, n2, n3) and

DC(n1, n2, n3)

= e(μ2+μ3−r)T a
a1T
1

(a1 − b)a1T Γ (a1T )
√

2π
E
(
e−∑n2

l=0 ξ2l
)
E
(
e−∑n3

l=0 ξ3l
)( ã2

ã2 − κ̃2(β2 + σ 2
2
2 )

)ã2T

×
(

ã3

ã3 − κ̃3(β3 + σ 2
3
2 )

)ã3T
(

a

a − ∑3
j=2 κj (βj + σ 2

j

2 )

)aT

×
(

ΛP

( n1∑
l=0

ξ1l = μ1T − K

)
+ E

(
Ξ

( n1∑
l=0

ξ1l

)
I{∑n1

l=0 ξ1l 
=μ1T −K}

))
,

where

Λ = Γ

(
a1T + 1

2

)(
B( 1

2 , a1T )√
2

+ β1

σ1
√

a1 − b
G

(
a1T + 1

2
,

1

2
,

3

2
; − β2

1

2(a1 − b)σ 2
1

))
(13)

and

Ξ(x) = |s|a1T − 1
2 es(1 + q)a1T

(
B(a1T , 1)

(|s|M
a1T + 1

2
(|s|)

+ sM
a1T − 1

2
(|s|))A0 − (1 + q)sB(a1T + 1, 1)M

a1T − 1
2
(|s|)A1

)
(14)

with

q = β1√
β2

1 + 2(a1 − b)σ 2
1

, s = s(x) =
(μ1T − K − x)

√
β2

1 + 2(a1 − b)σ 2
1

σ1

and Aj = A(a1T + j, 1 − a1T , a1T + 1 + j ; 1+q
2 ,−s(1 + q)).
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The following example illustrates how Theorem 1 works when Z
j
t are standard

Poisson processes.

Example 1. Let ξjl ≡ �j , j = 1, 2, 3, l = 1, 2, . . ., where �j ≥ 0 are constants.

Then Z
j
t ≡ �jN

j
t (Poisson processes) and the result of Theorem 1 holds with

DC(n1, n2, n3) = e(μ2+μ3−r)T −�2n2−�3n3a
a1T
1

(a1 − b)a1T Γ (a1T )
√

2π

(
ã2

ã2 − κ̃2(β2 + σ 2
2
2 )

)ã2T

×
(

ã3

ã3 − κ̃3(β3 + σ 2
3
2 )

)ã3T
(

a

a − ∑3
j=2 κj (βj + σ 2

j

2 )

)aT

× (
ΛI{�1n1=μ1T −K} + Ξ(�1n1)I{�1n1 
=μ1T −K}

)
.

Theorem 2 computes us the price (6) in the case when the exchange rate S3
t and

the underlying asset S2
t are strongly dependent but the indicator stock S1

t is weakly
dependent on them.

Theorem 2. Assume that in (1) ρ12 = ρ13 = 0, the subordinators are gamma dis-
tributed, satisfy (8)–(9), and γ 3

t = γ 2
t = κ2γt + κ21γ

1
t . Let

b = κ21

[ 3∑
j=2

(
βj + σ 2

j

2

)
+ ρ23σ2σ3

]
.

Then (12) is satisfied with

DC(n1, n2, n3) = e(μ2+μ3−r)T a
a1T
1

(a1 − b)a1T Γ (a1T )
√

2π
E
(
e−∑n2

l=0 ξ2l
)
E
(
e−∑n3

l=0 ξ3l
)

×
(

a

a − κ2
[∑3

j=2(βj + σ 2
j

2 ) + ρ23σ2σ3
]
)aT

×
(

ΛP

( n1∑
l=0

ξ1l = μ1T − K

)

+ E

(
Ξ

( n1∑
l=0

ξ1l

)
I{∑n1

l=0 ξ1l 
=μ1T −K}

))
,

where Λ and Ξ(x) are defined in (13) and (14), respectively.

The next theorem considers the case when all risky assets are strongly dependent.

Theorem 3. Let the subordinators in (1) be gamma distributed, satisfy (8)–(9), and
γ 3
t = γ 2

t = γ 1
t . Set

b =
3∑

j=2

(
βj + σ 2

j

2

)
+ ρ23σ2σ3.
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Then (12) holds with

DC(n1, n2, n3) = e(μ2+μ3−r)T a
a1T
1

(a1 − b)a1T Γ (a1T )
√

2π
E
(
e−∑n2

l=0 ξ2l
)
E
(
e−∑n3

l=0 ξ3l
)

×
(

ΛP

( n1∑
l=0

ξ1l = μ1T − K

)

+ E

(
Ξ

( n1∑
l=0

ξ1l

)
I{∑n1

l=0 ξ1l 
=μ1T −K}

))
,

where

Λ = Γ

(
a1T + 1

2

)(
B( 1

2 , a1T )√
2

+ β1 + ∑3
j=2 ρ1j σ1σj

σ1
√

a1 − b
G

(
a1T + 1

2
,

1

2
,

3

2
; − (β1 + ∑3

j=2 ρ1j σ1σj )
2

2(a1 − b)σ 2
1

))
(15)

and Ξ(x) is defined by (14) with

q = β1 + ∑3
j=2 ρ1j σ1σj√

(β1 + ∑3
j=2 ρ1j σ1σj )2 + 2(a1 − b)σ 2

1

and

s = s(x) =
(μ1T − K − x)

√
(β1 + ∑3

j=2 ρ1j σ1σj )2 + 2(a1 − b)σ 2
1

σ1
.

Example 2 shows how Theorem 3 can be applied to the problem of pricing of
the standard European call option in foreign currency which has the payoffs at expiry
S2

T (S1
T − K)+.

Example 2. Assume that S3
t ≡ S1

t and ξjl ≡ 0, j = 1, 2, 3, l = 1, 2, . . . under the
conditions of Theorem 3. Then

DC = DC(0, 0, 0) = e(μ2+μ1−r)T a
a1T
1

(a1 − b)a1T Γ (a1T )
√

2π
(ΛI{μ1T =K} + ΞI{μ1T 
=K}), (16)

where

Λ = Γ

(
a1T + 1

2

)(
B( 1

2 , a1T )√
2

+ β1 + σ 2
1 + ρ12σ1σ2

σ1
√

a1 − b
G

(
a1T + 1

2
,

1

2
,

3

2
; − (β1 + σ 2

1 + ρ12σ1σ2)
2

2(a1 − b)σ 2
1

))
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with

b =
2∑

j=1

(
βj + σ 2

j

2

)
+ ρ12σ1σ2

and Ξ is set by (14) with

q = β1 + σ 2
1 + ρ12σ1σ2√

(β1 + σ 2
1 + ρ12σ1σ2)2 + 2(a1 − b)σ 2

1

and

s =
(μ1T − K)

√
(β1 + σ 2

1 + ρ12σ1σ2)2 + 2(a1 − b)σ 2
1

σ1
.

Next, let S3
t ≡ 1, ξjl ≡ 0, j = 1, 2, l = 1, 2, . . . and the conditions of Theorem 3

hold. Then

DC = DC(0, 0) = e(μ2−r)T a
a1T
1

(a1 − b)a1T Γ (a1T )
√

2π
(ΛI{μ1T =K} + ΞI{μ1T 
=K}), (17)

where

Λ = Γ

(
a1T + 1

2

)(
B( 1

2 , a1T )√
2

+ β1 + ρ12σ1σ2

σ1
√

a1 − b
G

(
a1T + 1

2
,

1

2
,

3

2
; − (β1 + ρ12σ1σ2)

2

2(a1 − b)σ 2
1

))

with b = β2 + σ 2
2
2 and Ξ is defined in (14) with

q = β1 + ρ12σ1σ2√
(β1 + ρ12σ1σ2)2 + 2(a1 − b)σ 2

1

and

s =
(μ1T − K)

√
(β1 + ρ12σ1σ2)2 + 2(a1 − b)σ 2

1

σ1
.

Combining together (16) and (17), one can obtain the result of Theorem 1 from
Ivanov and Ano [20].

Now we will consider the case when the indicator stock S1
t and the exchange rate

S3
t are strongly dependent but the underlying asset S2

t is weakly dependent on them.

Theorem 4. Assume that in (1) ρ23 = ρ12 = 0, the subordinators are gamma dis-
tributed, satisfy (8)–(9), and γ 3

t = γ 1
t , γ 2

t = κ21γ
1
t + κ̃2γ̃

2
t . Let

b = β3 + σ 2
3

2
+ κ21

(
β2 + σ 2

2

2

)
.
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Then (12) is satisfied with

DC(n1, n2, n3) = e(μ2+μ3−r)T a
a1T
1

(a1 − b)a1T Γ (a1T )
√

2π
E
(
e−∑n2

l=0 ξ2l
)
E
(
e−∑n3

l=0 ξ3l
)

×
(

ã2

ã2 − κ̃2(β2 + σ 2
2
2 )

)ã2T
(

ΛP

( n1∑
l=0

ξ1l = μ1T − K

)

+ E

(
Ξ

( n1∑
l=0

ξ1l

)
I{∑n1

l=0 ξ1l 
=μ1T −K}

))
,

where

Λ = Γ

(
a1T + 1

2

)(
B( 1

2 , a1T )√
2

+ β1 + σ1σ3

σ1
√

a1 − b
G

(
a1T + 1

2
,

1

2
,

3

2
; − (β1 + σ1σ3)

2

2(a1 − b)σ 2
1

))

and Ξ(x) is defined by (14) with

q = β1 + σ1σ3√
(β1 + σ1σ3)2 + 2(a1 − b)σ 2

1

and

s = s(x) =
(μ1T − K − x)

√
(β1 + σ1σ3)2 + 2(a1 − b)σ 2

1

σ1
.

Remark 2. One could notice that the result symmetric to Theorem 4 can be estab-
lished. It should be assumed then that the indicator stock S1

t and the underlying asset
S2

t are strongly dependent but the exchange rate S3
t is weakly dependent on them.

That is, the conditions ρ23 = ρ13 = 0 and γ 2
t = γ 1

t , γ 3
t = κ31γ

1
t + κ̃3γ̃

3
t have to be

proposed.

4 Inverse-Gaussian time change

Let (B̃s)s≥0 be a Brownian motion, φ > 0 and a ≥ 0. Set for t ≥ 0

κt = κt (φ, a) = inf{s ≥ 0 : B̃s + as ≥ φt}. (18)

The subordinator (κt )t≥0 is called the inverse-Gaussian process and has the probabil-
ity density function

f (κt , x) = φt√
2π

x− 3
2 eaφt− 1

2 (a2x+ (φt)2

x
), (19)
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see, for example, (1.26) in Applebaum [2]. The mean of κt is

E(κt ) = φt√
2π

eaφt

∫ ∞

0

√
xe− 1

2 (a2x+ (φt)2

x
)dx

= eaφt (φt)
3
2√

a

√
2

π
M 1

2
(aφt) = φt

a

with respect to 3.471.9 and 8.469.3 from Gradshteyn and Ryzhik [16]. In this section
we assume that the subordinator in (1) and (4) is the inverse-Gaussian process with
unit mean rate, that is, we set

ϑ
j
t = κ

j
t (φj ) = κ

j
t (φj , φj ). (20)

Then the processes X
j
t in (4) become the normal-inverse Gaussian processes, see, for

example, Ivanov and Temnov [21] and references therein or Applebaum [2].
Similarly to (9), we assume that

κ
j
t = κjκt (φ) + κj1κ

1
t + κ̃j κ̃

j
t (φ̃j ), j = 2, 3, (21)

where all the inverse-Gaussian processes with unit mean rate κt ,κ
1
t , κ̃

2
t , κ̃

3
t are mu-

tually independent, κj , κj1, κ̃j ≥ 0 and κj + κj1 + κ̃j = 1, j = 2, 3. Because for
arbitrary independent inverse-Gaussian distributions κ and κ̃ the identities

uκ(u1, u2)
Law= κ

(
u1

√
u,

u2√
u

)

and

κ(u1, u) + κ̃(u2, u)
Law= κ(u1 + u2, u)

are satisfied, one could observe that in the model (21)(
φj − φ√

κj

)
I{κj >0} =

(
φj − φ1√

κj1

)
I{κj1>0}

=
(

φj − φ̃j√
κ̃j

)
I{κ̃j >0} = 0

and

φj = φ
√

κj I{κj >0} + φ1
√

κj1I{κj1>0} + φ̃j

√
κ̃j I{κ̃j >0}.

The next theorem suggests the conditions of dependence in (1) which are similar
to those of Theorem 1.

Theorem 5. Let in (1) ρ12 = ρ13 = ρ23 = 0, the subordinators satisfy (20)–(21),
and

φ2
1 = 2

3∑
j=2

κj1

(
βj + σ 2

j

2

)
.
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Then (12) holds with

DC(n1, n2, n3) = e(μ2+μ3−r+φ2
1 )T

2
√

π
E
(
e−∑n2

l=0 ξ2l
)
E
(
e−∑n3

l=0 ξ3l
)

× e
T
(
φ̃2(φ̃2−

√
φ̃2

2−2κ̃2(β2+ σ2
2
2 ))+φ̃3(φ̃3−

√
φ̃2

3−2κ̃3(β3+ σ2
3
2 ))

)

× e
φT

(
φ−

√
φ2−2

∑3
j=2 κj (βj + σ2

j
2 )

)

×
(

EΛ

( n1∑
l=0

ξ1l

)
I{β1=0} + EΞ

( n1∑
l=0

ξ1l

)
I{β1 
=0}

)
,

where

Λ(x) = √
π + 2√

π
sign(μ1T − K − x) arctan

( |μ1T − K − x|
σ1φ1T

)
(22)

and

Ξ(x) = |ς |e|ς |
√

q + 1

(
M1(|ς |)Υ0 + M0(|ς |)(Υ0 − (q + 1)Υ1

))
(23)

with

ς = ς(x) = β1

σ 2
1

√
(μ1T − K − x)2 + (σ1φ1T )2,

q = q(x) = μ1T − K − x√
(μ1T − K − x)2 + (σ1φ1T )2

and

Υj = Υj (x) = B

(
1

2
+ j, 1

)
A

(
1

2
+ j,

1

2
,

3

2
+ j ; q + 1

2
,−|ς |(q + 1)

)
.

The following example applies the result of Theorem 5 to the case of standard
Poisson processes.

Example 3. Assume that ξjl ≡ �j , j = 1, 2, 3, l = 1, 2, . . ., where �j ≥ 0 are

constants. Then Z
j
t ≡ �jN

j
t (Poisson processes) and the result of Theorem 1 holds

with

DC(n1, n2, n3) = e(μ2+μ3−r+φ2
1 )T −�2n2−�3n3

2
√

π

× e
T
(
φ̃2(φ̃2−

√
φ̃2

2−2κ̃2(β2+ σ2
2
2 ))+φ̃3(φ̃3−

√
φ̃2

3−2κ̃3(β3+ σ2
3
2 ))

)

× e
φT

(
φ−

√
φ2−2

∑3
j=2 κj (βj + σ2

j
2 )

)
× (

Λ(�1n1)I{β1=0} + Ξ(�1n1)I{β1 
=0}
)
.

The next two theorems are analogues of Theorem 2 and Theorem 3, respectively.
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Theorem 6. Assume that in (1) ρ12 = ρ13 = 0, the subordinators κ
3
t = κ

2
t =

κ2κt + κ21κ
1
t , and the identity

φ2
1 = 2κ21

( 3∑
j=2

(
βj + σ 2

j

2

)
+ ρ23σ2σ3

)

holds for their parameters. Then (12) is satisfied with

DC(n1, n2, n3) = e(μ2+μ3−r+φ2
1 )T

2
√

π
E
(
e−∑n2

l=0 ξ2l
)
E
(
e−∑n3

l=0 ξ3l
)

× e
φT

(
φ−

√
φ2−2κ2(

∑3
j=2(βj + σ2

j
2 )+ρ23σ2σ3)

)

×
(

EΛ

( n1∑
l=0

ξ1l

)
I{β1=0} + EΞ

( n1∑
l=0

ξ1l

)
I{β1 
=0}

)
,

where Λ(x) and Ξ(x) are defined in (22) and (23), respectively.

Theorem 7. Let the subordinators in (1) satisfy

κ
3
t = κ

2
t = κ

1
t , φ2

1 = 2
3∑

j=2

(
βj + σ 2

j

2

)
+ ρ23σ2σ3.

Then (12) holds with

DC(n1, n2, n3) = e(μ2+μ3−r+φ2
1 )T

2
√

π
E
(
e−∑n2

l=0 ξ2l
)
E
(
e−∑n3

l=0 ξ3l
)

×
(

EΛ

( n1∑
l=0

ξ1l

)
I{β1+ρ12σ1σ2+ρ13σ1σ3=0}

+ EΞ

( n1∑
l=0

ξ1l

)
I{β1+ρ12σ1σ2+ρ13σ1σ3 
=0}

)
,

where Λ(x) and Ξ(x) are defined in (22) and (23) with

ς = ς(x) = β1 + ρ12σ1σ2 + ρ13σ1σ3

σ 2
1

√
(μ1T − K − x)2 + (σ1φ1T )2

and

q = q(x) = μ1T − K − x√
(μ1T − K − x)2 + (σ1φ1T )2

.

The example below gives us the price of the standard asset-or-nothing digital
option computed in Ivanov and Temnov [21] as a corollary of Theorem 7.
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Example 4. Let S3
t ≡ 1, S2

t ≡ S1
t and ξjl ≡ 0, j = 1, 2, 3, l = 1, 2, . . .. Then

ρ12 = 1, the conditions of Theorem 7 has the form φ2
1 = 2β1 + σ 2

1 , β1 
= σ 2
1 as in

Corollary 3.1 of Ivanov and Temnov [21] and

DC = DC(0, 0) = e(μ2+μ3−r+φ2
1 )T Ξ

2
√

π
,

where Ξ is defined in (23) with

ς = β1 + σ 2
1

σ 2
1

√
(μ1T − K)2 + (σ1φ1T )2 and q = μ1T − K√

(μ1T − K)2 + (σ1φ1T )2
.

Theorem 8 implies the similar conditions on the dependence between risky assets
as Theorem 4 does.

Theorem 8. Assume that ρ23 = ρ12 = 0, κ3
t = κ1

t , κ2
t = κ21κ

1
t + κ̃2κ̃

2
t , φ2

1 =
2β3 + σ 2

3 + κ21(2β2 + σ 2
2 ) in (1) under (20)–(21). Then (12) is satisfied with

DC(n1, n2, n3) = e(μ2+μ3−r+φ2
1 )T

2
√

π
E
(
e−∑n2

l=0 ξ2l
)
E
(
e−∑n3

l=0 ξ3l
)

× e
φ̃2T

(
φ̃2−

√
φ̃2

2−κ̃2(2β2+σ 2
2 )

)

×
(

EΛ

( n1∑
l=0

ξ1l

)
I{β1+σ1σ3=0} + EΞ

( n1∑
l=0

ξ1l

)
I{β1+σ1σ3 
=0}

)
,

where Λ(x) and Ξ(x) are defined in (22) and (23) with

ς = ς(x) = β1 + σ1σ3

σ 2
1

√
(μ1T − K − x)2 + (σ1φ1T )2

and

q = q(x) = μ1T − K − x√
(μ1T − K − x)2 + (σ1φ1T )2

.

5 Conclusion

The paper suggests a foundation for computing of European-style options in the
variance-gamma and normal inverse-Gaussian models with extra compound Poisson
negative jumps. It is intended to calculate the option prices basing on the knowledge
of the price of the digital asset-or-nothing call option in foreign currency. The payoffs
of the discussed option build on the values of three risky assets which are assumed
to be dependent on each other. Various types of the dependencies between the risky
asset prices are considered. The price of the option exploits the values of some special
mathematical functions including the hypergeometric ones. A future investigation can
relate to discussion of specific types of the compound Poisson process or possibility
of the jump in the linear drift, see Ivanov [19].
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6 Proofs

Proof of Theorem 1. We have that the conditional expectation

E
(
e−rT S3

T S2
T I{S1

T ≥K}|γ 1
T , Z1

T , γ 2
T , Z2

T , γ 3
T , Z3

T

)
= e

(μ2+μ3−r)T −Z2
T −Z3

T +∑2
j=1 βiγ

j
T

× E
(
e

∑3
j=2 σi

√
γ
j
T

γ 1
T

B
j

γ 1
T I{μ1T +β1γ

1
T +σ1B

1
γ 1
T

−Z1
T ≥K}|γ 1

T , Z1
T , γ 2

T , Z2
T , γ 3

T , Z3
T

)

= e
(μ2+μ3−r)T −Z2

T −Z3
T +∑3

j=2(βj + σ2
j
2 )γ

j
T +ρ23σ2σ3

√
γ 2
T γ 3

T

× E
(
e

∑3
j=2

(
σj

√
γ
j
T

γ 1
T

B
j

γ 1
T

− σ2
j

γ
j
T

2

)
−ρ23σ2σ3

√
γ 2
T γ 3

T

× I{μ1T +β1γ
1
T +σ1B

1
γ 1
T

−Z1
T ≥K}|γ 1

T , Z1
T , γ 2

T , Z2
T , γ 3

T , Z3
T

)
. (24)

Let Q be the historical probability measure on the probability space which is gen-
erated by the Brownian motions B

j
t , j = 1, 2, 3, t ≥ 0. We define a new probability

measure Q̃ for fixed trajectories γ
j
t , t ≤ T , by the density

dQ̃γ 1
T

dQγ 1
T

= e

∑3
j=2

(
σi

√
γ
j
T

γ 1
T

B
j

γ 1
T

− σ2
j

γ
j
T

2

)
−ρ23σ2σ3

√
γ 2
T γ 3

T

. (25)

Then using Corollary 4.5 of [12] one can get that for any u ∈ R

Q̃
(
log S1

T ≤ u|γ 1
T , Z1

T , γ 2
T , Z2

T , γ 3
T , Z3

T

)
= Q̃

(
μ1T +

(
β1 + ρ12σ1σ2

√
γ 2
T

γ 1
T

+ ρ13σ1σ3

√
γ 3
T

γ 1
T

)
γ 1
T + σ1B

Q̃

γ 1
T

− Z1
T

≤ u|γ 1
T , Z1

T , γ 2
T , Z2

T , γ 3
T , Z3

T

)
, (26)

where B
Q̃
t , t ≤ γ 1

T , is the standard Brownian motion with respect to measure Q̃.
Set

βI = β1 + ρ12σ1σ2

√
γ 2
T

γ 1
T

+ ρ13σ1σ3

√
γ 3
T

γ 1
T

.

Then we have from (24) and (26) that

E
(
e−rT S3

T S2
T I{S1

T ≥K}|γ 1
T , Z1

T , γ 2
T , Z2

T , γ 3
T , Z3

T

)
= e

(μ2+μ3−r)T −Z2
T −Z3

T +∑3
j=2(βj + σ2

j
2 )γ

j
T +ρ23σ2σ3

√
γ 2
T γ 3

T
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× Q̃
(
βIγ

1
T + σ1B

Q̃

γ 1
T

≥ K − μ1T + Z1
T |γ 1

T , Z1
T , γ 2

T , Z2
T , γ 3

T , Z3
T

)

= e
(μ2+μ3−r)T −Z2

T −Z3
T +∑3

j=2(βj + σ2
j
2 )γ

j
T +ρ23σ2σ3

√
γ 2
T γ 3

T

×
(

1 − N

(
K − μ1T + Z1

T − βI γ
1
T

σ1

√
γ 1
T

))

= e
(μ2+μ3−r)T −Z2

T −Z3
T +∑3

j=2(βj + σ2
j
2 )γ

j
T +ρ23σ2σ3

√
γ 2
T γ 3

T

× N

(μ1T + (
β1 + ρ12σ1σ2

√
γ 2
T

γ 1
T

+ ρ13σ1σ3

√
γ 3
T

γ 1
T

)
γ 1
T − K − Z1

T

σ1

√
γ 1
T

)
. (27)

Because ρ12 = ρ13 = ρ23 = 0, we get that

E
(
e−rT S3

T S2
T I{S1

T ≥K}|γ 1
T , Z1

T , γ 2
T , Z2

T , γ 3
T , Z3

T

)
= e

(μ2+μ3−r)T −Z2
T −Z3

T +∑3
j=2(βj + σ2

j
2 )γ

j
T N

(
μ1T + β1γ

1
T − K − Z1

T

σ1

√
γ 1
T

)

= e
(μ2+μ3−r)T −Z2

T −Z3
T +

[∑3
j=2 κj (βj + σ2

j
2 )

]
γT +∑3

j=2(βj + σ2
j
2 )κ̃j γ̃

j
T

× e

[∑3
j=2 κj1(βj + σ2

j
2 )

]
γ 1
T N

(
μ1T + β1γ

1
T − K − Z1

T

σ1

√
γ 1
T

)
, (28)

where κj , κ̃j , κj1, j = 2, 3, are defined in (9).
Next, we pass to the computing of the conditional expectation

E
(
e−rT S3

T S2
T I{S1

T ≥K}|Z1
T , Z2

T , Z3
T

)
.

It is clear from (28) that we need to calculate the integral

I =
∫ ∞

0
xαe−(a1−b)xN

(
h
√

x + p√
x

)
dx, (29)

where a1 is the parameter of γ 1
t (see (8)),

α = a1T − 1, p = μ1T − K − Z1
T

σ1
, b =

3∑
j=2

κj1

(
βj + σ 2

j

2

)
, h = β1

σ1
.

Then

E
(
e−rT S3

T S2
T I{S1

T ≥K}|Z1
T , Z2

T , Z3
T

)
= e(μ2+μ3−r)T −Z2

T −Z3
T E

(
e
∑3

j=2(βj + σ2
j
2 )κj γT

)
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× E
(
e(β2+ σ2

2
2 )κ̃2γ̃

2
T
)
E
(
e(β3+ σ2

3
2 )κ̃3γ̃

3
T
) a

a1T
1

Γ (a1T )
I. (30)

Let us notice that the condition (5) is

Ee
∑3

j=2 βj γ
j
T +

∑3
j=2 σ2

j
γ
j
T

2 < ∞
now since ρ23 = 0. Hence we have that

E
(
e
∑3

j=2(βj + σ2
j
2 )κj γT

)
E
(
e
∑3

j=2(βj + σ2
j
2 )κj1γ

1
T
)

× E
(
e(β2+ σ2

2
2 )κ̃2γ̃

2
T
)
E
(
e(β3+ σ2

3
2 )κ̃3γ̃

3
T
)

< ∞ (31)

and therefore b < a1. And since b < a1, we could apply to the integral (29) Cases
1–3 on pp. 207–212 of Ivanov and Ano [20]. If p = 0, then the identity

I = Γ (α + 3
2 )

(a1 − b)α+1
√

2π

[
B( 1

2 , α + 1)√
2

+ h√
a1 − b

G

(
α + 3

2
,

1

2
,

3

2
; − h2

2(a1 − b)

)]
(32)

is satisfied for I defined in (29). When p 
= 0, we have that

I = |s|α+ 1
2 es(1 + q)α+1

(a1 − b)α+1
√

2π

[
B(α + 1, 1)

(|s|M
α+ 3

2
(|s|)

+ sM
α+ 1

2
(|s|))A

(
α + 1,−α, α + 2; 1 + q

2
,−s(1 + q)

)

− (1 + q)sB(α + 2, 1)M
α+ 1

2
(|s|)A

(
α + 2,−α, α + 3; 1 + q

2
,−s(1 + q)

)]
,

(33)

where

s = p
√

h2 + 2(a1 − b) and q = h√
h2 + 2(a1 − b)

.

Set

DC(n1, n2, n3) = e−rT E
(
S3

T S2
T I{S1

T ≥K}|N1
T = n1, N

2
T = n2, N

3
T = n3

)
.

Then we have that

DC(n1, n2, n3) = Ee
X2

T +X3
T −∑n2

j=1 ξ2
j −∑n3

j=1 ξ3
j I

{eX1
T

−∑n1
j=1 ξ1

j ≥K}

≥ Ee
X2

T +X3
T −∑ñ2

j=1 ξ2
j −∑ñ3

j=1 ξ3
j I

{eX1
T

−∑ñ1
j=1 ξ1

j ≥K}
= DC(ñ1, ñ2, ñ3)
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when nj ≤ ñj , j = 1, 2, 3. Therefore,

N1∑
n1=0

N2∑
n2=0

N3∑
n3=0

λ
n1
1 λ

n2
2 λ

n3
3 T n1+n2+n3e−(λ1+λ2+λ3)T DC(n1, n2, n3)

n1!n2!n3!
≤ DC

≤
N1∑

n1=0

N2∑
n2=0

N3∑
n3=0

λ
n1
1 λ

n2
2 λ

n3
3 T n1+n2+n3e−(λ1+λ2+λ3)T DC(n1, n2, n3)

n1!n2!n3!

+ DC(n1, n2, n3)

∞∑
n1=N1+1

∞∑
n2=N2+1

∞∑
n3=N3+1

λ
n1
1 λ

n2
2 λ

n3
3 T n1+n2+n3

n1!n2!n3!e(λ1+λ2+λ3)T

=
N1∑

n1=0

N2∑
n2=0

N3∑
n3=0

λ
n1
1 λ

n2
2 λ

n3
3 T n1+n2+n3e−(λ1+λ2+λ3)T DC(n1, n2, n3)

n1!n2!n3!

+ DC(n1, n2, n3)

(
1 −

N1∑
n1=0

λ
n1
1 e−λ1T

n1!
)

×
(

1 −
N2∑

n2=0

λ
n2
2 e−λ2T

n2!
)(

1 −
N3∑

n3=0

λ
n3
3 e−λ3T

n3!
)

. (34)

The result of Theorem 1 follows from (34), where the functions DC(n1, n2, n3)

are computed with respect to (30) using (7) and (32)–(33).

Proof of Theorem 2. Since ρ12 = ρ13 = 0 and γ 3
T ≡ γ 2

T , we get using (27) that

E
(
e−rT S3

T S2
T I{S1

T ≥K}|γ 1
T , Z1

T , γ 2
T , Z2

T , γ 3
T , Z3

T

)
= e

(μ2+μ3−r)T −Z2
T −Z3

T +κ2

[∑3
j=2(βj + σ2

j
2 )+ρ23σ2σ3

]
γT

× e
κ21

[∑3
j=2(βj + σ2

j
2 )+ρ23σ2σ3

]
γ 1
T N

(
μ1T + β1γ

1
T − K − Z1

T

σ1

√
γ 1
T

)
. (35)

To get

E
(
e−rT S3

T S2
T I{S1

T ≥K}|Z1
T , Z2

T , Z3
T

)
,

we need to calculate the integral I (29) with

α = a1T − 1, p = μ1T − K − Z1
T

σ1
,

b = κ21

[ 3∑
j=2

(
βj + σ 2

j

2

)
+ ρ23σ2σ3

]
, h = β1

σ1
.
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Then

E
(
e−rT S3

T S2
T I{S1

T ≥K}|Z1
T , Z2

T , Z3
T

) = e(μ2+μ3−r)T −Z2
T −Z3

T

× E
(
e
κ2

[∑3
j=2(βj + σ2

j
2 )+ρ23σ2σ3

]
γT

) a
a1T
1

Γ (a1T )
I,

(36)

where I is calculated by (32)–(33).
Under the conditions of Theorem 2, (3) has the form

Ee
γ 2
T

∑3
j=2 βj +

∑3
j=2 σ2

j
+2ρ23σ2σ3
2 γ 2

T < ∞. (37)

Therefore,

E
(
e
κ2

[∑3
j=2(βj + σ2

j
2 )+ρ23σ2σ3

]
γT

)
E
(
e
κ21

[∑3
j=2(βj + σ2

j
2 )+ρ23σ2σ3

]
γ 1
T
)

< ∞
and b < a1. The result of Theorem 2 comes from (36) analogously to the result of
Theorem 1.

Proof of Theorem 3. Because γ 3
T = γ 2

T = γ 1
T , we have from (27) that

E
(
e−rT S3

T S2
T I{S1

T ≥K}|γ 1
T , Z1

T , γ 2
T , Z2

T , γ 3
T , Z3

T

)
= e

(μ2+μ3−r)T −Z2
T −Z3

T +
[∑3

j=2(βj + σ2
j
2 )+ρ23σ2σ3

]
γ 1
T

× N

(
μ1T + (β1 + ρ12σ1σ2 + ρ13σ1σ3)γ

1
T − K − Z1

T

σ1

√
γ 1
T

)
. (38)

Hence

E
(
e−rT S3

T S2
T I{S1

T ≥K}|Z1
T , Z2

T , Z3
T

) = e(μ2+μ3−r)T −Z2
T −Z3

T
a

a1T
1

Γ (a1T )
I, (39)

where I is defined in (29) and computed by (32)–(33) with the same α and p as in
the proof of Theorem 2,

b =
3∑

j=2

(
βj + σ 2

j

2

)
+ ρ23σ2σ3, h = β1 + ρ12σ1σ2 + ρ13σ1σ3

σ1
.

The condition (3) in Theorem 3 has the form

E
(
e

[∑3
j=2(βj + σ2

j
2 )+ρ23σ2σ3

]
γ 1
T
)

< ∞
now and hence b < a1. The result of Theorem 3 is derived from (39) using (7) and
(32)–(34) from the proof of Theorem 1.
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Proof of Theorem 4. Keeping in mind the conditions of Theorem 4, one could ob-
serve from (27) that

E
(
e−rT S3

T S2
T I{S1

T ≥K}|γ 1
T , Z1

T , γ 2
T , Z2

T , γ 3
T , Z3

T

)
= e

(μ2+μ3−r)T −Z2
T −Z3

T +κ̃2(β2+ σ2
2
2 )γ̃ 2

T +
[
β3+ σ2

3
2 +κ21(β2+ σ2

2
2 )

]
γ 1
T

× N

(
μ1T + (β1 + σ1σ3)γ

1
T − K − Z1

T

σ1

√
γ 1
T

)
. (40)

Therefore

E
(
e−rT S3

T S2
T I{S1

T ≥K}|Z1
T , Z2

T , Z3
T

)
= e(μ2+μ3−r)T −Z2

T −Z3
T E

(
eκ̃2(β2+ σ2

2
2 )γ̃ 2

T
) a

a1T
1

Γ (a1T )
I, (41)

where I is defined in (29) and computed by (32)–(33) with the same α and p as in
the proof of Theorem 2,

b = β3 + σ 2
3

2
+ κ21

(
β2 + σ 2

2

2

)
, h = β1 + σ1σ3

σ1
.

The condition (3) has here the form

E
(
e(β3+ σ2

3
2 )γ 1

T +(β2+ σ2
2
2 )γ 2

T
)

< ∞. (42)

Therefore,

E
(
e

[
β3+ σ2

3
2 +κ21(β2+ σ2

2
2 )

]
γ 1
T
)
E
(
eκ̃2(β2+ σ2

2
2 )γ̃ 2

T
)

< ∞ (43)

and hence b < a1. It means that we can exploit here the results of Ivanov and Ano [20]
and obtain the result of Theorem 4 from (41) in the same way as it is made in the proof
of Theorem 1 in (32)–(34).

Proof of Theorem 5. We have similarly to (28) that

E
(
e−rT S3

T S2
T I{S1

T ≥K}|κ1
T , Z1

T ,κ2
T , Z2

T ,κ3
T , Z3

T

)
= e

(μ2+μ3−r)T −Z2
T −Z3

T +
[∑3

j=2 κj (βj + σ2
j
2 )

]
κT +∑3

j=2(βj + σ2
j
2 )κ̃j κ̃

j
T

× e

[∑3
j=2 κj1(βj + σ2

j
2 )

]
κ

1
T N

(
μ1T + β1κ

1
T − K − Z1

T

σ1

√
κ

1
T

)
.

Since

φ2
1

2
=

3∑
j=2

κj1

(
βj + σ 2

j

2

)
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with respect to the conditions of Theorem 5, one can notice that

E
(
e−rT S3

T S2
T I{S1

T ≥K}|Z1
T , Z2

T , Z3
T

) = e(μ2+μ3−r)T −Z2
T −Z3

T

× E
(
e(β2+ σ2

2
2 )κ̃2κ̃

2
T
)
E
(
e(β3+ σ2

3
2 )κ̃3κ̃

3
T
)

× E
(
e

[∑3
j=2 κj (βj + σ2

j
2 )

]
κT

)φ1T eφ2
1T

√
2π

J,

where

J =
∫ ∞

0
x− 3

2 e− (φ1T )2

2x N

(
μ1T + β1x − K − Z1

T

σ1
√

x

)
dx

=
√

2

φ1T

∫ ∞

0
x− 3

2 e− 1
x N

(
h
√

x + p√
x

)
(44)

with

h = β1φ1T

σ1
√

2
and p = (μ1T − K − Z1

T )
√

2

σ1φ1T
.

If β1 
= 0, it is easy to see that the integral (44) is quite the same as the integral
(4.1) in Ivanov and Temnov [21]. Therefore, we get from (4.3)–(4.6) of Ivanov and
Temnov [21] that if β1 
= 0 then

J = 1

φ1T
√

2
(J1 + J2), (45)

where

J1 = |ς |(q + 1)−
1
2 exp(|ς |)M1(|ς |)Υ1

and

J2 = |ς |(q + 1)−
1
2 exp(|ς |)M0(|ς |)(Υ1 − (q + 1)Υ2

)
with

Υ1 = B

(
1

2
, 1

)
A

(
1

2
,

1

2
,

3

2
; q + 1

2
,−|ς |(q + 1)

)

and

Υ2 = B

(
3

2
, 1

)
A

(
3

2
,

1

2
,

5

2
; q + 1

2
,−|ς |(q + 1)

)
,

where

ς = h

√
p2 + 2 and q = p√

p2 + 2
.
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When β1 = 0, we have that

J =
√

2

φ1T

∫ ∞

0
x− 3

2 e− 1
x N

(
p√
x

)
dx

=
√

2

φ1T

∫ ∞

0
x− 3

2 e− 1
x

(∫ p√
x

−∞
1√
2π

e− y2

2 dy

)
dx

=
√

2

φ1T

∫ ∞

0
x− 3

2 e− 1
x

(∫ p

−∞
1√
2πx

e− y2

2x dy

)
dx

= 1

φ1T
√

π

∫ p

−∞

(∫ ∞

0
x−2e− 1

x
− y2

2x dx

)
dy. (46)

Let us notice that the Fubini theorem can be applied to J since the double integral∫ ∞

0

∫ p

−∞
x−2e− 1

x
− y2

2x dydx

is an integral of constant sign function and because the Fubini theorem is applicable
to ∫ n

0

∫ p

−n

x−2e− 1
x
− y2

2x dydx

for any n ∈ N as the integrand is continuous. Because

∫ ∞

0
x−2e− 1

x
− y2

2x dx =
(

1 + y2

2

)−1 ∫ ∞

0

(
1 + y2

2

)
x−2e− 1

x
− y2

2x dx

=
(

1 + y2

2

)−1 ∫ ∞

0
de−(1+ y2

2 ) 1
x =

(
1 + y2

2

)−1

,

it follows from (46) that

J = 1

φ1T
√

π

∫ p

−∞

(
1 + y2

2

)−1

dy =
√

2

φ1T
√

π

∫ p√
2

−∞
(
1 + y2)−1

dy

=
√

2

φ1T
√

π

(
π

2
+ signp arctan

|p|√
2

)
(47)

if β1 = 0.
If a2 > 2A, it follows from (19) that

EeAκt = φteaφt

√
2π

∫ ∞

0
x− 3

2 e
− 1

2

(
(a2−2A)x+ (φt)2

x

)
dx = eφt(a−

√
a2−2A). (48)

When a2 = 2A, the expectation

EeAκt = φteaφt

√
2π

∫ ∞

0
x− 3

2 e− (φt)2

2x dx = φteaφt

√
2π

∫ 0

−∞
|x|− 1

2 e
(φt)2x

2 dx
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= φteaφt

√
2π

∫ ∞

0
x− 1

2 e− (φt)2x
2 dx = eaφtΓ ( 1

2 )√
π

= eaφt . (49)

The condition (3) has the form (31) here. Therefore,

φ2 ≥ 2
3∑

j=2

κj

(
βj + σ 2

j

2

)
and φ̃2

j ≥ 2

(
βj + σ 2

j

2

)
κ̃j , j = 2, 3.

Hence the result of Theorem 5 comes from (45), (47) and (48)–(49).

Proof of Theorem 6. Since

φ2
1 = 2κ21

( 3∑
j=2

(
βj + σ 2

j

2

)
+ ρ23σ2σ3

)
,

we get using (35) that

E
(
e−rT S3

T S2
T I{S1

T ≥K}|Z1
T , Z2

T , Z3
T

)
= e(μ2+μ3−r)T −Z2

T −Z3
T E

(
e
κ2

[∑3
j=2(βj + σ2

j
2 )+ρ23σ2σ3

]
κT

)φ1T eφ2
1T

√
2π

J,

where J is defined (44). The condition (3) has the form (37) here. Therefore,

φ2 ≥ 2κ2

[ 3∑
j=2

(
βj + σ 2

j

2

)
+ ρ23σ2σ3

]

and hence

E
(
e
κ2

[∑3
j=2(βj + σ2

j
2 )+ρ23σ2σ3

]
κT

)
< ∞

and can be computed by (48) and (49).

Proof of Theorem 7. We have from (38) and the condition

φ2
1 = 2

3∑
j=2

(
βj + σ 2

j

2

)
+ ρ23σ2σ3

that

E
(
e−rT S3

T S2
T I{S1

T ≥K}|Z1
T , Z2

T , Z3
T

) = e(μ2+μ3−r)T −Z2
T −Z3

T
φ1T eφ2

1T

√
2π

J

with

J =
√

2

φ1T

∫ ∞

0
x− 3

2 e− 1
x N

(
h
√

x + p√
x

)
, (50)
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where

h = (β1 + ρ12σ1σ2 + ρ13σ1σ3)φ1T

σ1
√

2
and p = (μ1T − K − Z1

T )
√

2

σ1φ1T
.

Hence J is determined by (45) if β1 + ρ12σ1σ2 + ρ13σ1σ3 
= 0 and by (47) when
β1 + ρ12σ1σ2 + ρ13σ1σ3 = 0.

Proof of Theorem 8. The condition (3) has the form (42)–(43) here. Therefore, φ̃2
2 ≥

κ̃2(2β2 +σ 2
2 ) and we get from (40) and the condition φ2

1 = 2β3 +σ 2
3 +κ21(2β2 +σ 2

2 )

that

E
(
e−rT S3

T S2
T I{S1

T ≥K}|Z1
T , Z2

T , Z3
T

)
= e(μ2+μ3−r)T −Z2

T −Z3
T E

(
eκ̃2(β2+ σ2

2
2 )κ̃2

T
)φ1T eφ2

1T

√
2π

J,

where J is defined in (50) with

h = (β1 + σ1σ3)φ1T

σ1
√

2
and p = (μ1T − K − Z1

T )
√

2

σ1φ1T
.

Therefore, J is computed by (45) if β1 +σ1σ3 
= 0 and by (47) when β1 + σ1σ3 = 0.
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