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Abstract Martingale-like sequences in vector lattice and Banach lattice frameworks are de-
fined in the same way as martingales are defined in [Positivity 9 (2005), 437–456]. In these
frameworks, a collection of bounded X-martingales is shown to be a Banach space under
the supremum norm, and under some conditions it is also a Banach lattice with coordinate-
wise order. Moreover, a necessary and sufficient condition is presented for the collection of
E-martingales to be a vector lattice with coordinate-wise order. It is also shown that the collec-
tion of bounded E-martingales is a normed lattice but not necessarily a Banach space under the
supremum norm.
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1 Introduction

The classical definition of martingales is extended to a more general case in the space
of Banach lattices by V. Troitsky [6]. In the Banach lattice framework, martingales
are defined without a probability space and the famous Doob’s convergence theo-
rem was reproduced. Moreover, under certain conditions on the Banach lattice, it was
shown that the set of bounded martingales forms a Banach lattice with respect to the
point-wise order. In 2011, H. Gessesse and V. Troitsky [2] produced several sufficient
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conditions for the space of bounded martingales on a Banach lattice to be a Banach
lattice itself. They also provided examples showing that the space of bounded martin-
gales is not necessarily a vector lattice. Several other works have been done by other
authors with regard to martingales in vector lattices, such as [4, 3].

In the theory of random processes, not just the study of martingale convergence is
important, but the study of convergence of martingale-like stochastic sequences and
processes, and the determination of interrelation between them are also crucial. So it
is natural to ask if martingale-like sequences can be defined in a vector lattice or Ba-
nach lattice framework. In this article, we define and study martingale-like sequences
in Banach lattices along the same lines as martingales are defined and studied in [6].

Classically, a martingale-like sequence is defined as follows (for instance, see a
paper by A. Melnikov [5]). Consider a probability space (Ω,F , P ) and a filtration
(Fn)

∞
n=1, i.e., an increasing sequence of complete sub-sigma-algebras of F . An inte-

grable stochastic sequence x = (xn,Fn) is an L1-martingale if

lim
n→∞ sup

m�n

E
∣∣E(xm|Fn) − xn

∣∣ = 0.

An integrable stochastic sequence x = (xn,Fn) is an E-martingale if

P
{
ω : E(xn+1|Fn) �= xn infinitely often

} = 0.

Here we extend the definition of L1-martingales and E-martingales in a general
Banach lattice X following the same lines as the definition of martingales in Banach
lattices in [6]. First we mention some terminology and definitions from the theory of
Banach lattices for the reader convenience. For more detailed exploration, we refer
the reader to [1]. A vector lattice is a vector space equipped with a lattice order
relation, which is compatible with the linear structure. A Banach lattice is a vector
lattice with a Banach norm which is monotone, i.e., 0 � x � y implies ‖x‖ � ‖y‖,
and satisfies ‖x‖ = ‖|x|‖ for any two vectors x and y. A vector lattice is said to be
order complete if every nonempty subset that is bounded above has a supremum.
We say that a Banach lattice has order continuous norm if ‖xα‖ → 0 for every
decreasing net (xα) with inf xα = 0. A Banach lattice with order continuous norm is
order complete. A sublattice Y of a vector lattice is called an (order) ideal if y ∈ Y

and |x| � |y| imply x ∈ Y . An ideal Y is called a band if x = supα xα implies x ∈ Y

for every positive increasing net (xα) in Y . Two elements x and y in a vector lattice
are said to be disjoint whenever |x| ∧ |y| = 0 holds. If J is a nonempty subset of a
vector lattice, then its disjoint complement J d is the set of all elements of the lattice,
disjoint to every element of J . A band Y in a vector lattice X that satisfies X = Y ⊗Yd

is refered to as a projection band. Every band in an order complete vector lattice is
a projection band. An operator T on a vector lattice X is positive if T x � 0 for
every x � 0. A sequence of positive projections (En) on a vector lattice X is called a
filtration if EnEm = En∧m. A sequence of positive contractive projections (En) on
a normed lattice X is called a contractive filtration if EnEm = En∧m. A filtration
(En) in a normed lattice X is called dense if Enx → x for each x in X. In many
articles such as in [6], a martingale with respect to a filtration (En) in a vector lattice
X is defined as a sequence (xn) in X such that Enxm = xn whenever m ≥ n.
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2 Main definitions

Definition 1. A sequence (xn) of elements of a normed lattice X is called an X-
martingale relative to a contractive filtration (En) if

lim
n→∞ sup

m�n

‖Enxm − xn‖ = 0.

Definition 2. A sequence (xn) of elements of a vector lattice X is called an E-
martingale relative to a filtration (En) if there exists n � 1 such that Emxm+1 = xm

for all m � n.

Note that Definition 2 is equivalent to saying a sequence (xn) is an E-martingale
if there exists l � 1 such that Enxm = xn whenever m � n ≥ l. The symbol “E”
stands for eventual so when we say (xn) is an E-martingale, we are saying that after
a first few finite elements of the sequence, the sequence becomes a martingale.

Sequences defined by Definition 1 and Definition 2 are collectively called martin-
gale-like sequences. Notice that every martingale (xn) in a vector lattice X with
respect to a filtration (En) is obviously an E-martingale with respect to the filtra-
tion (En). Moreover, every E-martingale (xn) in a Banach lattice X with respect to
a contractive filtration (En) is an X-martingale with respect to the contrative filtra-
tion (En). Note that for every x in a vector lattice X and a filtration (En) in X, the
sequence (Enx) is an E-martingale with respect to the filtration (En). If x is in a
normed space X and (En) is a contractive filtration, then the sequence (Enx) is an
X-martingale with respect to the contractive filtration (En).

By considering any nonzero martingale (xn) in a Banach lattice X with respect
to filtration (En) where x1 is nonzero without loss of generality, we can define a
sequence (yn) such that y1 = 2x1 and yn = xn for all n � 2. Then one can see
that (yn) is an E-martingale with respect to the filtration (En). However, (yn) is not a
martingale.

Note that every sequence which converges to zero is an X-martingale with respect
to any contractive filtration (En) because if xn → 0 and m > n then ‖Enxm − xn‖ �
‖xm‖ + ‖xn‖ → 0 as n → ∞. So one can easily create an X-martingale (xn) which
is not E-martingale by setting xn = 1

n
x where x is a nonzero vector in X.

A martingale-like sequence A = (xn) with respect to a contractive filtration (En)

on a normed lattice X is said to be bounded if its norm defined by ‖A‖ = supn‖xn‖
is finite. Given a contractive filtration (En) on a normed lattice X, we denote the set
of all bounded X-martingales with respect to the contractive filtration (En) by MX =
MX(X, (En)) and the set of all bounded E-martingales with respect to the contractive
filtration (En) by ME = ME(X, (En)). With the introduction of the sup norm in these
spaces, one can show that MX and ME are normed spaces. Keeping the notation M of
[6] for all bounded martingales with respect to the contractive filtration (En) and from
the preceding arguments, these spaces form a nested increasing sequence of linear
subspaces M ⊂ ME ⊂ MX ⊂ �∞(X), with the norm being exactly the �∞(X) norm.

Theorem 3. Let (En) be a contractive filtration on a Banach lattice X, then the col-
lection of X-martingales MX is a closed subspace of �∞(X), hence a Banach space.
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Proof. Suppose a sequence (Am) = (xm
n ) of X-martingales converges to A in �∞(X).

We show A is also an X-martingale. Indeed, from ‖Am − A‖ = supn‖xm
n − xn‖ → 0

as m → ∞, we have that for each n � 1, ‖xm
n − xn‖ → 0 as m → ∞. Note that for

l ≥ n,

‖Enxl − xn‖ = ‖Enxl − Enx
m
l + Enx

m
l − xm

n + xm
n − xn‖

� ‖Enxl − Enx
m
l ‖ + ‖Enx

m
l − xm

n ‖ + ‖xm
n − xn‖.

From these inequalities and the contractive property of the filtration, we have

lim
n→∞ sup

l�n

‖Enxl − xn‖ = 0.

Corollary 1. Let (En) be a contractive filtration on a Banach lattice X, then ME ⊂
MX.

Lemma 1. Let (En) be a contractive filtration on a Banach lattice X and A = (xn)

be in MX where xn → x. Then

lim
n→∞ sup

m≥n
‖Emx − xm‖ = 0.

Proof. Let A = (xn) be in MX where xn → x. Thus, for m � n

‖Enx − xn‖ = ‖Enx − Enxm + Enxm − xn‖ � ‖x − xm‖ + ‖Enxm − xn‖.
Taking lim

n→∞ supm�n on both sides of the inequality completes the proof.

The following proposition confirms that for any convergent element A = (xn) of
MX we can find a sequence in ME that converges to A.

Proposition 4. Let (En) be a contractive filtration on a Banach lattice X and A =
(xn) be a sequence in MX such that xn → x. Then there exists a sequence Am in ME

such that Am → A in �∞(X).

Proof. Suppose xn → x as n → ∞. First note that the sequence (Enx) is in M . Now
define Am = (am

n ) such that

am
n =

{
xn, for n ≤ m,

Enx, for n > m.

Then Am ∈ ME and Am → A in �∞(X), hence A ∈ ME . Indeed, by Lemma 1,

lim
m→∞‖Am − A‖ = lim

m→∞ sup
j

‖Em+j x − xm+j‖ = 0.

In [6] and [2] several sufficient conditions are established where the set of bounded
martingales M is a Banach lattice. In [2], counter examples are provided where M is
not a Banach lattice. So, one may similarly ask when are MX and ME Banach spaces
and Banach lattices? We start by showing a counter example that illustrates that ME

is not necessarily a Banach space.
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Example 5. Let c0 be the set of sequences converging to zero. Consider the filtra-
tion (En) where En

∑∞
i=1 αiei = ∑n

i=1 αiei . Thus the sequence (yn) where yn =∑n
i=1

1
i
ei is an E-martingale with respect to this filtration. We define a sequence of

E-martingales Am as Am = (xm
n ) where

xm
n =

{∑∞
i=n

1
i
ei , for n � m,

yn/m, for n > m.

Define a sequence A = (xn) where xn = ∑∞
i=n

1
i
ei . We can see that A is not an

E-martingale. But one can show that Am converges to A. Indeed,

∥∥Am − A
∥∥ = sup

n

∥∥xm
n − x

∥∥ = sup
n∈{m+1,m+2,...}

∥∥∥∥yn/m −
∞∑

i=n

1

i
ei

∥∥∥∥ → 0

as m → ∞.

3 When is ME a vector lattice?

Given a vector (Banach) lattice X and a filtration (respectively contractive) (En) on
X, we can introduce order structure on the spaces ME and MX as follows. For two
bounded E-martingales (respectively X-martingales) A = (xn) and B = (yn), we
write A � B if xn � yn for each n. With this order ME and MX are ordered vector
spaces and the monotonicity of the norm follows from the monotonicity of the norm
of X, i.e. for two E-martingales (respectively X-martingales) with 0 � A � B, we
have ‖A‖ � ‖B‖. For two E-martingales (respectively X-martingales) A = (xn) and
B = (yn), one may guess that A ∨ B (or A ∧ B) can be computed by the formulas
A∨B = (xn∨yn) (or A∧B = (xn∧yn)). We show in the following theorem that this
is in fact the case in order for ME to be a vector lattice. However, this is not obvious
to show in the case of MX.

Theorem 6. Let X be a vector lattice. Then the following statements are equivalent.

(i) ME is a vector lattice.

(ii) For each A = (xn) in ME , the sequence (|xn|) is an E-martingale and |A| =
(|xn|).

(iii) ME is a sublattice of �∞(X).

Proof. First we show (i) =⇒ (ii). Suppose ME is a vector lattice and A = (xn) is
in ME . Since ME is a vector lattice, |A| exists in ME , say |A| = B := (yn). Since
±A ≤ B, for each n, ±xn ≤ yn. So, |xn| ≤ yn for each n. Since B is in ME , there
exists l such that Enym = yn whenever m ≥ n ≥ l. Now we claim that yn = |xn| for
each n. Fix k > l. We show yn = |xn| for each n ≤ k.

Indeed, define an E-martingale C = (zn) where

zn =
{

|xn|, for n ≤ k,

yn, for n > k.
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Since k > l we can easily see that C is an E-martingale. Moreover, C ≥ 0 and
±A ≤ C ≤ B. Since |A| = B, C = B. Thus, for every n ≤ k, yn = |xn|. This
establishes (ii).

(ii) =⇒ (iii) =⇒ (i) is straightforward.

Using the equivalence in Theorem 6, the following examples illustrate that ME is
not always a vector lattice.

Example 7. Consider the classical martingale (xn) in L1[0, 1] where xn =
2n1[0,2−n] − 1 with the filtration (Fn) where Fn is the smallest sigma algebra gener-
ated by the set {[

0, 2−n
]
, (2−n, 2−n+1], . . . , (1 − 2−n, 1]}.

One can easily show that

En|xn+1| = E
[|xn+1||xn

] �= |xn|
for every n and the sequence (|xn|) fails to be an E-martingale. Hence, Theorem 6
implies that ME is not a vector lattice.

Example 8. Consider the filtration (En) defined on c0 as follows. For each n =
0, 1, 2, . . .

En =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
. . .

1
1/2 1/2
1/2 1/2

1/2 1/2
1/2 1/2

. . .

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

with 2n ones in the upper left corner. For each ei = (0, . . . , 0, 1︸︷︷︸
ith

, 0, . . .), Enei = ei

if i � 2n and Ene2k−1 = Ene2k = 1
2 (e2k−1 + e2k) if n < k. Now if we define a

sequence A = (xn) where for each n = 0, 1, 2, . . .,

xn = (−1, 1, . . . ,−1, 1︸ ︷︷ ︸
2n-tuple

, 0, . . . ),

one can show this is a martingale as a result an E-martingale. However, |A| = (|xn|)
where

|xn| = (1, . . . , 1︸ ︷︷ ︸
2n-tuple

, 0, . . . )

is not an E-martingale. So, Theorem 6 implies that ME is not a vector lattice.

Proposition 9. If a filtration (En) is a sequence of band projections, then ME is a
vector lattice with coordinate-wise lattice operations.
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Proof. If A = (xn) ∈ ME , then there exists l such that Enxm = xn whenever
m ≥ n ≥ l. Thus, En|xm| = |Enxm| = |xn|. So, |A| = (|xn|) and thus ME is a vector
lattice.

Theorem 10. If ME is a normed lattice and the filtration (En) is dense in X, then for
each x in X, there exists l such that |Enx| = En|x| whenever n ≥ l.

Proof. Let x be in X. Then (En) is dense means Enx → x. Moreover, (Enx) is a
martingale. Since ME is a vector lattice, by Theorem 6, (|Enx|) is an E-martingale.
Thus there exists l such that for any m and n with m ≥ n ≥ l, |EnEmx| = |Enx|
and En|Emx| = |Enx|. So, |EnEmx| = En|Emx| and letting m → ∞, we have
|Enx| = En|x|.

4 When is MX a Banach lattice?

Under the pointwise order structure on MX, for an X-martingale A = (xn), we can re-
fer to Example 8 to show that the sequence (|xn|) is not necessarily an X-martingale.
However, under certain assumptions, we can show that (|xn|) is an X-martingale for
every X-martingale A = (xn) making MX a Banach lattice.

Proposition 11. If (En) is a contractive filtration where En is a band projection for
every n then MX is a Banach lattice with coordinate-wise lattice operations.

Proof. Let A = (xn) be an X-martingale. For each n and m, En is a band projection

implies En|xm| = |Enxm|. Thus, by the fact that
∣∣∣|x| − |y|

∣∣∣ � |x − y|, for m � n,

∥∥En|xm| − |xn|
∥∥ = ∥∥|Enxm| − |xn|

∥∥ � ‖Enxm − xn‖.
This implies

lim
n→∞ sup

m�n

∥∥En|xm| − |xn|
∥∥ = 0

which implies |A| = (|xn|) is also an X-martingale.

Question. From Theorem 6, ME is a vector lattice if and only if for each E-martingale
(xn), the sequence (|xn|) is also an E-martingale. This is the case when the filtration
is a sequence of band projections. Can one give a characterization of the filtrations
for which ME is a vector lattice? Or, can one give an example of a filtration which is
not a sequence of projections and the corresponding ME is a vector lattice?
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