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Abstract The generalized mean-square fractional integrals [7¢ ~and J° . of the
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stochastic process X are introduced. Then, for Jensen-convex and strongly convex stochastic
proceses, the generalized fractional Hermite—Hadamard inequality is establish via generalized
stochastic fractional integrals.
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1 Introduction

In 1980, Nikodem [11] introduced convex stochastic processes and investigated their
regularity properties. In 1992, Skwronski [17] obtained some further results on con-
vex stochastic processes.

Let (§2, A, P) be an arbitrary probability space. A function X : 2 — Ris called
a random variable if it is A-measurable. A function X : I x 2 — R, where I C R
is an interval, is called a stochastic process if for every ¢ € I the function X (7, .) is a
random variable.

Recall that the stochastic process X : I x £2 — R is called
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(7)) continuous in probability in interval 7, if for all 1o € I we have

P-lim X(¢,.) = X (¢, .),
t—1

where P-lim denotes the limit in probability.
(i) mean-square continuous in the interval I, if for all 7y € [

lim E[(X(1) — X(10))’] =0,

where E[X ()] denotes the expectation value of the random variable X (¢, .).
Obviously, mean-square continuity implies continuity in probability, but the con-
verse implication is not true.

Definition 1. Suppose we are given a sequence {A"} of partitions, A" = {ap 0, ...,
am.n,, }- We say that the sequence { A} is a normal sequence of partitions if the length
of the greatest interval in the n-th partition tends to zero, i.e.,

lim sup |am;— am,i-1]=0.
m—00 1<i<n,,

Now we would like to recall the concept of the mean-square integral. For the
definition and basic properties see [18].

Let X : I x 2 — R be a stochastic process with E[X(®)*] < oo forallt € I.
Let[a,p] C I,a =1ty <t < th < --- < t, = b be a partition of [a, b] and
O € [tr—q,tx] forall k = 1,...,n. A random variable Y : £ — R is called the
mean-square integral of the process X on [a, b], if we have

n 2
nlggoE[(Z X(O) (1 — ti-1) — Y) ] =0
k=1

for all normal sequences of partitions of the interval [a, b] and for all @y € [tx—1, ],
k=1,...,n. Then, we write

b

Y() = /X(s, Dds (a.e.).
a
For the existence of the mean-square integral it is enough to assume the mean-square
continuity of the stochastic process X.

Throughout the paper we will frequently use the monotonicity of the mean-square
integral. If X (¢, -) < Y (¢, -) (a.e.) in some interval [a, b], then

b b

/X(r, dt §/Y(t, dt (a.e.).

a a

Of course, this inequality is an immediate consequence of the definition of the mean-
square integral.



On generalized stochastic fractional integrals and related inequalities 473

Definition 2. We say that a stochastic processes X : I x £2 — R is convex, if for all
A € [0, 1] and u, v € I the inequality

X+ (1=, -) <AX@w, )+ 1 =-0X©,) (ae) (1)

is satisfied. If the above inequality is assumed only for A = %, then the process X

is Jensen-convex or %-convex. A stochastic process X is concave if (—X) is convex.
Some interesting properties of convex and Jensen-convex processes are presented in
[11, 18].

Now, we present some results proved by Kotrys [6] about Hermite—Hadamard
inequality for convex stochastic processes.

Lemmal. If X : I x £2 — R is a stochastic process of the form X (t,-) = A(-)t +
B(-), where A, B : 2 — R are random variables, such that E[A%] < oo, E[B?] <
oo and [a, b] C I, then

b

fX(t, dt = A(Y)

a

b2_ 2
2

+ B(-)(b—a) (a.e.).

Proposition 1. Let X : I x §2 — R be a convex stochastic process and ty € intl.
Then there exists a random variable A : §2 — R such that X is supported at to by
the process A(-)(t — ty) + X (to, -). That is

X(,)=>A0G)( — 1) + X(t9, *) (a.e.).

forallt € I.

Theorem 1. Let X : I x 2 — R be a Jensen-convex, mean-square continuous in
the interval I stochastic process. Then for any u, v € I we have

X<u + U’ ) < 1 /X(t’ )dl‘ < M (a'e_) (2)
2 v—u 2

u

In [7], Kotrys introduced the concept of strongly convex stochastic processes and
investigated their properties.

Definition 3. Let C : 2 — R denote a positive random variable. The stochastic
process X : I x §£2 — R is called strongly convex with modulus C(-) > 0, if for all
A € [0, 1] and u, v € I the inequality

X(Au4+ A =2v, ") <AXw, )+ (1 =DX@, )= COML— M) (u — v)?  ae.

is satisfied. If the above inequality is assumed only for A = % then the process X is
strongly Jensen-convex with modulus C(-).

In [5], Hafiz gave the following definition of stochastic mean-square fractional
integrals.
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Definition 4. For the stochastic proces X : I x £2 — R, the concept of stochastic
mean-square fractional integrals /;, and I, of X of order > 0 is defined by

'
LY [X1(1) = ﬁ /(t — ) "X (x,5)ds (a.e), t>u,

and
v
I [X](t) = L/(s—r)“—l)((x s)ds (a.e), t<v
il @ , .e.), .
Using this concept of stochastic mean-square fractional integrals /;’ and I},

Agahi and Babakhani proved the following Hermite—Hadamard type inequality for
convex stochastic processes:

Theorem 2. Let X : I X 2 — R be a Jensen-convex stochastic process that is mean-

square continuous in the interval 1. Then for any u, v € I, the following Hermite—
Hadamard inequality

X<u+v’.> - ' +1)

2 — 2(v —u)?

2

(2 [X1(v) + L [X]w)] < (a.c.)

(©)

holds, where a > 0.

For more information and recent developments on Hermite—Hadamard type in-
equalities for stochastic process, please refer to [2—4, 9—11, 14, 16, 15, 20, 19].
2 Main results

In tis section, we introduce the concept of the generalized mean-square fractional
integrals j o o and j 4 v ,, Of the stochastic process X.
In [13], Rama studled a class of functions defined formally by

o0
_ o @0y ok) .
Foax) =F (x) = ,; o (0, >0: x| <R), (4

where the cofficents o (k) (k € Ng = NU{0}) make a bounded sequence of positive
real numbers and R is the set of real numbers. For more information on the function
(4), please refer to [8, 12]. With the help of (4), we give the following definition.

Definition 5. Let X : I x £2 — R be a stochastic process. The generalized mean-
square fractional integrals ._7/‘)" nato and j:‘ 5 b Of X are defined by

;A,H;w[X](x):/ (x — 1)~ ].F”A[a)(x—t)”]X(t Sydt, (ae) x >u, (5
and
;A!v_;w[X](x)zfv(t—x)k 1.7-'”k[w(t—x)p]X(s Ndt, (ae) x <v, (6)

where A, p > 0, w € R.
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Many useful generalized mean-square fractional integrals can be obtained by spe-
cializing the coefficients o(k) Here, we just point out that the stochastic mean-square
fractional integrals 1 and I}, can be established by coosing A = «, 0(0) = 1 and
w = 0.

Now we present Hermite—Hadamard inequality for generalized mean-square frac-
tional integrals j;)i and (7;)” b of X.

Theorem 3. Let X : [ x 2 — R be a Jensen-convex stochastic process that is
mean-square continuous in the interval 1. For every u,v € I, u < v, we have the
following Hermite—Hadamard inequality

u-+v
(3%)

Aa+;w

1 . i
= 20— W F7, o — u)p][ ol X1O + T 5 IX10)]

Proof. Since the process X is mean-square continuous, it is continuous in proba-
bility. Nikodem [11] proved that every Jensen-convex and continuous in probability
stochastic process is convex. Since X is convex, then by Proposition 1, it has a sup-

: 3 H — utv
Eortmg process at any point fp € intl. Let us take a support at fp = 7 then we
ave

X, -)ZA(-)(t—uT—H))+X(M;U,->. ae. @®)

Multiplying both sides of (8) by [(v — t)A_lfg’)L[w(v )P+ — u)’\_l]-'gﬁx[a) (t—
u)”]], then integrating the resulting inequality with respect to ¢ over [u, v], we obtain

v

/[(v—t))‘ 'F o =01+t =)' FY [ot —w)P]]X @, dt )

> A()/ D F o —07]

+ (= u [ - u)P]]<t _X er v)d:

’ X( e > [lw=0177, o - 0]

u

+ (1t —w) F [ —w)P]]de

_A()/ t-0"F o -]+ 10 —w) T FY, [wt — u)?]]dt

tv /[(v — z))‘_lfg’)»[w(v -0+ — u))‘_lfg’k[a)(t —u)’]]dr

u
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+ X(” er v ) /[(v — t)k_l}"g’k[w(v — 1]

u

+ =) FY [w — w)P]]dt.

Calculating the integrals, we have

v

/t(v — M F o — )P ]dr (10)

— /(v — 0" F, o —0Pldt +v /(v -0 Y o = nPdr

=—( u))‘H}"g' [a)(v—u)p]—i—v(v—u) kH[w(v—u)p]

and similarly,

v

/ t(t — ) F [t — w)Pdt (11)

/(t—u))‘ Aot —uw)r] dt—}—u/(t—u))‘ V77 [ —wPlar

(v—u)A+1]:”1A[w(v—u)p]—i-u(v—u) )\H[a)(v—u)p]

where o1 (k) = 2% k =0, 1,2, .. .. Using the identities (10) and (11) in (9), we

obtain P
ol X1 +T7 5 [X1(@)
> A+ v)(w — ) F; o [ww — u)]
- A(-)Tzw ~u)*F o —u’]
n x(”‘ er v -)2(1} WFS o —w’]
— X(” er )2@ — )" F3 [0 — )]
That is,

(u—i—v’-)
2
1

<
2w — u)}‘]-'g,)nLl [w(v — u)P]

[T a0l X1O + T, W [X10)] ac

which completes the proof of the first inequality in (7).
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By using the convexity of X, we get

v—t t—u v—1 t—u
X(ta):X< u—+ Uv') =< X(”s)+ X(Uv')
vV—Uu v u vV—u

vV—u
_ X (v, ~)—X(u,-)t+ X(u, )v— X, )u

vV—Uu vV—u

for ¢ € [u, v]. Using the identities (10) and (11), it follows that

v

/[(v -0 F o = 0P+ ¢ — T F [o@ —w)P]]X (@, )dt
< X(U7 ) - X(”? )

vV—Uu
v

x /[;(v — M F o = 0P ]+t —w) T F [o@ — w)]dt

n X(u, )v— X, )u

vV—Uu

v

x /[(v — P [0 = 0P] + (¢ — ) FS, [ — w)]]dt

— M(H +v)(v — M)Afg,k+l[w(v - u)p]

Vv—Uu
N X (u, ')Z : f(v’ Ju 2(v — u)kf;,xﬂ[w(v — M)p]

=[X@. )+ X )]w—-wF, [o@—-wr].
That is,

1
2(v — u))‘}"g’kﬂ[w(v —u)P
< X(M, ) +X(U, )
- 2

[T s XVO + T o[ X10)]

which completes the proof.
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Remark 1. i) Choosing A = «, 6(0) = 1 and w = 0 in Theorem 3, the inequality

(7) reduces to the inequality (3).

ii) Choosing A = 1, 0 (0) = 1 and w = 0 in Theorem 3, the inequality (7) reduces

to the inequality (2).

Theorem 4. Let X : I x §2 — R be a stochastic process, which is strongly Jensen-
convex with modulus C(-) and mean-square continuous in the interval I so that

E[C?] < 0. Then for any u, v € I, we have

X<u+v’.)
2
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- C(-){2(v —u) P F [0 —w)P] =200 — )" F, [o(v — u)”]

2
e+ -5, ow -] - ()]
< ! [ o
T 200 —whFY, Lo — )] e
<X(u,~)—|—X(v,-) u® + v?
- 2

—2(w— u)’\fg"k [ —u)"] +(u2 + vz) (v— I,t)A]-'g’)\Jr e - u)p]} a.e.

[X1(0) + TJ 500 X10)]

- C(-){ +2w — ) PFR [0 — )]

Proof. It is known that if X is strongly convex process with the modulus C(-), then
the process Y (t, -) = X (t, -) — C(-)t? is convex [7, Lemma 2]. Appying the inequality
(7) for the process Y (¢, .), we have

(u +v ) 1
Y o) =
2 20— W FS, o — u)’]

/[(v — t))‘_lfgyx[a)(v — 1]

+—w) T (o —w)]]Y ¢, dt
Y@ )+ Y@
- 2

a.c.

That is
u-+v u+v 2
X( 2 ">_C(')( 2 )
! [ _ \A—1—T0o Y
SZ(v_u))\]:g,xﬂ[w(v—u)p]{/[(v n ]'—p,;\[a)(v 1’

+ @ —w F o —w)P]]X @, )t

—ce) /[fz(v — 0P o0 = 0]+ 20— [ — ]t

X )= COw+ X, ) = C(?
- 2

a.c.

Calculating the integrals, we obtain

/ﬂ(v -0 Y [ = 0Pt

u
v v

= /tz(v -0 FY [ — 0Pt +/t2(v — 0 F o — )P ldr

u u
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+ / -t F [o —n)P]dt

u

=(v— u))‘ﬂ.}’:;’?A [0 —u)’] —2v(v — u))‘H]:Z}A [0 —u)"]
+ v (v — ”)X-Fg,k+l [a)(v — u)p]

and similarly,

/ 2t —u) " FY o —w)Pldt

u

=@ —wPFR [0 —w)’]+2u@ - )T FL [ow — u)]
+ MZ(U — M)kfg’k+l[W(v - u)p]7

where 0y (k) = 2%,k =0,1,2, ... Then it follows that

2
X(u—i—v") _C(')(u—f—v)
2 2
1 (2 (2
= 2(v — u)k]:g,xﬂ[w(v — u)p][ pratiol X1 + Jp’k’b_;w[X](t)]
- CO200 - u)“zf;’fA [0@ —u)”]
—2(v — ”)A}—Z,],\ [0 —u)’]+ (u2 + vz)(v — ”)A}—E,AH [0 —u)"]]

A . 2 2
- X(u, )—;X(v, ) —C(-)M —;—v e,

Then

X(u—i—v,.)
2

- C(-){2(v — P FR [0 —w)] = 2w —w F [0 — u)’]

2
+ (1 + 0?0 — ) FS o [ow —w)P] - <” er ”) }
1 o (o3
= 2(v — u)*fg,;\ﬂ[w(v — u)p][ o rurol X0+ jp’k’v_;w[X](t)]
. . 2 2
< w - C(~){ . ”ZL L 200 — P FR [ — )]
—2(w— u)kfg")\ [a)(v - u)p] + (u2 + v2) (v— ”)A}—g,xﬂ [(u (v— u)p]} a.e.
O

This completes the proof.
Remark 2. Choosing A = o, 6(0) = 1 and w = 0 in Theorem 4, it reduces to

Theorem 7 in [1].
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