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1 Introduction

Let us consider the class V of all probability distributions on the real line R, which
have zero mean, unit variance and finite third absolute moment. Let X, X1, X2, . . . , Xn

be i.i.d. random variables, where the distribution of X belongs to V . Denote

Φ(x) = 1√
2π

x∫
−∞

e−t2/2 dt, β3 = E|X|3.

According to the Berry–Esseen inequality [2, 5], there exists such an absolute con-
stant C0 that for all n = 1, 2, . . . ,

sup
x∈R

∣∣∣∣P(
1√
n

n∑
j=1

Xj < x

)
− Φ(x)

∣∣∣∣ ≤ C0β3√
n

. (1)

The first upper bounds for the constant C0 were obtained by C.-G. Esseen [5]
(1942), H. Bergström [1] (1949) and K. Takano [30] (1951).

In 1956 C.-G. Esseen [6] showed that

lim
n→∞

√
n

β3
sup
x∈R

∣∣∣∣P(
1√
n

n∑
j=1

Xj < x

)
− Φ(x)

∣∣∣∣ ≤ CE, (2)

where CE = 3+√
10

6
√

2π
= 0.409732 . . . . He has also found a two-point distribution, for

which the equality holds in (2). He has proved the uniqueness of such a distribution
(up to a reflection).

Consequently, C0 ≥ CE . The result of Esseen served as an argument for the
conjecture

C0 = CE, (3)

that V.M. Zolotarev advanced in 1966 [38]. The question whether the conjecture is
correct remains open up to now.

Since then, a number of upper bounds for C0 have been obtained. A historical
review can be found, for example, in [11, 17, 28]. We only note that recent results
in this field were obtained by I.S. Tyurin (see, for example, [31–35]), V.Yu. Korolev
and I.G. Shevtsova (see, for example, [11, 13]), and I.G. Shevtsova (see, for example,
[25–29]). The best upper estimate, known to date, belongs to Shevtsova: C0 ≤ 0.469
[28]. Note that in obtaining upper bounds, beginning from the estimates in [38, 39],
calculations play an essential role. In addition, because of the large amount of com-
putations, it was necessary to use computers.

The present paper is devoted to estimation of C0 in the particular case of i.i.d.
Bernoulli random variables. In this case we will use the notation C02 instead of C0.
Let us recall the chronology of the results along these lines.

In 2007 C. Hipp and L. Mattner published an analytical proof of the inequality
C02 ≤ 1√

2π
in the symmetric case [8].

In 2009 the second and third authors of the present paper have suggested the com-
pound method in which a refinement of C.L.T. for i.i.d. Bernoulli random variables
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was used along with direct calculations [17]. In unsymmetric case this method allows
to obtain majorants for C02, arbitrarily close to CE , provided that the computer used
is of sufficient power. The main content of the preprint [17] was published in 2011,
2012 in the form of the papers [18, 19]. In these papers, the following bound was
proved, C02 < 0.4215.

In 2015 we obtained the bound

C02 ≤ 0.4099539, (4)

by applying the same approach as in [17–19], with the only difference that this time
a supercomputer was used instead of an ordinary PC. We announced bound (4) in
[20], but for a number of reasons, delayed publishing the proof, and do it just now.
While the present work being in preparation, we have detected a small inaccuracy in
the calculations, namely, bound (4) must be increased by 10−7. Thus the following
statement is true.

Theorem 1. The bound
C02 ≤ 0.409954 (5)

holds.

Meanwhile, in 2016 J. Schulz [23] obtained the unimprovable result: if the sym-
metry condition is violated, C02 = CE . As it should be expected, J. Schulz’s proof
turned out to be very long and complicated. It should be said that methods based on
the use of computers, and analytical methods complement each other. The former
ones cannot lead to a final result, but they do not require so much effort. On the other
hand, they allow us to predict the exact result, and thus facilitate theoretical research.

2 Shortly about the proof of Theorem 1

2.1 Some notations. On the choice of the left boundary of the interval for p

Let X, X1, X2, . . . , Xn be a sequence of independent random variables with the
same distribution:

P(X=1)=p, P(X=0) = q = 1 − p. (6)

In what follows we use the following notations,

Fn,p(x)=P
( n∑

i=1

Xi < x

)
, Gn,p(x)=Φ

(
x − np√

npq

)
,

�n(p)= sup
x∈R

|Fn,p(x) − Gn,p(x)|, �(p)= E|X − p|3
(E(X − p)2)3/2 = p2 + q2

√
pq

,

Tn(p)= �n(p)
√

n

�(p)
, E(p) = 2 − p

3
√

2π [p2 + (1 − p)2] . (7)

Obviously,
C02 = sup

n≥1
sup

p∈(0,0.5]
Tn(p). (8)
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In this paper we solve, in particular, the problem of computing the sequence T (n) =
sup

p∈(0,0.5)

Tn(p) for all n such that 1 ≤ n ≤ N0. Here and in what follows,

N0 = 5 · 105.

Note that for fixed n and p, the quantity sup
x∈R

|Fn,p(x) − Gn,p(x)| is achieved

at some discontinuity point of the function Fn,p(x) (see Lemma 2). We consider
distribution functions that are continuous from the left. Consequently,

�n(p) = max
0≤i≤n

�n,i(p), (9)

where i are integers, �n,i(p) = {|Fn,p(i) − Gn,p(i)|, |Fn,p(i + 1) − Gn,p(i)|}.
Note also that we can vary the parameter p in a narrower interval than [0, 0.5],

namely, in

I := [0.1689, 0.5].
This conclusion follows from the next statement.

Lemma 1. If 0 < p ≤ 0.1689, then for all n≥1,

Tn(p)<0.4096. (10)

Lemma 1 is proved in Section 4 with the help of some modification of the Berry –
Esseen inequality (with numerical constants) obtained in [10, 12].

Remark 1. By the same method that is used to prove inequality (10), the estimate
Tn(p) ≤ 0.369 is found in [19] in the case 0 < p < 0.02 (n ≥ 1) (see the proof
of (1.37) in [19]), where an earlier estimate of V. Korolev and I. Shevtsova [11] is
used, instead of [10, 12]. Note that the use of modified inequalities of the Berry –
Esseen type, obtained in [10, 12, 11], is not necessary for obtaining estimates of Tn(p)

in the case when p are close to 0.
An alternative approach, using Poisson approximation, is proposed in the pre-

print [17]. Let us explain the essence of this method.
An alternative bound is found in the domain {(p, n) : 0.258 ≤ λ ≤ 6, n ≥ 200},

where λ = np. Under these conditions, we have p ≤ 0.03, i.e. p are small enough.
Consequently, the error arising under replacement of the binomial distribution by
Poisson distribution Πλ with the parameter λ is small.

Next, the distance d(Πλ,Gλ) between Πλ and normal distribution Gλ with the
mean λ and the variance λ is estimated, where d(U, V ) = sup

x∈R
|U(x) − V (x)| for

any distribution functions U(x) and V (x). Then the estimate of the distance between
Gλ and the normal distribution Gn,p with the mean λ and variance npq is deduced.
Summing the obtained estimates, we arrive at an estimate for the distance between the
original binomial distribution and Gn,p. As a result, in [17, Lemma 7.8, Theorem 7.2]
we derive the estimate Tn(p) < 0.3607, which is valid for all points (p, n) in the
indicated domain.
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2.2 On calculations

Define

C02(N) = max
1≤n≤N

sup
p∈(0,0.5]

Tn(p), C02(N) = sup
n≥N

sup
p∈(0,0.5]

Tn(p).

Obviously, C02 = max{C02(N), C02(N + 1)} for every N ≥ 1.
It was proved in [19] that C02(200) < 0.4215. By that time it was shown with the

help of a computer (see the preprint [9]) that C02(200) < 0.4096, i.e.

C02(200) < CE, (11)

and thus, C02 < 0.4215 for all n ≥ 1.
Some words about bound (11). By (8), to get C02(N) it is enough to calculate

T (n) = sup
p∈(0,0.5]

Tn(p) for every 1 ≤ n ≤ N , and then find max
1≤n≤N

T (n). The calcula-

tion of T (n) is reduced to two problems. The first problem is to calculate max
pj ∈S

Tn(pj ),

where S is a grid on (0, 0.5], and the second one is to estimate Tn(p) in intermediate
points p. Both problems were solved in [9] for 1 ≤ n ≤ 200.

It should be noted here that, according to the method, the quantity C02(N) is
calculated (with some accuracy), and C02(N) is estimated from above. In both cases,
a computer is required. The power of an ordinary PC is sufficient for calculating
majorants for C02(N) whereas to calculate C02(N) a supercomputer is needed if N

is sufficiently large. Moreover, an additional investigation of the interpolation type is
required for the convincing conclusion from computer calculations of C02(N). In our
paper, Theorem 2 plays this role.

Denote by symbol S the uniform grid on I with the step h = 10−12. The values
of Tn(pj ) for all pj ∈ S and 1 ≤ n ≤ N0 were calculated on a supercomputer.

The result of the calculations. For all 1 ≤ n ≤ N0,

max
pj ∈S

Tn(pj ) = TN1(p) = 0.40973212897643 . . . < 0.40973213. (12)

The counting algorithm is a triple loop: a loop with respect to the parameter i

(see (9)) is nested in a loop with respect to the parameter p, which in turn is nested in
the loop with respect to the parameter n.

With the growth of n, the computation time increased rapidly. For example, for
2000 ≤ n ≤ 2100 calculations took more than 3 hours on a computer with pro-
cessor Core2Due E6400. For 2101 ≤ n ≤ N0 calculations were carried out on the
supercomputer Blue Gene/P.

It follows from [20, Corollary 7] that for n > 200 in the loop with respect to i, one
can take not all values of i from 0 to n, but only those, which satisfy the inequality

np − (ν + 1)
√

npq ≤ i ≤ np + ν
√

npq,

where ν =
√

3 + √
6. This led to a significant reduction of computation time. We give

information about the computer time (without waiting for the queue) in Table 1.
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Table 1. Dependence of computer time on n (supercomputer Blue Gene/P)

n ∈ [N1, N2]: [10000, 11024] [30000, 50000] [300000, 320000] [490000, N0]
computer time: 3 min 2 hrs + 5 min 4 hrs + 50 min 7 hrs

Calculations were carried out on the supercomputer Blue Gene/P of the Computa-
tional Mathematics and Cybernetics Faculty of Lomonosov Moscow State University.
After some changes in the algorithm, the calculations for n such that 490000 ≤ n ≤
N0, were also performed on the CC FEB RAS Computing Cluster [41]. The corre-
sponding computer time was 6 hours and 40 minutes.

The program is written in C+MPI and registered [40].

2.3 Interpolation type results
Let p∗ ∈ (0, 0.5). Consider a uniform grid on [p∗, 0.5] with a step h. The following
statement allows to estimate the value of the function 1

�(p)
�n,k(p) at an arbitrary

point from the interval [p∗, 0.5] via the value of this function at the nearest grid node
and h.

Denote
c1 =0.516, c2 =0.121, c3 =0.271. (13)

Theorem 2. Let 0 < p∗ < p ≤ 0.5, p ′ be a node of a grid with a step h on the
interval [p∗, 0.5], closest to p. Then for all n ≥ 1 and 0 ≤ k ≤ n,∣∣∣∣ 1

�(p)
�n,k(p) − 1

�(p′)
�n,k

(
p′)∣∣∣∣ ≤ h

2
L

(
p∗),

where

L(p)= 1

(1 − 2pq)
√

pq

(
c1

p
+ c2 + c3

(1 − 2p)(1 + 2pq)

1 − 2pq

)
. (14)

The next statement follows from Theorem 2. Note that without it the proof of
Theorem 1 would be incomplete.

Corollary 1. If p ∈ I , and p′ is a node of the grid S, closest to p, then for all
1 ≤ n ≤ N0, ∣∣Tn(p) − Tn

(
p′)∣∣ ≤ 4.6 · 10−9.

Proof. It follows from Theorem 2 that for 0 ≤ k ≤ n ≤ N0,∣∣∣∣ √
n

�(p)
�n,k(p) −

√
n

�(p′)
�n,k

(
p′)∣∣∣∣ ≤ √

N0
1

2
10−12 L(0.1689). (15)

Since L(0.1689) < 12.98, the right-hand side of inequality (15) is majorized by the
number 4.6 · 10−9. This implies the statement of Corollary 1.

2.4 On the proof of Theorem 1
It follows from (12), Corollary 1 and Lemma 1 that for all 1 ≤ n ≤ N0 and p ∈
(0, 0.5], the following inequality holds, Tn(p) < 0.4097321346 < CE (for details,
see (64)). It is easy to verify that this inequality is true for p ∈ (0.5, 1) as well. Hence,
inequality (5) implies Theorem 1.
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2.5 About structure of the paper

The structure of the paper is as follows. The proof of Theorem 2, the main analytical
result of the paper, is given in Section 3. The proof consists of 12 lemmas.

In Section 4, Theorem 1 is proved. The section consists of three subsections.
In the first one, the formulation of Theorem 1.1 [19] is given. Several corollaries
from the latter are also deduced here. The second subsection discusses the connection
between the result of K. Neammanee [21], who refined and generalized Uspensky’s
estimate [36], and the problem of estimating C02. It is shown that one can obtain from
the result of K. Neammanee the same estimate for C02 as ours, but for a much larger
N . This means that calculating C02(N) requires much more computing time if to use
Neammanee’s estimate.

In the third subsection, we give, in particular, the proof of Lemma 1.

3 Proof of Theorem 2

We need the following statement, which we give without proof.

Lemma 2. Let G(x) be a distribution function with a finite number of discontinuity
points, and G0(x) a continuous distribution function. Denote δ(x) = G(x) − G0(x).
There exists a discontinuity point x0 of G(x) such that the magnitude sup

x
|δ(x)| is

attained in the following sense: if G is continuous from the left, then sup
x

|δ(x)| =
max{δ(x0+), −δ(x0)}, and if G is continuous from the right, then sup

x
|δ(x)| =

max{δ(x0), −δ(x0−)}.
Define f (t) = Eeit (X−p) ≡ qe−itp + peitq .

Lemma 3. For all t ∈ R,

|f (t)| ≤ exp

{
−2pq sin2 t

2

}
.

Proof. Taking into account the difference in the notations, we obtain the statement
of Lemma 3 from [19, Lemma 8].

Further, we will use the following notations:

σ = √
npq, β3(p) = E|X − p|3,

Y is a standard normal random variable. Note that �(p) = β3(p)

(pq)3/2 .

Lemma 4. The following bound is true for all n ≥ 2,∫
|t |≤π

|f n(t) − e−npqt2/2| dt <
1

σ 2

(
f (p, n) + πσ 2e−σ 2 + 4

π
e−π2σ 2/8

)
,

where

f (p, n) = (
p2 + q2) π4

96

(
n

n − 1

)2

+ 3π5√πpq

210
√

n

(
n

n − 1

)5/2

.
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Proof. Using the equalities e−pqt2/2 = Eeit
√

pq Y , E(X − p)j = E(Y
√

pq )j , j =
0, 1, 2, and the Taylor formula, we get

|f (t)−e−pqt2/2|=
∣∣∣∣E[ 2∑

j=1

(it (X − p))j

j ! + (it (X − p))3

2

∫ 1

0
(1−θ)2 eitθ(X−p) dθ

]

− E
[ 3∑

j=1

1

j ! (it
√

pq Y)j + (it
√

pq Y)4

3!
∫ 1

0
(1 − θ)3 eitθ

√
pq Y dθ

]∣∣∣∣
=

∣∣∣∣E[
(it (X − p))3

2

∫ 1

0
(1 − θ)2 eitθ(X−p) dθ

− (it
√

pq Y)4

3!
∫ 1

0
(1 − θ)3 eitθ

√
pq Y dθ

]∣∣∣∣ ≤ |t |3
6

β3(p) + t4

8
(pq)2. (16)

Since for |x| ≤ π
4 the inequality | sin x| ≥ 2

√
2 |x|
π

is fulfilled, then with the help
of Lemma 3 we arrive at the following bound for |t | ≤ π/2,

|f (t)| ≤ exp
{−2pq sin2(t/2)

} ≤ exp

{
−4t2pq

π2

}
.

Then, taking into account the elementary equality an − bn = (a − b)
n−1∑
j=0

ajbn−1−j

and the estimate (16), we obtain for |t | ≤ π/2 that

|f n(t) − e−npqt2/2| ≤ |f (t) − e−pqt2/2|
n−1∑
j=0

|f (t)|j e−(n−1−j)t2pq/2 ≤

≤
( |t |3

6
β3(p) + t4

8
(pq)2

) n−1∑
j=0

exp
{[

j
(
1 − 8/π2) − (n − 1)

]
t2pq/2

} ≤

≤
( |t |3

6
β3(p) + t4

8
(pq)2

)
n exp

{
−4(n − 1)t2pq

π2

}
.

Using the well-known formulas E|Y |3 = 4√
2π

and EY 4 = 3, we deduce from the
previous inequality that for n ≥ 2,∫

|t |≤π/2

|f n(t) − e−npqt2/2| dt ≤ n
√

2π

(
β3(p)

6m2 E|Y |3 + (pq)2

8m5/2
EY 4

)∣∣∣∣
m= 8(n−1)pq

π2

= n

(
π4�(p)

96
√

pq (n − 1)2 + 3π5√π

210√pq (n − 1)5/2

)
= f (p, n)

σ 2 . (17)

Applying Lemma 3 again, we get∫
π/2≤|t |≤π

|f n(t)| dt ≤ 2
∫ π

π/2
e−2σ 2 sin2(t/2)dt < π e−σ 2

. (18)
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Moreover, by virtue of the known inequality∫ ∞

c

e−t2/2 dt ≤ 1

c
e−c2/2, (19)

which holds for every c > 0, we have∫
|t |≥π/2

e−σ 2t2/2 dt ≤ 4

πσ 2 e−σ 2π2/8. (20)

Collecting the estimates (17)–(20), we obtain the statement of Lemma 4.

Denote

Pn(k) = Ck
npkqn−k, δn(k, p) = Pn(k) − 1√

npq
ϕ

(
k − np√

npq

)
.

Lemma 5. For every n ≥ 1 and 0 ≤ k ≤ n the following bound holds,

|δn(k, p)| < min

{
1

σ
√

2e
,

c1

σ 2

}
, (21)

where c1 is defined in (13).

Proof. It was proved in [7] that Pn(k) ≤ 1√
2enpq

. Moreover, 1√
npq

ϕ(
k−np√

npq
) ≤ 1√

2πnpq
.

Hence,

|δn(k, p)| ≤ 1√
2enpq

= 1

σ
√

2e
. (22)

Let us find another bound for δn(k, p). Let σ > 1. Then n > 1
pq

≥ 4, i.e. n ≥ 5.
By the inversion formula for integer random variables,

Pn(k) = 1

2π

∫ π

−π

(
q + eitp

)n
e−itk dt = 1

2π

∫ π

−π

f n(t) e−it (k−np) dt.

Moreover, by the inversion formula for densities,

1

σ
ϕ

(
x − μ

σ

)
= 1

2π

∫ ∞

−∞
e−t2σ 2/2−it (x−μ) dt.

Consequently,

δn(k, p) = 1

2π
(J1 − J2), (23)

where

J1 =
∫ π

−π

[
f n(t) − e−σ 2t2/2] e−it (k−np) dt, J2 =

∫
|t |≥π

e−σ 2t2/2 e−it (k−np) dt.

Note that the function f (p, n) from Lemma 4 decreases in n. Hence, f (p, n) ≤
f (p, 5). It is not hard to verify that max

p∈[0,1] f (p, 5) < 1.707. Thus, for σ > 1,

|J1| ≤ 1

σ 2

(
1.707 + π

e
+ 4

π
e−π2/8

)
<

3.234

σ 2 .
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Using inequality (19), we get the estimate

|J2| ≤ 2

πσ 2 e−π2σ 2/2 <
0.005

σ 2 .

Thus, we get from (23) that for σ > 1,

|δn(k, p)| ≤ 3.24

2πσ 2 <
0.516

σ 2 . (24)

Since 1
σ
√

2e
≤ c1

σ 2 for 0 < σ ≤ c1
√

2e = 1.203 . . . > 1, the statement of Lemma
5 follows from (22) and (24).

Lemma 6. The following equality holds,

∂

∂p
Gn,p(x) = −x(1 − 2p) + np

2pq
√

npq
ϕ

(
x − np√

npq

)
. (25)

Proof. We have

d

dp
p−1/2(1 − p)−1/2 = − q − p

2pq
√

pq
,

d

dp
p1/2(1 − p)−1/2 = 1

2
p−1/2(1 − p)−1/2 + 1

2
p1/2(1 − p)−3/2 = 1

2q
√

pq
.

Hence,

∂

∂p

x − np√
npq

= − x(q − p)

2pq
√

npq
−

√
n

2q
√

pq
= −x(q − p) + np

2pq
√

npq
,

and we arrive at (25).

Lemma 7. For all n ≥ 1 and 0 ≤ k ≤ n the following bound holds,∣∣∣∣ ∂

∂p
Fn,p(k + 1) − ∂

∂p
Gn,p(k)

∣∣∣∣ ≤ L1(p) ≡ 1

pq

(
c1

q
+ c2

)
.

Proof. It is shown in [22] that

∂

∂p
Fn,p(k + 1) = −nCk

n−1p
kqn−1−k = −n − k

q
Pn(k).

By Lemma 5,

n − k

q

∣∣∣∣Pn(k) − 1

σ
ϕ

(
k − np

σ

)∣∣∣∣ ≤ n c1

qσ 2 = c1

pq2 . (26)

In turn, it follows from Lemma 6 that

n − k

qσ
ϕ

(
k − np

σ

)
+ ∂

∂p
Gn,p(k)
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=
(

n − k

qσ
− k(1 − 2p) + np

2pqσ

)
ϕ

(
k − np

σ

)
= −k − np

2pqσ
ϕ

(
k − np

σ

)
. (27)

Since

∂

∂p
Fn,p(k + 1) − ∂

∂p
Gn,p(k) = −n − k

q

[
Pn(k) − 1

σ
ϕ

(
k − np

σ

)]
−

[
n − k

qσ
ϕ

(
k − np

σ

)
+ ∂

∂p
Gn,p(k)

]
and max

x
|x|ϕ(x) = 1√

2πe
< 0.242, the statement of the lemma follows from (26)

and (27).

Lemma 8. For all n ≥ 1 and 0 ≤ k ≤ n the following bound holds,∣∣∣∣ ∂

∂p
Fn,p(k) − ∂

∂p
Gn,p(k)

∣∣∣∣ ≤ L2(p) ≡ 1

pq

(
c1

p
+ c2

)
,

where c1, c2 are from (13).

Proof. Similarly to the proof of Lemma 7 we obtain

∂

∂p
Fn,p(k) = −nCk−1

n−1p
k−1qn−k = − k

p
Pn(k),

k

p

∣∣∣∣Pn(k) − 1

σ
ϕ

(
k − np

σ

)∣∣∣∣ ≤ k c1

pσ 2 ≤ c1

p2q
. (28)

Hence,

∂

∂p
Fn,p(k) − ∂

∂p
Gn,p(k) = − k

p

[
Pn(k) − 1

σ
ϕ

(
k − np

σ

)]
− k − np

2pqσ
ϕ

(
k − np

σ

)
.

Since the last summand on the right-hand side of the equality is less than 0.121
pq

, then
by using (28) we get the statement of the lemma.

Lemma 9. For every 0 < p < 0.5,

d

dp

1

�(p)
= 1

2
A(p) := 1

2

(1 − 2p)(1 + 2pq)√
pq(1 − 2pq)2 . (29)

Proof. The lemma follows from the equalities:

d

dp

1

�(p)
= d

dx

x

1 − 2x2

∣∣∣∣
x=√

pq

× d

dp

√
p(1 − p),

d

dp

√
p(1 − p) = 1 − 2p

2
√

pq
,

d

dx

x

1 − 2x2 = 1

1 − 2x2 + 4x2

(1 − x2)2 = 1 + 2x2

(1 − 2x2)2 .

Lemma 10. The function A(p) decreases on the interval (0, 0.5).
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Proof. Denote x = x(p) = p(1 − p), A1(t) =
√

1−4t (1+2t)√
t (1−2t)2 . Taking into account the

equality 1 − 2p = √
1 − 4pq, we obtain A(p) = A1(x).

Since x(p) increases for 0 < p < 0.5, it remains to prove the decrease of the
function A1(x) for 0 < x < 0.25. We have

d

dx
ln A1(x) = −2

1 − 4x
+ 2

1 + 2x
− 1

2x
+ 4

1 − 2x
= −32x3 + 36x2 − 12x + 1

2x(1 − 4x)(1 − 4x2)
.

On the interval [0, 0.25] the polynomial A2(x) ≡ 32x3 + 36x2 − 12x + 1 has the

single minimum point x1 = −3+√
17

8 = 0.140 . . . . Since A2(x1) = 0.11 . . . > 0,
we have d

dx
ln A1(x) < 0 for 0 ≤ x < 0.25, i.e. the function A1(x) decreases on

(0, 0.25). The lemma is proved.

Lemma 11. The function L(p), defined in (14), decreases on [0, 0.5].
Proof. Taking into account the equality p2 + q2 = 1 − 2pq, it is not difficult to see
that

L(p) = 1

�(p)
L2(p) + c3 A(p). (30)

According to Lemma 10, the function A(p) decreases. Consequently, it remains to
prove that the function L3(p) := 1

�(p)
L2(p) = c1+c2p

p
√

pq(1−2pq)
decreases on [0, 0.5].

We have

d

dp
ln L3(p) = c2

c1 + c2p
− 3

2p
+ 1

2(1 − p)
+ 2(1 − 2p)

1 − 2p + 2p2

= A3(p)

2pq(c1 + c2p)(1 − 2pq)
,

where A3(p) = −3c1 + (14c1 −c2)p− (26c1 −8c2)p
2 + (16c1 −18c2)p

3 +12c2p
4.

Let us prove that
A3(p) < 0, 0 < p < 0.5. (31)

We have

A′
3(p) = 14c1 − c2 − 4(13c1 − 4c2)p + 6(8c1 − 9c2)p

2 + 48c2p
3,

A′′
3(p) = −4(13c1 − 4c2) + 12(8c1 − 9c2)p + 144c2p

2.

As a result of calculations, we find that the equation A′
3(p) = 0 has the single root

p0 = 0.478287 . . . on [0, 0.5]. The roots of the equation A′′
3(p) = 0 have the form

p1,2 = 1

24c2

(−8c1 + 9c2 ±
√

(8c1 − 9c2)2 + 16c2(13c1 − 4c2)
)
,

and are equal to p1 = −2.6 . . . , p2 = 0.54 . . . respectively. Hence, A′′
3(p) < 0

for p ∈ [0, 0.5]. Thus, the function A3(p), considered on [0, 0.5], takes a maximum
value at the point p0. Since A3(p0) = −0.257 . . . , inequality (31) is proved. This
implies that L3(p) decreases on (0, 0.5).
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Let f (x) be an arbitrary function. Denote by D+f (x) and D−f (x) its right-side
and left-side derivatives respectively (if they exist).

Lemma 12. Let g(x) = max{f1(x), f2(x)}, where f1(x) and f2(x) are functions,
differentiable on a finite interval (a, b). Then at every point x ∈ (a, b) there exist
both one-side derivatives D+g(x) and D−g(x), each of which coincides with either
f ′

1(x) or f ′
2(x).

Proof. Let x be a point such that f1(x) �= f2(x). Then the function g is differentiable
at x, and in this case the statement of the lemma is trivial.

Now let for a point x ∈ (a, b),

f1(x) = f2(x). (32)

First, consider the case f ′
1(x) �= f ′

2(x). Let, for instance, f ′
1(x) > f ′

2(x). Then
there exists h0 > 0 such that

f1(x + h) > f2(x + h), 0 < h ≤ h0, (33)

f2(x + h) > f1(x + h), −h0 ≤ h < 0. (34)

From differentiability of the functions f1 and f2 it follows that for h → 0,

fi(x + h) = fi(x) + f ′
i (x)h + o(h), i = 1, 2. (35)

Then using (33) we obtain the equality

g(x + h) = f1(x + h) = f1(x) + f ′
1(x)h + o(h), h > 0,

and using (34),

g(x + h) = f2(x + h) = f2(x) + f ′
2(x)h + o(h), h < 0.

Thus, existence of D+g(x) and D−g(x) follows.
Now let

f ′
1(x) = f ′

2(x). (36)

It follows from (32), (35) and (36) that for h → 0,

g(x + h) = fi(x) + f ′
i (x)h + o(h), i = 1, 2.

Hence, g′(x) = f ′
1(x) = f ′

2(x). The lemma is proved.

Denote

� = �(p), qi = 1 − pi, �i = �(pi) ≡ ω(pi)√
piqi

.

Lemma 13. Let 0 < p1 < p < p2 ≤ 0.5. Then for all n ≥ 1 and 0 ≤ k ≤ n,∣∣∣∣ 1

�
�n,k(p) − 1

�1
�n,k(p1)

∣∣∣∣ ≤ L(p1) (p − p1), (37)

and ∣∣∣∣ 1

�
�n,k(p) − 1

�2
�n,k(p2)

∣∣∣∣ < L(p1)(p2 − p). (38)
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Proof. Note that �n,k(p) < 0.541 (see [3]). Consequently,∣∣∣∣ 1

�
�n,k(p) − 1

�1
�n,k(p1)

∣∣∣∣ ≤ 1

�1
|�n,k(p) − �n,k(p1)| + 0.541

(
1

�
− 1

�1

)
. (39)

It is obvious that Fn,p(k) and Gn,p(k), considered as functions of the argument
p, are differentiable. Then, according to Lemma 12, the one-side derivatives of the
functions �n,k(p) exist at each point p ∈ [0, 0.5] and coincide with ∂

∂p
(Fn,p(k +

1) − Gn,p(k)) or ∂
∂p

(Gn,p(k) − Fn,p(k)).
Taking into account that L1(p) ≤ L2(p) for 0 < p ≤ 0.5, we obtain from

Lemmas 7 and 8

|�n,k(p) − �n,k(p1)| ≤ (p − p1) max
p1≤s≤p

|D+�n,k(s)|
≤ (p − p1) max

p1≤s≤p
L2(s). (40)

The function L2(s) decreases on (0, 0.5]. Hence,

max
p1≤s≤p

L2(s) = L2(p1). (41)

The inequality
1

�1
|�n,k(p) − �n,k(p1)| ≤ p − p1

�1
L2(p1) (42)

follows from (40) and (41). Taking into account Lemmas 9 and 10, we have

1

�
− 1

�1
≤ (p − p1) max

p1<s<p

d

ds

1

�(s)
< 2−1A(p1)(p − p1). (43)

Collecting the estimates (39), (42), (43), we obtain with the help of (30) that for
0 ≤ p1 < p ≤ 0.5,∣∣∣∣ 1

�
�n,k(p) − 1

�1
�n,k(p1)

∣∣∣∣ ≤ (p − p1)

(
1

�1
L2(p1) + 0.271 A(p1)

)
= (p − p1)L(p1). (44)

Hence, for 0 < p < p2 ≤ 0.5,∣∣∣∣ 1

�
�n,k(p) − 1

�2
�n,k(p2)

∣∣∣∣ < (p2 − p)L(p). (45)

Inequality (37) coincides with (44), and inequality (38) follows from (45) and
Lemma 11. Lemma 13 is proved.

Proof of Theorem 2. It follows from the definition of p′ that either 0 < p − p ′ <

h/2 or 0 < p ′ − p < h/2. In the first case the statement of the theorem follows from
(37) and Lemma 11, and in the second one from (38) and Lemma 11 again.
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4 Proof of Theorem 1

4.1 Theorem 1.1 [19] and some its consequences

First we formulate Theorem 1.1 from [19]. To do this, we need to enter a rather lot of
notations from [19]:

ω3(p) = q − p, ω4(p) = |q3 + p3 − 3pq|, ω5(p) = q4 − p4,

ω6(p) = q5 + p5 + 15(pq)2,

K1(p, n) = ω3(p)

4σ
√

2π(n − 1)

(
1 + 1

4(n − 1)

)
+ ω4(p)

12σ 2π

(
n

n − 1

)2

+ ω5(p)

40σ 3
√

2π

(
n

n − 1

)5/2

+ ω6(p)

90σ 4π

(
n

n − 1

)3

;

ω(p) = p2 + q2, ζ(p) =
(

ω(p)

6

)2/3

, e(n, p) = exp

{
1

24σ 2/3ζ 2(p)

}
,

e5 = 0.0277905, ω̃5(p) = p4 + q4 + 5! e5(pq)3/2,

V6(p) = ω2
3(p), V7(p) = ω3(p)ω4(p), V8(p) = 2ω̃5(p)ω3(p)

5!3! +
(

ω4(p)

4!
)2

,

V9(p) = ω̃5(p)ω4(p), V10(p) = ω̃2
5(p), Ak(n) =

(
n

n − 2

)k/2
n − 1

n
,

γ6 = 1
9 , γ7 = 5

√
2π

96 , γ8 = 24, γ9 = 7
√

2π
4! 16 , γ10 = 26·3

(5!)2 ,

γ̃6 = 2
3 , γ̃7 = 7

8 , γ̃8 = 10
9 , γ̃9 = 11

8 , γ̃10 = 5
3 ,

K2(p, n) = 1

πσ

5∑
j=1

γj+5 Aj+5(n) Vj+5(p)

σ j

[
1 + γ̃j+5 e(n, p) n

σ 2 (n − 2)

]
;

A1 = 5.405, A2 = 7.521, A3 = 5.233, μ = 3π2 − 16

π4 ,

χ(p, n) = 2ζ(p)

σ 2/3 if p ∈ (0, 0.085), and χ(p, n) = 0 if p ∈ [0.085, 0.5],

K3(p, n) = 1

π

{
1

12σ 2 +
(

1

36
+ μ

8

)
1

σ 4 +
(

1

36
eA1/6 + μ

8

)
1

σ 6
+ 5μ

24
eA2/6 1

σ 8

+ 1

3
exp

{
−σ

√
A1 + A1

6

}
+ (π − 2)μ exp

{
−σ

√
A2 + A2

6

}
+ exp

{
−σ

√
A3 + A3

6

}
1

4
ln

(
π4σ 2

4A3

)
+ exp

{
− σ 2/3

2ζ(p)

}[
2ζ(p)

σ 2/3 + eA3/6 1 + χ(p, n)

24 ζ(p) σ 4/3

]}
;

R(p, n) = K1(p, n) + K2(p, n) + K3(p, n). (46)
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Theorem A ([19, Theorem 1.1]). Let

4

n
≤ p ≤ 0.5, n ≥ 200. (47)

Then

�n(p) ≤ �(p)√
n

E(p) + R(p, n), (48)

and the sequence R0(p, n) :=
√

n
�(p)

R(p, n) tends to zero for every 0 < p ≤ 0.5,
decreasing in n.

Denote

E(p, n) = E(p) + R0(p, n).

Figure 1 shows the mutual location of the following functions: E(p, n) for n = 200
and 800, E(p) and Tn(p)|n=50. Note that, as a consequence of the definition of the
binomial distribution, the behavior of these functions is symmetric with respect to
p = 0.5.

Fig. 1. Graphs of the functions (from top to down):E(p,200), E(p,800), E(p), T50(p)

Recall that N0 = 500000.

Corollary A. For p ∈ [0.1689, 0.5], and n ≥ N0,

E(p, n) ≤ E(p,N0) < 0.409954.

Proof. Since E(p, n) decreases in n, we obtain the statement of Corollary A by
finding the maximal value of E(p,N0) directly using a computer.

In order to verify the plausibility of the previous numerical result, we estimate the
function E(p,N0), making preliminary estimates of some of the terms that enter into
it. This leads to the following somewhat more coarse inequality.

Corollary A′. For p ∈ [0.1689, 0.5], and n ≥ N0,

E(p, n) < 0.409954153. (49)
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Proof. Separate the proof of (49) into four steps. First we rewrite R0(p, n) in the
following form,

R0(p, n) = K1(p, n)σ

ω(p)
+ K2(p, n)σ

ω(p)
+ K3(p, n)σ

ω(p)
.

In each function Ki(p,n)σ
ω(p)

, i = 1, 2, 3, we will select the principal term, and estimate
the remaining ones.

Step 1. Note that for n ≥ N0 and 0 < a ≤ 3,(
n

n − 1

)a

≤
(

n

n − 1

)3

< e1 := 1.00000601,

1 + 1

4(n − 1)
< e2 := 1.000000501.

Then

K1(p, n) σ

ω(p)
= ω4(p)

12πω(p)σ

(
n

n − 1

)2

+ r1(p, n),

where

r1(p, n) < r̃1(p, n) := e1

ω(p)

(
e2 ω3(p)

4
√

2π(n − 1)
+ ω5(p)

40
√

2πσ 2
+ ω6(p)

90πσ 3

)
.

Using a computer, we get the estimate r̃1(p, n) ≤ r̃1(0.1689, N0) < 2.78 · 10−7.
Step 2. We have

K2(p, n)σ

ω(p)
= γ6 A6(n) V6(p)

πω(p)σ
+ r2(p, n),

where

r2(p, n) =
5∑

j=2

γj+5Aj+5(n)Vj+5(p)

πω(p)σ j

[
1 + γ̃j+5e(n, p)n

σ 2(n − 2)

]
+ γ6γ̃6A6(n)e(n, p)n

πω(p)σ 3(n − 2)
.

Taking into account that for n ≥ N0, 1 ≤ j ≤ 5 and p ∈ [0.1689, 0.5], we have

Aj+5(n) < A10(N0) < e3 := 1.00001801, e(n, p) ≤ e(N0, 0.5) < 1.02316,

1 + γ̃j+5 e(n, p) n

σ 2 (n − 2)
< 1 + (5/3) · 1.02316

pq(N0 − 2)

∣∣∣∣
p=0.1689

< e4 := 1.0000243.

Then, taking into account as well that A6(N0) < 1.0000101, we get

r2(p, n) < r̃2(p, n) := e3 · e4

πω(p)

5∑
j=2

γj+5Vj+5(p)

σ j
+ (1/9)(2/3)1.0000101 · 1.02316

πω(p)(pq)3/2
√

n(n − 2)
.

We find with the help of a computer: r̃2(p, n) ≤ r̃2(0.1689, N0) < 8.852 · 10−8.
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Step 3. Let us write up

K3(p, n)σ

ω(p)
= 1

12πω(p)σ
+ r3(p, n),

where

r3(p, n) = σ

πω(p)

{(
1

36
+ μ

8

)
1

σ 4 +
(

1

36
eA1/6 + μ

8

)
1

σ 6
+ 5μ

24
eA2/6 1

σ 8

+ 1

3
exp

{
−σ

√
A1 + A1

6

}
+ (π − 2)μ exp

{
−σ

√
A2 + A2

6

}
+ exp

{
−σ

√
A3 + A3

6

}
1

4
ln

(
π4σ 2

4A3

)
+ exp

{
− σ 2/3

2ζ(p)

}[
2ζ(p)

σ 2/3 + eA3/6 1 + χ(p, n)

24 ζ(p) σ 4/3

]}
.

Using a computer, we get r3(p, n) ≤ r3(0.1689, N0) < 1.08 · 10−9.
Thus, for p ∈ [0.1689, 0.5], n ≥ N0, we have

r1(p, n)+r2(p, n)+r3(p, n) < 2.78·10−7+8.852·10−8+1.08·10−9 < 3.676·10−7.

Step 4. Now consider the function

B(p, n) = E(p) + 1

12πω(p)σ

(
ω4(p)

(
n

n − 1

)2

+ 12γ6 A6(n) V6(p) + 1

)
.

We find with the help of a computer that for p ∈ [0.1689, 0.5], n ≥ N0,

max
p∈[0.1689,0.5]

B(p, n) = max
p∈[0.1689,0.5]

B(p,N0)

= B(0.418886928 . . . , N0) = 0.40995378459 . . . .

Consequently,

E(p, n) = B(p, n) +
3∑

j=1

rj (p, n)

< 0.4099537846 + 3.676 · 10−7 < 0.409954153.

Let us introduce the following notations:

E1(p) = (
p2 + q2)E(p) = 2 − p

3
√

2π
,

D2(p, n) is the coefficient at 1
σ 2 in the expansion of R(p, n) in powers of 1

σ
,

D2(p, n) = σ 2R(p, n), where the remainder R(p, n) is defined by equality (46).
One can rewrite bound (48) in the following form,

�n(p) ≤ E1(p)

σ
+ D2(p, n)

σ 2 . (50)

Define DI
2 (n) = max

p∈I
D2(p, n), D

I

2(n) = max
p∈I

D2(p, n), where I is an interval.
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Corollary B. The quantities max
n≥N

DI
2 (n) and max

n≥N
D

I

2(n) take the following values

depending on N = 200, N0 and intervals I = [0.02, 0.5], [0.1689, 0.5]:

Table 2. Some values of max
n≥N

DI
2 (n) and max

n≥N
D

I
2(n)

I = [0.02, 0.5] I = [0.1689, 0.5]
N = 200 N = 200 N = N0

max
n≥N

DI
2 (n) = 0.083592 . . . 0.046656 . . . 0.0462198 . . .

max
n≥N

D
I
2(n) = 0.1940 . . . 0.05986 . . . 0.05531 . . .

Proof. Since

max
n≥N

D
I

2(n) = max
n≥N

max
p∈I

σ 2R(p, n) = max
p∈I

σ 2R(p,N),

then by using a computer, we get the tabulated values of max
n≥N

D
I

2(n).

Proceed to the derivation of the values of max
n≥N

DI
2 (n). It follows from the defini-

tions of K1(p, n), K2(p, n), and K3(p, n) that the coefficient at 1
σ 2 in R(p, n) is

D2(p, n) = ω4(p)

12π

(
n

n − 1

)2

+ 1

π
γ6A6(n)V6(p) + 1

12π

or, in more detail,

D2(p, n) = 1

36π

(
3|q3 + p3 − 3pq|

(
n

n − 1

)2

+ 4A6(n)(q − p)2 + 3

)
=: G2(p, n)

36π
.

First we consider G2(p) := lim
n→∞ G2(p, n). We have

G2(p) = 3|q3 + p3 − 3pq| + 4(q − p)2 + 3 ≡ 3|6p2 − 6p + 1| + 4(1 − 2p)2 + 3.

Taking into account that

|6p2 − 6p + 1| =
{

6p2 − 6p + 1 if p ≤ p1 := 3−√
3

6 = 0.211324 . . . ,

−6p2 + 6p − 1 if p > p1,

we obtain

G2(p) =
{

2(17p2 − 17p + 5) if p ≤ p1,

−2(p2 − p − 2) if p > p1.
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Since G2(p) decreases for p < p1, and increases for p > p1, then the maximum
value of this function is achieved either at the left bound or at the right bound of the
interval. We have

G2(0.02) = 9.3336, G2(0.1689) = 5.2273251 . . . , G2(0.5) = 4.5.

Thus,

1

36π
max

0.02≤p≤0.5
G2(p) = G2(0.02)

36π
= 0.0825271 . . . ,

1

36π
max

0.1689≤p≤0.5
G2(p) = G2(0.1689)

36π
= 0.04621970 . . . .

Similarly, with more efforts only, we get

max
0.02≤p≤0.5

G2(p, 200) = G2(0.02, 200) = 9.4541 . . . ,

max
0.1689≤p≤0.5

G2(p, 200) = G2(0.1689, 200) = 5.2767 . . . ,

G2(0.5, 200) = 4.515 . . . ,

max
0.02≤p≤0.5

G2(p,N0) = G2(0.02, N0) = 9.33364 . . . ,

max
0.1689≤p≤0.5

G2(p,N0) = G2(0.1689, N0) = 5.227344 . . . ,

G2(0.5, N0) = 4.00006 . . . .

Consequently,

max
0.02≤p≤0.5

G2(p, 200)

36π
= 0.083592 . . . ,

max
0.1689≤p≤0.5

G2(p, 200)

36π
= 0.046656 . . . ,

max
0.1689≤p≤0.5

G2(p,N0)

36π
= 0.0462198 . . . .

Remark 2. 1. One can observe from the previous proof that G2(p,N0) ≈ G2(p),
therefore, D2(p,N0) ≈ G2(p)

36π
.

2. With increasing N , the sequence aI (N) := max
n≥N

DI
2 (n) approaches to aI :=

1
36π

max
p∈I

G2(p). For instance, by Table 2, we have for the interval I = [0.1689, 0.5]
that aI (200) = 0.046656 . . . , aI (N0) = 0.0462198 . . . while aI = 0.0462197 . . . .
The sequence aI (N) := max

n≥N
D

I

2(n) tends to 0.0462197 . . . as well, but slowly, since

the main term of the difference D2(p, n) − G2(p)
36π

has the order 1√
n

.

The following bound for �n(p), simpler than Theorem A, follows from (50) and
Table 2.

Corollary C. For all p ∈ I = [0.1689, 0.5] and n ≥ N0,

�n(p) ≤ E1(p)

σ
+ 0.05532

σ 2 . (51)
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Remark 3. Corollary C allows to obtain the same estimate for C02 as (4), but for
larger n. Really, it is easy to verify with the help of a computer that

sup
p∈[0.1689,0.5]

(
E(p) + 0.05532√

npq(p2 + q2)

∣∣∣∣
n=971000

)
< 0.409954, (52)

but

sup
p∈[0.1689,0.5]

(
E(p) + 0.05532√

npq(p2 + q2)

∣∣∣∣
n=970000

)
> 0.409954. (53)

4.2 On the connection between Uspensky’s result and its refinements with the prob-
lem of estimating C02

First we recall Uspensky’s estimate, published by him in 1937 in [36]. To this end we
introduce the following notations: Sn is the number of occurrences of an event in a
series of n Bernoulli trials with a probability of success p, μ = np,

G(x) = Φ(x) + q − p

6
√

2π σ

(
1 − x2)e−x2/2.

For every x ∈ R, define

x±
n = x − μ ± 1

2

σ
, (54)

where σ = √
npq, as before.

Uspensky’s result can be formulated in the following form.

Theorem B ([36, p. 129]). Let σ 2 ≥ 25. Then for arbitrary integers a < b,∣∣P(a ≤ Sn ≤ b) − (
G

(
b−
n

) − G
(
a+
n

))∣∣ ≤ 0.13 + 0.18|p − q|
σ 2 + e−3σ/2. (55)

A lot of works are devoted to generalizations and refinements of (55), for example,
[4, 14–16, 21, 24, 37].

In 2005 K. Neammanee [21] refined and generalized (55) to the case of non-
identically distributed Bernoulli random variables. Let us formulate his result as ap-
plied to the case of Bernoulli trials: if σ 2 ≥ 100, then∣∣P(a ≤ Sn ≤ b) − (

G
(
b−
n

) − G
(
a+
n

))∣∣ <
0.1618

σ 2 , (56)

where a+
n , b−

n are defined by the formula (54).
It follows from (56) that under condition σ 2 ≥ 100,∣∣P(Sn ≤ b) − G

(
b−
n

)∣∣ ≤ 0.1618

σ 2 . (57)

We may consider p ∈ (0, 0.5]. Denote for brevity, d = 0.1618. It follows from
(57) and the definition of G(·) that

∣∣P(Sn ≤ b) − Φ
(
b−
n

)∣∣ <
|(1 − (b−

n )2)(q − p)|e−(b−
n )2/2

6
√

2πσ
+ d

σ 2 .
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Taking into account that max
t

|t2 − 1|e−t2/2 = 1, we get

∣∣P(Sn ≤ b) − Φ
(
b−
n

)∣∣ ≤ |q − p|
6
√

2πσ
+ d

σ 2 . (58)

Denote xn = x−μ
σ

. It is easily seen that

∣∣Φ(bn) − Φ
(
b−
n

)∣∣ <
bn − b−

n√
2π

= 1

2
√

2πσ
. (59)

It follows from (58), (59) that∣∣P(Sn ≤ b) − Φ(bn)
∣∣ <

( |q − p|
6

+ 1

2

)
1

σ
√

2π
+ d

σ 2 = E1(p)

σ
+ d

σ 2 ,

provided that 0 < p ≤ 0.5. Thus,

�n(p) ≤ E1(p)

σ
+ 0.1618

σ 2 . (60)

Note that our bound (51) is more accurate than (60). To get the bound 0.409954 for
C02 from (60), we should take n almost five times larger than in (52). Really, with the
help of a computer we have

sup
p∈[0.1689,0.5]

(
E(p) + 0.1618√

npq (p2 + q2)

∣∣∣∣
n=4.6·106

)
< 0.410031,

and

sup
p∈[0.1689,0.5]

(
E(p) + 0.1618√

npq (p2 + q2)

∣∣∣∣
n=4.2·106

)
> 0.410044

(cf. (52), (53)).

Remark 4. In 2014 V. Senatov obtained non-uniform estimates of the approximation
accuracy in the central limit theorem, and, in particular, generalized Uspensky’s result
(55) to lattice distributions [24].

4.3 Proof of Theorem 1

Before proving Theorem 1, we first prove Lemma 1.

Proof of Lemma 1. By [10, Theorem 1],

�n(p) ≤ 0.33477√
n

(
�(p) + 0.429

)
. (61)

Therefore, Tn(p) ≡
√

n �n(p)
�(p)

≤ 0.33477(1+ 0.429
�(p)

). Since �(p) decreases on (0, 0.5],
then max

p∈(0,0.1689]
1

�(p)
= 1

�(0.1689)
= 0.52090548 . . . . Consequently,

max
p∈(0,0.1689]

Tn(p) ≤ 0.33477(1 + 0.429 · 0.52090549) < 0.409581.



On a bound of the absolute constant in the Berry – Esseen inequality . . . 407

Remark 5. If instead of [10, Theorem 1] we will use other modifications of the
Berry–Esseen inequality by I. Shevtsova [25], the interval (0,0.1689] for which Lem-
ma 1 is true can be extended, i.e. one can find b > 0.1689 such that the inequality
max

p∈(0,b]
Tn(p) < CE will be fulfilled. This will narrow the interval I (see (12)), which

in turn will reduce the computation time on the supercomputer.
Let us indicate such b. The estimates found in [25] as applied to the particular

case of Bernoulli trials can be written in the following form,

�n(p) ≤ 0.33554√
n

(
�(p) + 0.415

)
, (62)

�n(p) ≤ 0.3328√
n

(
�(p) + 0.429

)
. (63)

It is easy to verify that inequality (62) implies b = 0.174, and (63) implies that
b = 0.177.

Proof of Theorem 1. It follows from Corollary 1 and (12) that for all p ∈ I the
following bound holds,

Tn(p) < 0.40973213 + 4.6 · 10−9 < 0.4097321346, 1 ≤ n ≤ N0. (64)

Then by Lemma 1, this inequality is fulfilled for all p ∈ (0, 0.5] as well. It is not hard
to see that the bound (64) is also true for all p ∈ (0.5, 1). Hence, bound (5) implies
Theorem 1.
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