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Abstract In this paper we define the fractional Cox–Ingersoll–Ross process as Xt :=
Y 2
t 1{t<inf{s>0:Ys=0}}, where the process Y = {Yt , t ≥ 0} satisfies the SDE of the form

dYt = 1
2 ( k

Yt
−aYt )dt + σ

2 dBH
t , {BH

t , t ≥ 0} is a fractional Brownian motion with an arbitrary
Hurst parameter H ∈ (0, 1). We prove that Xt satisfies the stochastic differential equation of
the form dXt = (k − aXt )dt + σ

√
Xt ◦ dBH

t , where the integral with respect to fractional
Brownian motion is considered as the pathwise Stratonovich integral. We also show that for
k > 0, H > 1/2 the process is strictly positive and never hits zero, so that actually Xt = Y 2

t .
Finally, we prove that in the case of H < 1/2 the probability of not hitting zero on any fixed
finite interval by the fractional Cox–Ingersoll–Ross process tends to 1 as k → ∞.

Keywords Fractional Cox–Ingersoll–Ross process, stochastic differential equation,
Stratonovich integral

2010 MSC 60G22, 60H05, 60H10

1 Introduction

The classical Cox–Ingersoll–Ross (CIR) process, which was proposed and studied
by Cox, Ingersoll and Ross in [4–6], is the process r = {rt , t ≥ 0} that satisfies the
following stochastic differential equation:

drt = (k − art )dt + σ
√

rtdWt , a, k, σ > 0. (1)
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Here a corresponds to the speed of adjustment, k/a is called “the mean”, σ is “the
volatility”, W = {Wt, t ≥ 0} is a Wiener process and r0 > 0.

The CIR process is widely used for short-term interest rate modeling as well as for
stochastic volatility modeling in the Heston model [10]. Therefore, in most cases it is
also assumed that 2k ≥ σ 2 as, according to [9], if this condition holds, the process is
strictly positive and never hits zero.

It is well known that the CIR process is ergodic and has a stationary distribution.
Moreover, the distribution of its future values rt+T provided that rt is known is a non-
central chi-square distribution, and the distribution of the limit value r∞ is a gamma
distribution.

However, the real financial models are often characterized by the so-called “mem-
ory phenomenon” (see [1, 2, 7, 18] for more detail), while the standard Cox–Ingersoll–
Ross process does not display it. Therefore, for a better simulation of interest rates
or stochastic volatility it is reasonable to consider a fractional generalization of the
Cox–Ingersoll–Ross process. It should be noted that there are several approaches to
definition of the fractional Cox–Ingersoll–Ross process. In [11, 12] the fractional CIR
process is introduced as a time changed CIR process with inverse stable subordinator,
the so-called “rough path approach” is described in [13]. Another way of defining
the considered process is presented in [8] as part of the discussion on rough Heston
models.

The definition of the fractional CIR process with k = 0, based on the pathwise
integration with respect to fractional Brownian motion, was also presented in [14] for
the case H > 2/3. In [16] it was shown that for such definition the fractional CIR
process is the square of the fractional Ornstein–Uhlenbeck process until the first zero
hitting (for definition and properties of the fractional Ornstein–Uhlenbeck process see
[3]). Based on that, the fractional CIR process with k = 0 was defined as the square
of the fractional Ornstein–Uhlenbeck process before its first zero hitting. It was also
shown that such process satisfies the stochastic differential equation of the form

dXt = aXtdt + σ
√

Xt ◦ dBH
t , t ≥ 0, (2)

where X0 > 0, a ∈ R, σ > 0,H ∈ (0, 1) and integral with respect to the frac-
tional Brownian motion is the pathwise Stratonovich integral. However, due to posi-
tive probability of hitting zero, this process is not suitable for interest rate modeling.

In this paper we introduce a natural generalization of the above model. First, we
consider the process Y = {Yt , t ≥ 0} which satisfies the SDE of the form

dYt = 1

2

(
k

Yt

− aYt

)
dt + σ

2
dBH

t , Y0 > 0. (3)

Then, we define the fractional Cox–Ingersoll–Ross process as the square of Yt until
the first zero hitting moment and show that it satisfies the SDE of the form

dXt = (k − aXt)dt + σ
√

Xt ◦ dBH
t , t ≥ 0, (4)

where X0 = Y 2
0 > 0 and the integral with respect to the fractional Brownian motion

is defined as the pathwise Stratonovich integral. We also show that for any k > 0 and
for any Hurst parameter H > 1/2 the process is strictly positive and never hits zero.
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Next, for the case of H < 1/2, we prove that the probability that the fractional
CIR process does not hit zero on any fixed finite interval tends to 1 as k → ∞. As an
auxiliary result, we prove the analogue of the comparison theorem.

The paper is organized as follows. In Section 2 we define the fractional CIR pro-
cess and show that it satisfies the SDE (7) with the pathwise Stratonovich integral.
In Section 3 we prove that the fractional CIR process is strictly positive for k > 0
and H > 1/2. In Section 4 we prove the analogue of the comparison theorem and
show that in the case of H < 1/2 the probability that the fractional CIR process does
not hit zero on any fixed finite interval tends to 1 as k → ∞. In Appendix there are
simulations that illustrate the results of the paper.

2 Definition of the fractional Cox–Ingersoll–Ross process

Consider the process Y = {Yt , t ≥ 0} that satisfies the following SDE until its first
zero hitting:

dYt = 1

2

(
k

Yt

− aYt

)
dt + σ

2
dBH

t , Y0 > 0, (5)

where a, k ∈ R, σ > 0 and {BH
t , t ≥ 0} is a fractional Brownian motion with the

Hurst parameter H ∈ (0, 1).

Definition 1. Let H ∈ (0, 1) be an arbitrary Hurst index, {Yt , t ≥ 0} be the process
that satisfies the equation (5) and τ be the first moment of reaching zero by the latter.
The fractional Cox–Ingersoll–Ross process is the process {Xt, t ≥ 0} such that for
all t ≥ 0, ω ∈ Ω:

Xt(ω) = Y 2
t (ω)1{t<τ(ω)}. (6)

Before moving to the main result of this section, let us give the definition of the
pathwise Stratonovich integral.

Definition 2. Let {Xt, t ≥ 0}, {Yt , t ≥ 0} be random processes. The pathwise
Stratonovich integral

∫ T

0 Xs ◦ dYs is a pathwise limit of the following sums

n∑
k=1

Xtk + Xtk−1

2
(Ytk − Ytk−1),

as the mesh of the partition 0 = t0 < t1 < t2 < · · · < tn−1 < tn = T tends to zero,
in case if this limit exists.

Theorem 1. Let τ := inf{s > 0 : Ys = 0}. For 0 ≤ t ≤ τ the fractional CIR process
from Definition 1 satisfies the following SDE:

dXt = (k − aXt)dt + σ
√

Xt ◦ dBH
t , (7)

where X0 = Y 2
0 > 0 and the integral with respect to the fractional Brownian motion

is defined as the pathwise Stratonovich integral.
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Proof. Let us fix an ω ∈ Ω and consider an arbitrary t < τ(ω).
According to (5) and (6),

Xt = Y 2
t =

(√
X0 + 1

2

∫ t

0

(
k

Ys

− aYs

)
ds + σ

2
BH

t

)2

. (8)

Consider an arbitrary partition of the interval [0, t]:
0 = t0 < t1 < t2 < · · · < tn−1 < tn = t.

Using (8), we get

Xt =
n∑

i=1

(Xti − Xti−1) + X0

=
n∑

i=1

([√
X0 + 1

2

∫ ti

0

(
k

Ys

− aYs

)
ds + σ

2
BH

ti

]2

−
[√

X0 + 1

2

∫ ti−1

0

(
k

Ys

− aYs

)
ds + σ

2
BH

ti−1

]2)
+ X0.

Factoring each summand as the difference of squares, we get:

Xt = X0 +
n∑

i=1

[
2
√

X0 + 1

2

(∫ ti

0

(
k

Ys

− aYs

)
ds

+
∫ ti−1

0

(
k

Ys

− aYs

)
ds

)
+ σ

2

(
BH

ti
+ BH

ti−1

)]

×
[

1

2

∫ ti

ti−1

(
k

Ys

− aYs

)
ds + σ

2

(
BH

ti
− BH

ti−1

)]
.

Expanding the brackets in the last expression, we obtain:

Xt = X0 +
n∑

i=1

√
X0

∫ ti

ti−1

(
k

Ys

− aYs

)
ds

+ 1

4

n∑
i=1

(∫ ti

0

(
k

Ys

− aYs

)
ds +

∫ ti−1

0

(
k

Ys

− aYs

)
ds

)

×
∫ ti

ti−1

(
k

Ys

− aYs

)
ds + σ

4

n∑
i=1

(
BH

ti
+ BH

ti−1

) ∫ ti

ti−1

(
k

Ys

− aYs

)
ds

+ σ
√

X0

n∑
i=1

(
BH

ti
− BH

ti−1

) + σ 2

4

n∑
i=1

(
BH

ti
− BH

ti−1

)(
BH

ti
+ BH

ti−1

)

+ σ

4

n∑
i=1

(∫ ti

0

(
k

Ys

− aYs

)
ds +

∫ ti−1

0

(
k

Ys

− aYs

)
ds

)(
BH

ti
− BH

ti−1

)
. (9)
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Let the mesh �t of the partition tend to zero. The first three summands

n∑
i=1

√
X0

∫ ti

ti−1

(
k

Ys

− aYs

)
ds

+ 1

4

n∑
i=1

(∫ ti

0

(
k

Ys

− aYs

)
ds +

∫ ti−1

0

(
k

Ys

− aYs

)
ds

)

×
∫ ti

ti−1

(
k

Ys

− aYs

)
ds + σ

4

n∑
i=1

(
BH

ti
+ BH

ti−1

) ∫ ti

ti−1

(
k

Ys

− aYs

)
ds

→
∫ t

0

(
k

Ys

− aYs

)(√
X0 + 1

2

∫ s

0

(
k

Yu

− aYu

)
du + σ

2
BH

s

)
ds

=
∫ t

0

(
k − aY 2

s

)
ds =

∫ t

0
(k − aXs)ds, �t → 0, (10)

and the last three summands

σ
√

X0

n∑
i=1

(
BH

ti
− BH

ti−1

) + σ 2

4

n∑
i=1

(
BH

ti
− BH

ti−1

)(
BH

ti
+ BH

ti−1

)

+ σ

4

n∑
i=1

(∫ ti

0

(
k

Ys

− aYs

)
ds +

∫ ti−1

0

(
k

Ys

− aYs

)
ds

)(
BH

ti
− BH

ti−1

)

→ σ

∫ t

0

(√
X0 + 1

2

∫ s

0

(
k

Yu

− aYu

)
du + σ

2
BH

s

)
◦ dBH

s

= σ

∫ t

0
Ys ◦ dBH

s = σ

∫ t

0

√
Xs ◦ dBH

s , �t → 0. (11)

Note that the left-hand side of (9) does not depend on the partition and the limit
in (10) exists as the pathwise Riemann integral, therefore the corresponding pathwise
Stratonovich integral exists and the passage to the limit in (11) is correct.

Thus, the fractional Cox–Ingersoll–Ross process, introduced in Definition 1, sat-
isfies the SDE of the form

Xt = X0 +
∫ t

0
(k − aXs)ds + σ

∫ t

0

√
Xs ◦ dBH

s , (12)

where
∫ t

0

√
Xs ◦ dBH

s is the pathwise Stratonovich integral.

Remark 1. In the case of k = 0, the process (5) is the fractional Ornstein–Uhlenbeck
process and the definition coincides with the one given in [16].

3 Hitting zero by the fractional CIR process with positive “mean” and H > 1/2

The next natural question regarding the fractional CIR process is finiteness of its zero
hitting time moment. It is obvious that it coincides with the respective moment of the
process {Yt , t ≥ 0}, defined by the equation (5).
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Before formulating the main result of the section let us give a well-known prop-
erty of trajectories of fractional Brownian motion (see, for example, [15]).

Proposition 1. Let {BH
t , t ≥ 0} be a fractional Brownian motion with the Hurst

index H . Then, ∃Ω ′ ⊂ Ω , P{Ω ′} = 1, such that ∀ω ∈ Ω ′, ∀T > 0, ∀δ > 0,
∀0 ≤ s ≤ t ≤ T ∃C = C(T , ω, δ) ∈ R:∣∣BH

t − BH
s

∣∣ ≤ C|t − s|H−δ.

Theorem 2. Let k > 0,H > 1/2. Then the process {Yt , t ≥ 0}, defined by the
equation (5), is strictly positive a.s.

Proof. The proof is by contradiction.
Let Ω ′ be the same as in Proposition 1. First, assume that a > 0 and let for some

ω ∈ Ω ′, τ(ω) = inf{t > 0 : Xt = 0} = inf{t > 0 : Yt = 0} < ∞.

For all ε ∈ (0, min(Y0,

√
k
a
)) (the condition ε <

√
k
a

provides the inequality
k
ε

− aε > 0) let us introduce the last moment of hitting the level of ε before the first
zero reaching:

τε := sup
{
t ∈ (0, τ ) : Yt = ε

}
.

Consider δ > 0 such that the inequality H − δ > 1/2 ⇔ 1 + δ − H < 1/2 holds.
According to the definitions of τ, τε and Y , the following equality is true:

−ε = Yτ − Yτε = 1

2

∫ τ

τε

(
k

Ys

− aYs

)
ds + σ

2

(
BH

τ − BH
τε

)
.

The process Ys ∈ (0, ε) on the interval (τε, τ ), hence ∀s ∈ (τε, τ ):

k

Ys

− aYs ≥ k

ε
− aε. (13)

From this and Proposition 1, it follows that ∃C = C(τ(ω), ω, δ):

σ

2
C|τ − τε|H−δ ≥ σ

2
|BH

τ − BH
τε

| ≥ 1

2

(
k

ε
− aε

)
(τ − τε) + ε.

It is clear that there exists ε̃ > 0 such that ∀ε < ε̃: k
ε

− aε > k
2ε

. Then, by
choosing an arbitrary ε < ε̃, we have:

σ

2
C|τ − τε|H−δ ≥ k

4ε
(τ − τε) + ε. (14)

For x ≥ 0 consider the function

Fε(x) = k

4ε
x − σ

2
CxH−δ + ε. (15)

Let us show that there exists ε∗ ∈ (0, ε̃) such that, for all ε < ε∗ and for all x ≥ 0,
Fε(x) > 0. It is easy to check that Fε(0) = ε > 0 and Fε is convex on R

+\{0} (its



Fractional Cox–Ingersoll–Ross process with non-zero «mean» 105

second derivative is strictly positive on this set), so it is enough to examine the sign
of the function in its critical points.

F ′(x̃) = k

4ε
− σ(H − δ)

2
Cx̃H−δ−1 = 0

=⇒ x̃ =
(

k

2σεC(H − δ)

)1/(H−δ−1)

=
(

2σC(H − δ)

k

)1/(1+δ−H)

ε1/(1+δ−H).

After some calculations we get

F(x̃) = 1

2

(
2(H − δ)

k

) H−δ
1+δ−H

(σC)
1

1+δ−H (H − δ − 1)ε
H−δ

1+δ−H + ε.

From the choice of δ it follows that H−δ
1+δ−H

> 1, hence ∀K ∈ R ∃ε∗ > 0:

ε − Kε
H−δ

1+δ−H > 0, ∀ε < ε∗. (16)

Choosing the corresponding ε∗ for

K := −1

2

(
2(H − δ)

k

) H−δ
1+δ−H

(σC)
1

1+δ−H (H − δ − 1),

and choosing an arbitrary ε < min{ε̃, ε∗} we obtain that

Fε(x) > 0 ∀x > 0.

However, from (14) it follows that

Fε(τ − τε) ≤ 0.

The contradiction obtained proves the theorem for a > 0. If a ≤ 0, instead of
(13) the following bound can be used:

k

Ys

− aYs ≥ k

ε
. (17)

4 Hitting zero by the fractional CIR process in the case of H < 1/2

The condition of H > 1/2 is essential for Theorem 2, as if H < 1/2, the condition
(16) does not hold. However, it is possible to obtain another result concerning zero
hitting by the fractional CIR process in the case of H < 1/2.

Let {BH
t , t ≥ 0} be the fractional Brownian motion with H < 1/2 and let a ∈ R,

σ > 0 be fixed. Consider the set of processes

Y := {
Y (k) = {

Y
(k)
t , t ≥ 0

}
, k > 0

}
, (18)
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each element of which starts from the same level Y0 > 0, satisfies the SDE of the
form (5) before hitting zero and remains in zero after that moment:

Y
(k)
t (ω) =

{
Y0 + 1

2

∫ t

0 ( k

Y
(k)
s (ω)

− aY
(k)
s (ω))ds + σ

2 dBH
t (ω), if t < τ (k)(ω),

0, if t ≥ τ (k)(ω),

where τ (k) := inf{t ≥ 0 | Y
(k)
t = 0}.

Lemma 1. Let k1 < k2. Then ∀ω ∈ Ω,∀t ≥ 0:

(i) τ (k1)(ω) ≤ τ (k2)(ω);

(ii) Y
(k1)
t (ω) ≤ Y

(k2)
t (ω), and the inequality is strict for t ∈ (0, τ (k2)(ω)).

Remark 2. This lemma holds for an arbitrary Hurst index H ∈ (0, 1).

Proof. Let ω ∈ Ω be fixed (we will omit ω in brackets in further formulas). Consider
the function δ on the interval [0, min{τ (k1), τ (k2)}), such that δ(t) = Y

(k2)
t − Y

(k1)
t . It

is obvious that δ is differentiable, δ(0) = 0 and

δ′+(0) = 1

2

(
k2

Y0
− aY0

)
− 1

2

(
k1

Y0
− aY0

)
= k2 − k1

2Y0
> 0.

As δ(t) = δ′+(0)t + o(t), t → 0+, it is easy to see that there exists the maximal
interval (0, t∗) ⊂ (0, min{τ (k1), τ (k2)}) such that δ(t) > 0 for all t ∈ (0, t∗). It is also
clear that

t∗ = sup
{
t ∈ (

0, min
{
τ (k1), τ (k2)

}) | ∀s ∈ (0, t) : δ(s) > 0
}
.

Assume that t∗ < min{τ (k1), τ (k2)}. According to the definition of t∗, δ(t∗) = 0.
Hence Y

(k2)
t∗ = Y

(k1)
t∗ = Y ∗ > 0 and

δ′(t∗) = k2 − k1

2Y ∗ > 0.

As δ(t) = δ′(t∗)(t − t∗)+o(t − t∗), t → t∗, there exists ε > 0 such that δ(t) < 0
for all t ∈ (t∗ − ε, t∗), that contradicts the definition of t∗.

Therefore, ∀t ∈ (0, min{τ (k1), τ (k2)}):
Y

(k2)
t > Y

(k1)
t . (19)

Now it is easy to show that (i) holds: indeed, if τ (k1) > τ (k2), then

0 = Y
(k2)

τ (k2) < Y
(k1)

τ (k2) .

This means that ∃t∗ < τ(k2) such that Y
(k2)
t < Y

(k1)
t for all t ∈ (t∗, τ (k2)), which

contradicts (19).
Finally, as Y

(k2)
t > Y

(k1)
t for all t ∈ (0, τ (k1)), Y

(k2)
t > Y

(k1)
t = 0 for all t ∈

[τ (k1), τ (k2)) and Y
(k2)
t = Y

(k1)
t = 0 for all t ≥ τ (k2), (ii) also holds.
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Now let us move to the main result of the section.

Theorem 3. For all T > 0:

P
(
τ (k) > T

) → 1, k → ∞. (20)

Proof. The proof is by contradiction.
Assume that ∃T ∗ > 0, ∃{kn, n ≥ 1}, kn ↑ ∞ as n → ∞ such that:

P
(
τ (kn) ≤ T ∗) → α > 0, n → ∞.

Let us consider the case of a > 0. Let Ω ′ be from Proposition 1, and for all

ε ∈ (0, min(Y0, 1,

√
k1
2a

)) denote τ
(kn)
ε := sup{t ∈ (0, τ ) : Y

(kn)
t = ε} and

D
(kn)
T ∗ := {

ω ∈ Ω ′ | τ (kn) ≤ T ∗}.
According to Lemma 1, ∀n ≥ 1 : D

(kn+1)

T ∗ ⊂ D
(kn)
T ∗ , so

P

(⋂
n≥1

D
(kn)
T ∗

)
= lim

n→∞P
(
D

(kn)
T ∗

) = α > 0.

Just like in Theorem 2, ∀n ≥ 1, ∀ω ∈ D
(kn)
T ∗ :

−ε = Y
(kn)

τ (kn) − Y
(kn)

τ
(kn)
ε

= 1

2

∫ τ (kn)

τ
(kn)
ε

(
kn

Y
(kn)
s

− aY (kn)
s

)
ds + σ

2

(
BH

τ(kn) − BH

τ
(kn)
ε

)
.

The process Y
(kn)
s ∈ (0, ε) on the interval (τ

(kn)
ε , τ (kn)), hence

kn

Y
(kn)
s

− aY (kn)
s ≥ kn

ε
− aε, ∀s ∈ (

τ (kn)
ε , τ (kn)

)
. (21)

Let δ > 0 satisfy the condition 0 < H − δ < 1/2.
According to Proposition 1, ∃Cω = C(T ∗, ω, δ), ∀0 < s < t < T ∗:∣∣BH

t − BH
s

∣∣ ≤ Cω|t − s|H−δ.

As ε <

√
k1
2a

, the following inequality is true:

kn

ε
− aε >

kn

2ε
∀n ≥ 0,

so just like in the proof of Theorem 2 we can obtain that ∀n ≥ 1, ∀ω ∈ D
(kn)
T ∗ :

σ

2
Cω

(
τ (kn) − τ (kn)

ε

)H−δ ≥ kn

4ε

(
τ (kn) − τ (kn)

ε

) + ε. (22)

According to (22), ∀n ≥ 1, ∀ω ∈ ⋂
n≥0 D

(kn)
T ∗ :

σ

2
Cω

(
τ (kn) − τ (kn)

ε

)H−δ
> ε. (23)
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However, it is easy to see from (22) that
σ

2
Cω

(
τ (kn) − τ (kn)

ε

)H−δ
>

kn

4ε

(
τ (kn) − τ (kn)

ε

)
. (24)

Let us transform (24):
σ

2
Cω >

kn

4ε

(
τ (kn) − τ (kn)

ε

)1−H+δ
,

2σε

kn

Cω >
(
τ (kn) − τ (kn)

ε

)1−H+δ
,

(
2σε

kn

Cω

) 1
1−H+δ

> τ (kn) − τ (kn)
ε ,

hence

σ

2
Cω

(
τ (kn) − τ (kn)

ε

)H−δ
<

σ

2
Cω

(
2σε

kn

Cω

) H−δ
1−H+δ

= (
2

2H−2δ−1
1−H+δ σ

1
1−H+δ

)
k
− H−δ

1−H+δ
n C

1
1−H+δ
ω ε

H−δ
1−H+δ

= C̃k
− H−δ

1−H+δ
n C

1
1−H+δ
ω ε

H−δ
1−H+δ .

According to [17], E(|Cω|p) < ∞ for all p ∈ [1,∞), so Cω is finite a.s.
Therefore, as P(

⋂
n≥0 D

(kn)
T ∗ ) = α > 0, ∃M > 0, ∃E ⊂ ⋂

n≥0 D
(kn)
T ∗ , P(E) > 0

such that ∀ω ∈ E:
Cω < M.

Hence, as ε < 1,
σ

2
Cω

(
τ (kn) − τ (kn)

ε

)H−δ
< C̃k

− H−δ
1−H+δ

n C
1

1−H+δ
ω ε

H−δ
1−H+δ

< C̃k
− H−δ

1−H+δ
n M

1
1−H+δ < ε,

if kn > ( C̃M
1

1−H+δ

ε
)

1−H+δ
H−δ , which contradicts (23).

If a < 0, the following inequality can be used instead of (21):
kn

Y
(kn)
s

− aY (kn)
s ≥ kn

ε
.

A Appendix: Simulations of the fractional Cox–Ingersoll–Ross process

Theorems 2 and 3 can be illustrated by numerical simulations.
10000 sample paths of the fractional Cox–Ingersoll–Ross process were simulated

on the interval [0, 10] as the square of the process Y defined in (5). The Euler approx-
imation of Y was used until the first zero hitting by the latter with the mesh of the
partition of �t = 0.001:

Ytn =
{

Ytn−1 + 1
2 ( k

Ytn−1
− aYtn−1)�t + σ

2 �BH
tn

, if Ytn−1 > 0,

0, if Ytn−1 ≤ 0,

Xtn = Y 2
tn
.
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There were no zero hitting for 10000 trajectories simulated for four cases that
satisfy the conditions of Theorem 2 (see Fig. 1, 2; the amount of trajectories on
these and further figures is reduced in order to make them more convenient for the
reader).

Fig. 1. Case of a = 1, k = 1, σ = 1, H = 0.6,
X0 = 1

Fig. 2. Case of a = 1, k = 1, σ = 1, H = 0.8,
X0 = 1

However, the behavior of the fractional Cox–Ingersoll–Ross process is not com-
pletely clear for the situation of k > 0,H < 1/2. Simulations for different parameters
k,H, σ (see Figures 3–8) show that in this case the process may hit zero with positive
probability, however, as stated in Theorem 3, as k gets bigger, the amount of trajec-

Fig. 3. Case of a = 1, k = 0.5, σ = 1, H =
0.4, X0 = 1. 17% of sample paths hit zero

Fig. 4. Case of a = 1, k = 1, σ = 1, H = 0.4,
X0 = 1. Less than 1% of sample paths hit zero

Fig. 5. Case of a = 1, k = 1, σ = 2, H = 0.4,
X0 = 1. 86% of sample paths hit zero

Fig. 6. Case of a = 1, k = 3, σ = 2, H = 0.4,
X0 = 1. Less than 1% of sample paths hit zero
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Fig. 7. Case of a = 1, k = 1, σ = 1, H = 0.2,
X0 = 1. 43% of sample paths hit zero

Fig. 8. Case of a = 1, k = 3, σ = 1, H = 0.2,
X0 = 1. Less than 1% of sample paths hit zero

tories that hit zero tends to zero. Moreover, it seems that the less H and the bigger σ

are, the bigger is the probability of reaching zero.
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