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1 Introduction

The field of temporal and contemporaneous aggregations of independent stationary
stochastic processes is an important and very active research area in the empirical and
theoretical statistics and in other areas as well. The scheme of contemporaneous (also
called cross-sectional) aggregation of random-coefficient autoregressive processes of
order 1 was firstly proposed by Robinson [16] and Granger [4] in order to obtain the
long memory phenomena in aggregated time series. For surveys on papers dealing
with the aggregation of different kinds of stochastic processes, see, e.g., Pilipauskaitė
and Surgailis [13], Jirak [8, page 512] or the arXiv version of Barczy et al. [2].

In this paper we study the limit behaviour of temporal (time) and contempora-
neous (space) aggregations of independent copies of a strictly stationary multitype
Galton–Watson branching process with immigration in the so-called iterated and si-
multaneous cases, respectively. According to our knowledge, the aggregation of gen-
eral multitype Galton–Watson branching processes with immigration has not been
considered in the literature so far. To motivate the fact that the aggregation of branch-
ing processes could be an important topic, now we present an interesting and rele-
vant example, where the phenomena of aggregation of this kind of processes may
come into play. A usual Integer-valued AutoRegressive (INAR) process of order 1,
(Xk)k�0, can be used to model migration, which is quite a big issue nowadays all over
the world. More precisely, given a camp, for all k � 0, the random variable Xk can be
interpreted as the number of migrants to be present in the camp at time k, and every
migrant will stay in the camp with probability α ∈ (0, 1) indepedently of each other
(i.e., with probability 1 −α each migrant leaves the camp) and at any time k � 1 new
migrants may come to the camp. Given several camps in a country, we may suppose
that the corresponding INAR processes of order 1 share the same parameter α and
they are independent. So, the temporal and contemporaneous aggregations of these
INAR processes of order 1 is the total usage of the camps in terms of the number of
migrants in the given country in a given time period, and this quantity may be worth
studying.

The present paper is organized as follows. In Section 2 we formulate our main
results, namely the iterated and simultaneous limit behaviour of time- and space-
aggregated independent stationary p-type Galton–Watson branching processes with
immigration is described (where p � 1), see Theorems 1 and 2. The limit distri-
butions in these limit theorems coincide, namely, it is a p-dimensional zero mean
Brownian motion with a covariance function depending on the expectations and co-
variances of the offspring and immigration distributions. In the course of the proofs of
our results, in Lemma 2.3, we prove that for a subcritical, positively regular multitype
Galton–Watson branching process with nontrivial immigration, its unique stationary
distribution admits finite αth moments provided that the branching and immigration
distributions have finite αth moments, where α ∈ {1, 2, 3}. In case of α ∈ {1, 2},
Quine [14] contains this result, however in case of α = 3, we have not found any
precise proof in the literature for it, it is something like a folklore, so we decided
to write down a detailed proof. As a by-product, we obtain an explicit formula for
the third moment in question. Section 3 is devoted to the special case of generalized
INAR processes, especially to single-type Galton–Watson branching processes with
immigration. All the proofs can be found in Section 4.
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2 Aggregation of multitype Galton–Watson branching processes with immi-
gration

Let Z+, N, R, R+, and C denote the set of non-negative integers, positive integers,
real numbers, non-negative real numbers, and complex numbers, respectively. For
all d ∈ N, the d × d identity matrix is denoted by I d . The standard basis in R

d is
denoted by {e1, . . . , ed}. For v ∈ R

d , the Euclidean norm is denoted by ‖v‖, and for
A ∈ R

d×d , the induced matrix norm is denoted by ‖A‖ as well (with a little abuse of
notation). All the random variables will be defined on a probability space (Ω,F ,P).

Let (Xk = [Xk,1, . . . , Xk,p]�)k∈Z+ be a p-type Galton–Watson branching pro-
cess with immigration. For each k, � ∈ Z+ and i, j ∈ {1, . . . , p}, the number of
j -type individuals in the kth generation will be denoted by Xk,j , the number of j -
type offsprings produced by the �th individual belonging to type i of the (k − 1)th

generation will be denoted by ξ
(i,j)

k,� , and the number of immigrants of type i in the

kth generation will be denoted by ε
(i)
k . Then we have

Xk =
Xk−1,1∑
�=1

⎡
⎢⎢⎣

ξ
(1,1)
k,�
...

ξ
(1,p)

k,�

⎤
⎥⎥⎦+· · ·+

Xk−1,p∑
�=1

⎡
⎢⎢⎣

ξ
(p,1)
k,�
...

ξ
(p,p)

k,�

⎤
⎥⎥⎦+

⎡
⎢⎣

ε
(1)
k
...

ε
(p)
k

⎤
⎥⎦ =:

p∑
i=1

Xk−1,i∑
�=1

ξ
(i)
k,� +εk (1)

for every k ∈ N, where we define
∑0

�=1 := 0. Here {X0, ξ
(i)
k,�, εk : k, � ∈ N, i ∈

{1, . . . , p}} are supposed to be independent Zp
+-valued random vectors. Note that we

do not assume independence among the components of these vectors. Moreover, for
all i ∈ {1, . . . , p}, {ξ (i), ξ

(i)
k,� : k, � ∈ N} and {ε, εk : k ∈ N} are supposed to consist

of identically distributed random vectors, respectively.
Let us introduce the notations mε := E(ε) ∈ R

p
+, along with Mξ := E([ξ (1), . . . ,

ξ (p)]) ∈ R
p×p
+ and

v(i,j) := [Cov
(
ξ (1,i), ξ (1,j)

)
, . . . , Cov

(
ξ (p,i), ξ (p,j)

)
, Cov

(
ε(i), ε(j)

)]� ∈ R
(p+1)×1

for i, j ∈ {1, . . . , p}, provided that the expectations and covariances in question are
finite. Let �(Mξ ) denote the spectral radius of Mξ , i.e., the maximum of the modu-
lus of the eigenvalues of Mξ . The process (Xk)k∈Z+ is called subcritical, critical or
supercritical if �(Mξ ) is smaller than 1, equal to 1 or larger than 1, respectively. The
matrix Mξ is called primitive if there is a positive integer n ∈ N such that all the
entries of Mn

ξ are positive. The process (Xk)k∈Z+ is called positively regular if Mξ

is primitive. In what follows, we suppose that

E
(
ξ (i)
) ∈ R

p
+, i ∈ {1, . . . , p}, mε ∈ R

p
+ \ {0},

ρ(Mξ ) < 1, Mξ is primitive.
(2)

For further application, we define the matrix

V := (Vi,j )
p

i,j=1 :=
(

v�
(i,j)

[
(Ip − Mξ )

−1mε

1

])p

i,j=1
∈ R

p×p, (3)

provided that the covariances in question are finite.
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Remark 1. Note that the matrix (Ip − Mξ )
−1, which appears in (3) and throughout

the paper, exists. Indeed, λ ∈ C is an eigenvalue of Ip − Mξ if and only if 1 − λ is
that of Mξ . Therefore, since ρ(Mξ ) < 1, all eigenvalues of Ip − Mξ are non-zero.
This means that det(Ip −Mξ ) �= 0, so (Ip −Mξ )

−1 does exist. One could also refer
to Corollary 5.6.16 and Lemma 5.6.10 in Horn and Johnson [6].

Remark 2. Note that V is symmetric and positive semidefinite, since v(i,j) = v(j,i),
i, j ∈ {1, . . . , p}, and for all x ∈ R

p,

x�V x =
p∑

i=1

p∑
j=1

Vi,j xixj =
( p∑

i=1

p∑
j=1

xixjv
�
(i,j)

)[
(Ip − Mξ )

−1mε

1

]
,

where
p∑

i=1

p∑
j=1

xixjv
�
(i,j)

= [x� Cov
(
ξ (1), ξ (1)

)
x, . . . , x� Cov

(
ξ (p), ξ (p)

)
x, x� Cov(ε, ε)x

]
.

Here x� Cov(ξ (i), ξ (i))x � 0, i ∈ {1, . . . , p}, x� Cov(ε, ε)x � 0, and (Ip −
Mξ )

−1mε ∈ R
p
+ due to the fact that (Ip − Mξ )

−1mε is nothing else but the ex-
pectation vector of the unique stationary distribution of (Xk)k∈Z+ , see the discussion
below and formula (14).

Under (2), by the Theorem in Quine [14], there is a unique stationary distribution
π for (Xk)k∈Z+ . Indeed, under (2), Mξ is irreducible due to the primitivity of Mξ ,
see Definition 8.5.0 and Theorem 8.5.2 in Horn and Johnson [6]. For the definition of
irreducibility, see Horn and Johnson [6, Definitions 6.2.21 and 6.2.22]. Further, Mξ

is aperiodic, since this is equivalent to the primitivity of Mξ , see Kesten and Stigum
[10, page 314] and Kesten and Stigum [9, Section 3]. For the definition of aperiodicity
(also called acyclicity), see, e.g., the Introduction of Danka and Pap [3]. Finally, since
mε ∈ R

p
+ \ {0}, the probability generating function of ε at 0 is less than 1, and

E

(
log

( p∑
i=1

ε(i)

)
1{ε �=0}

)
� E

( p∑
i=1

ε(i)1{ε �=0}
)
� E

( p∑
i=1

ε(i)

)
=

p∑
i=1

E
(
ε(i)
)
,

which is finite, so one can apply the Theorem in Quine [14].
For each α ∈ N, we say that the αth moment of a random vector is finite if all of

its mixed moments of order α are finite.

Lemma 1. Let us assume (2). For each α ∈ {1, 2, 3}, the unique stationary distribu-
tion π has a finite αth moment, provided that the αth moments of ξ (i), i ∈ {1, . . . , p},
and ε are finite.

In what follows, we suppose (2) and that the distribution of X0 is the unique
stationary distribution π , hence the Markov chain (Xk)k∈Z+ is strictly stationary.
Recall that, by (2.1) in Quine and Durham [15], for any measurable function f :
R

p → R satisfying E(|f (X0)|) < ∞, we have

1

n

n∑
k=1

f (Xk)
a.s.−→ E

(
f (X0)

)
as n → ∞. (4)
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First we consider a simple aggregation procedure. For each N ∈ N, consider the
stochastic process S(N) = (S

(N)
k )k∈Z+ given by

S
(N)
k :=

N∑
j=1

(
X

(j)
k − E

(
X

(j)
k

))
, k ∈ Z+,

where X(j) = (X
(j)
k )k∈Z+ , j ∈ N, is a sequence of independent copies of the strictly

stationary p-type Galton–Watson process (Xk)k∈Z+ with immigration. Here we point
out that we consider so-called idiosyncratic immigrations, i.e., the immigrations be-
longing to X(j), j ∈ N, are independent.

We will use
Df−→ or Df-lim for weak convergence of finite dimensional distri-

butions, and
D−→ for weak convergence in D(R+,Rp) of stochastic processes with

càdlàg sample paths, where D(R+,Rp) denotes the space of Rp-valued càdlàg func-
tions defined on R+.

Proposition 1. If all entries of the vectors ξ (i), i ∈ {1, . . . , p}, and ε have finite
second moments, then

N− 1
2 S(N) Df−→ X as N → ∞,

where X = (X k)k∈Z+ is a stationary p-dimensional zero mean Gaussian process
with covariances

E
(
X 0X�

k

) = Cov(X0,Xk) = Var(X0)
(
M�

ξ

)k
, k ∈ Z+, (5)

where

Var(X0) =
∞∑

k=0

Mk
ξV
(
M�

ξ

)k
. (6)

We note that using formula (16) presented later on, one could give an explicit
formula for Var(X0) (not containing an infinite series).

Proposition 2. If all entries of the vectors ξ (i), i ∈ {1, . . . , p}, and ε have finite third
moments, then

(
n− 1

2

	nt
∑
k=1

S
(1)
k

)
t∈R+

=
(

n− 1
2

	nt
∑
k=1

(
X

(1)
k − E

(
X

(1)
k

)))
t∈R+

D−→ (Ip − Mξ )
−1B

as n → ∞, where B = (B t )t∈R+ is a p-dimensional zero mean Brownian motion
satisfying Var(B1) = V .

Note that Propositions 1 and 2 are about the scalings of the space-aggregated
process S(N) and the time-aggregated process (

∑	nt

k=1 S

(1)
k )t∈R+ , respectively.

For each N, n ∈ N, consider the stochastic process S(N,n) = (S
(N,n)
t )t∈R+ given

by

S
(N,n)
t :=

N∑
j=1

	nt
∑
k=1

(
X

(j)
k − E

(
X

(j)
k

))
, t ∈ R+.
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Theorem 1. If all entries of the vectors ξ (i), i ∈ {1, . . . , p}, and ε have finite second
moments, then

Df- lim
n→∞ Df- lim

N→∞ (nN)−
1
2 S(N,n) = (Ip − Mξ )

−1B, (7)

where B = (B t )t∈R+ is a p-dimensional zero mean Brownian motion satisfying
Var(B1) = V . If all entries of the vectors ξ (i), i ∈ {1, . . . , p}, and ε have finite
third moments, then

Df- lim
N→∞ Df- lim

n→∞ (nN)−
1
2 S(N,n) = (Ip − Mξ )

−1B, (8)

where B = (B t )t∈R+ is a p-dimensional zero mean Brownian motion satisfying
Var(B1) = V .

Theorem 2. If all entries of the vectors ξ (i), i ∈ {1, . . . , p}, and ε have finite third
moments, then

(nN)−
1
2 S(N,n) D−→ (Ip − Mξ )

−1B, (9)

if both n and N converge to infinity (at any rate), where B = (B t )t∈R+ is a p-
dimensional zero mean Brownian motion satisfying Var(B1) = V .

A key ingredient of the proofs is the fact that (Xk −E(Xk))k∈Z+ can be rewritten
as a stable first order vector autoregressive process with coefficient matrix Mξ and
with heteroscedastic innovations, see (24).

3 A special case: aggregation of GINAR processes

We devote this section to the analysis of aggregation of Generalized Integer-Valued
Autoregressive processes of order p ∈ N (GINAR(p) processes), which are special
cases of p-type Galton–Watson branching processes with immigration introduced in
(1). For historical fidelity, we note that it was Latour [11] who introduced GINAR(p)
processes as generalizations of INAR(p) processes. This class of processes became
popular in modelling integer-valued time series data such as the daily number of
claims at an insurance company. In fact, a GINAR(1) process is a (general) single
type Galton–Watson branching process with immigration.

Let (Zk)k�−p+1 be a GINAR(p) process. Namely, for each k, � ∈ Z+ and i ∈
{1, . . . , p}, the number of individuals in the kth generation will be denoted by Zk , the
number of offsprings produced by the �th individual belonging to the (k − i)th gen-
eration will be denoted by ξ

(i,1)
k,� , and the number of immigrants in the kth generation

will be denoted by ε
(1)
k . Here the 1-s in the supercripts of ξ

(i,1)
k,� and ε

(1)
k are displayed

in order to have a better comparison with (1). Then we have

Zk =
Zk−1∑
�=1

ξ
(1,1)
k,� + · · · +

Zk−p∑
�=1

ξ
(p,1)
k,� + ε

(1)
k , k ∈ N.
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Here {Z0, Z−1, . . . , Z−p+1, ξ
(i,1)
k,� , ε

(1)
k : k, � ∈ N, i ∈ {1, . . . , p}} are supposed

to be independent nonnegative integer-valued random variables. Moreover, for all
i ∈ {1, . . . , p}, {ξ (i,1), ξ

(i,1)
k,� : k, � ∈ N} and {ε(1), ε

(1)
k : k ∈ N} are supposed to

consist of identically distributed random variables, respectively.
A GINAR(p) process can be embedded in a p-type Galton–Watson branching

process with immigration (Xk = [Zk, . . . , Zk−p+1]�)k∈Z+ with the corresponding
p-dimensional random vectors

ξ
(1)
k,� =

⎡
⎢⎢⎢⎢⎢⎣

ξ
(1,1)
k,�

1
0
...

0

⎤
⎥⎥⎥⎥⎥⎦ , . . . , ξ

(p−1)
k,� =

⎡
⎢⎢⎢⎢⎢⎣

ξ
(p−1,1)
k,�

0
...

0
1

⎤
⎥⎥⎥⎥⎥⎦ , ξ

(p)
k,� =

⎡
⎢⎢⎢⎢⎢⎣

ξ
(p,1)
k,�

0
0
...

0

⎤
⎥⎥⎥⎥⎥⎦ , εk =

⎡
⎢⎢⎢⎢⎢⎣

ε
(1)
k

0
0
...

0

⎤
⎥⎥⎥⎥⎥⎦

for any k, � ∈ N.
In what follows, we reformulate the classification of GINAR(p) processes in

terms of the expectations of the offspring distributions.

Remark 3. In case of a GINAR(p) process, one can show that ϕ, the characteristic
polynomial of the matrix Mξ , has the form

ϕ(λ) := det(λIp − Mξ ) = λp − E
(
ξ (1,1)

)
λp−1 − · · · − E

(
ξ (p−1,1)

)
λ − E

(
ξ (p,1)

)
for any λ ∈ C. Recall that �(Mξ ) denotes the spectral radius of Mξ , i.e., the max-
imum of the modulus of the eigenvalues of Mξ . If E(ξ (p,1)) > 0, then, by the proof
of Proposition 2.2 in Barczy et al. [1], the characteristic polynomial ϕ has just one
positive root, �(Mξ ) > 0, the nonnegative matrix Mξ is irreducible, �(Mξ ) is an
eigenvalue of Mξ , and

∑p
i=1 E(ξ (i,1))�(Mξ )

−i = 1. Further,

�(Mξ )

⎧⎪⎨
⎪⎩

<

=
>

1 ⇐⇒
p∑

i=1

E
(
ξ (i,1)

)
⎧⎪⎨
⎪⎩

<

=
>

1.

Next, we specialize the matrix V , defined in (3), in case of a subcritical GINAR(p)
process.

Remark 4. In case of a GINAR(p) process, the vectors

v(i,j) = [Cov
(
ξ (1,i), ξ (1,j)

)
, . . . , Cov

(
ξ (p,i), ξ (p,j)

)
, Cov

(
ε(i), ε(j)

)]� ∈ R
(p+1)×1

for i, j ∈ {1, . . . , p} are all zero vectors except for the case i = j = 1. Therefore, in
case of �(Mξ ) < 1, the matrix V , defined in (3), reduces to

V = v�
(1,1)

[
(Ip − Mξ )

−1
E(ε(1))e1

1

] (
e1e

�
1

)
. (10)
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Finally, we specialize the limit distribution in Theorems 1 and 2 in case of a
subcritical GINAR(p) process.

Remark 5. Let us note that in case of p = 1 and E(ξ (1,1)) < 1 (yielding that the
corresponding GINAR(1) process is subcritical), the limit process in Theorems 1 and
2 can be written as

1

1 − E(ξ (1,1))

√
E(ε(1)) Var(ξ (1,1)) + (1 − E(ξ (1,1))) Var(ε(1))

1 − E(ξ (1,1))
W,

where W = (Wt )t∈R+ is a standard 1-dimensional Brownian motion. Indeed, this
holds, since in this special case Mξ = E(ξ (1,1)) yielding that (Ip − Mξ )

−1 = (1 −
E(ξ (1,1)))−1, and, by (10),

V =
[

Cov(ξ (1,1), ξ (1,1))

Cov(ε(1), ε(1))

]� [ E(ε(1))

1−E(ξ (1,1))

1

]
= Var(ξ (1,1))E(ε(1))

1 − E(ξ (1,1))
+ Var

(
ε(1)
)
.

4 Proofs

Proof of Lemma 1. Let (Zk)k∈Z+ be a p-type Galton–Watson branching process
without immigration, with the same offspring distribution as the process (Xk)k∈Z+ ,

and with Z0
D= ε. Then the stationary distribution π of (Xk)k∈Z+ admits the repre-

sentation

π
D=

∞∑
r=0

Z(r)
r ,

where (Z
(n)
k )k∈Z+ , n ∈ Z+, are independent copies of (Zk)k∈Z+ . This is a conse-

quence of formula (16) for the probability generating function of π in Quine [14]. It
is convenient to calculate moments of Kronecker powers of random vectors. We will
use the notation A ⊗ B for the Kronecker product of the matrices A and B, and we
put A⊗2 := A⊗A and A⊗3 := A⊗A⊗A. For each α ∈ {1, 2, 3}, by the monotone
convergence theorem, we have

∫
Rp

x⊗α π(dx) = E

[( ∞∑
r=0

Z(r)
r

)⊗α]
= lim

n→∞E

[(n−1∑
r=0

Z(r)
r

)⊗α]
.

For each n ∈ Z+, we have
n−1∑
r=0

Z(r)
r

D= Y n,

where (Y k)k∈Z+ is a Galton–Watson branching process with the same offspring and
immigration distributions as (Xk)k∈Z+ , and with Y 0 = 0. This can be checked com-
paring their probability generating functions taking into account formula (3) in Quine
[14] as well. Consequently, we conclude∫

Rp

x⊗α π(dx) = lim
n→∞E

(
Y⊗α

n

)
. (11)
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For each n ∈ N, using (1), we obtain

E
(
Y n | FY

n−1

) =
p∑

i=1

Yn−1,i∑
j=1

E
(
ξ

(i)
n,j | FY

n−1

)+ E
(
εn | FY

n−1

)

=
p∑

i=1

Yn−1,i E
(
ξ (i)
)+ E(ε)

=
p∑

i=1

E
(
ξ (i)
)
e�
i Y n−1 + mε = MξY n−1 + mε,

(12)

where FY
n−1 := σ(Y 0, . . . ,Y n−1), n ∈ N, and Yn−1,i := e�

i Y n−1, i ∈ {1, . . . , p}.
Taking the expectation, we get

E(Y n) = Mξ E(Y n−1) + mε, n ∈ N. (13)

Taking into account Y 0 = 0, we obtain

E(Y n) =
n∑

k=1

Mn−k
ξ mε =

n−1∑
�=0

M�
ξmε, n ∈ N.

For each n ∈ N, we have (Ip − Mξ )
∑n−1

�=0 M�
ξ = Ip − Mn

ξ . By the condition

�(Mξ ) < 1, the matrix Ip − Mξ is invertible and
∑∞

�=0 M�
ξ = (Ip − Mξ )

−1, see
Corollary 5.6.16 and Lemma 5.6.10 in Horn and Johnson [6]. Consequently, by (11),
the first moment of π is finite, and∫

Rp

x π(dx) = (Ip − Mξ )
−1mε. (14)

Now we suppose that the second moments of ξ (i), i ∈ {1, . . . , p}, and ε are finite.
For each n ∈ N, using again (1), we obtain

E
(
Y⊗2

n | FY
n−1

) =
p∑

i=1

Yn−1,i∑
j=1

p∑
i′=1

Yn−1,i′∑
j ′=1

E
(
ξ

(i)
n,j ⊗ ξ

(i′)
n,j ′ | FY

n−1

)

+
p∑

i=1

Yn−1,i∑
j=1

E
(
ξ

(i)
n,j ⊗ εn + εn ⊗ ξ

(i)
n,j | FY

n−1

)+ E
(
ε⊗2

n | FY
n−1

)

=
p∑

i=1

p∑
i′=1
i′ �=i

Yn−1,iYn−1,i′ E
(
ξ (i)
)⊗ E

(
ξ (i′))

+
p∑

i=1

Yn−1,i (Yn−1,i − 1)
[
E
(
ξ (i)
)]⊗2 +

p∑
i=1

Yn−1,i E
[(

ξ (i)
)⊗2]

+
p∑

i=1

Yn−1,i E
(
ξ (i) ⊗ ε + ε ⊗ ξ (i)

)+ E
(
ε⊗2)
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=
p∑

i=1

p∑
i′=1

Yn−1,iYn−1,i′ E
(
ξ (i)
)⊗ E

(
ξ (i′))

+
p∑

i=1

Yn−1,i

{
E
[(

ξ (i)
)⊗2]− [E(ξ (i)

)]⊗2}

+
p∑

i=1

Yn−1,i

{
E
(
ξ (i)
)⊗ mε + mε ⊗ E

(
ξ (i)
)}+ E

(
ε⊗2)

= (MξY n−1)
⊗2 + A2,1Y n−1 + E

(
ε⊗2).

with

A2,1 :=
p∑

i=1

{
E
[(

ξ (i)
)⊗2]+E

(
ξ (i)
)⊗mε +mε ⊗E

(
ξ (i)
)−[E(ξ (i)

)]⊗2}
e�
i ∈ R

p2×p.

Indeed, using the mixed-product property (A ⊗ B)(C ⊗ D) = (AC) ⊗ (BD) for
matrices of such size that one can form the matrix products AC and BD, we have

Yn−1,iYn−1,i′ = Yn−1,i ⊗ Yn−1,i′ = (e�
i Y n−1

)⊗ (e�
i′ Y n−1

) = (e�
i ⊗ e�

i′
)
Y⊗2

n−1,

hence

p∑
i=1

p∑
i′=1

Yn−1,iYn−1,i′ E
(
ξ (i)
)⊗ E

(
ξ (i′))

=
p∑

i=1

p∑
i′=1

[
E
(
ξ (i)
)⊗ E

(
ξ (i′))](e�

i ⊗ e�
i′
)
Y⊗2

n−1

=
p∑

i=1

p∑
i′=1

[(
E
(
ξ (i)
)
e�
i

)⊗ (E(ξ (i′))e�
i′
)]

Y⊗2
n−1 =

( p∑
i=1

E
(
ξ (i)
)
e�
i

)⊗2

Y⊗2
n−1

= (Mξ )
⊗2Y⊗2

n−1 = (MξY n−1)
⊗2.

Consequently, we obtain

E
(
Y⊗2

n | FY
n−1

) = M⊗2
ξ Y⊗2

n−1 + A2,1Y n−1 + E
(
ε⊗2), n ∈ N.

Taking the expectation, we get

E
(
Y⊗2

n

) = M⊗2
ξ E

(
Y⊗2

n−1

)+ A2,1 E(Y n−1) + E
(
ε⊗2), n ∈ N. (15)

Using also (13), we obtain[
E(Y n)

E(Y⊗2
n )

]
= A2

[
E(Y n−1)

E(Y⊗2
n−1)

]
+
[

mε

E(ε⊗2)

]
, n ∈ N,

with

A2 :=
[

Mξ 0
A2,1 M⊗2

ξ

]
∈ R

(p+p2)×(p+p2).



On aggregation of multitype Galton–Watson branching processes with immigration 63

Taking into account Y 0 = 0, we obtain

[
E(Y n)

E(Y⊗2
n )

]
=

n∑
k=1

An−k
2

[
mε

E(ε⊗2)

]
=

n−1∑
�=0

A�
2

[
mε

E(ε⊗2)

]
, n ∈ N.

We have �(A2) = max{�(Mξ ), �(M⊗2
ξ )}, where �(M⊗2

ξ ) = [�(Mξ )]2. Taking into
account �(Mξ ) < 1, we conclude that �(A2) = �(Mξ ) < 1, and, by (11), the second
moment of π is finite, and[ ∫

Rp x π(dx)∫
Rp x⊗2 π(dx)

]
= (Ip+p2 − A2)

−1
[

mε

E(ε⊗2)

]
. (16)

Since

(Ip+p2 − A2)
−1 =

[
(Ip − Mξ )

−1 0
(Ip2 − M⊗2

ξ )−1A2,1(Ip − Mξ )
−1 (Ip2 − M⊗2

ξ )−1

]
,

we get that
∫
Rp x⊗2 π(dx) equals

(
Ip2 − M⊗2

ξ

)−1
A2,1(Ip − Mξ )

−1mε + (Ip2 − M⊗2
ξ

)−1
E
(
ε⊗2).

Now we suppose that the third moments of ξ (i), i ∈ {1, . . . , p}, and ε are finite.
For each n ∈ N, using again (1), we obtain

E
(
Y⊗3

n | FY
n−1

) = Sn,1 + Sn,2 + Sn,3 + E
(
ε⊗3

n | FY
n−1

)
with

Sn,1 :=
p∑

i=1

Yn−1,i∑
j=1

p∑
i′=1

Yn−1,i′∑
j ′=1

p∑
i′′=1

Yn−1,i′′∑
j ′′=1

E
(
ξ

(i)
n,j ⊗ ξ

(i′)
n,j ′ ⊗ ξ

(i′′)
n,j ′′ | FY

n−1

)
,

Sn,2 :=
p∑

i=1

Yn−1,i∑
j=1

p∑
i′=1

Yn−1,i′∑
j ′=1

{
E
(
ξ

(i)
n,j ⊗ ξ

(i′)
n,j ′ ⊗ εn + ξ

(i)
n,j ⊗ εn ⊗ ξ

(i′)
n,j ′ | FY

n−1

)

+ E
(
εn ⊗ ξ

(i)
n,j ⊗ ξ

(i′)
n,j ′ | FY

n−1

)}
,

Sn,3 :=
p∑

i=1

Yn−1,i∑
j=1

E
(
ξ

(i)
n,j ⊗ ε⊗2

n + εn ⊗ ξ
(i)
n,j ⊗ εn + ε⊗2

n ⊗ ξ
(i)
n,j | FY

n−1

)
.

We have

Sn,1 =
p∑

i=1

p∑
i′=1
i′ �=i

p∑
i′′=1

i′′ /∈{i,i′}

Yn−1,iYn−1,i′Yn−1,i′′ E
(
ξ (i)
)⊗ E

(
ξ (i′))⊗ E

(
ξ (i′′))

+
p∑

i=1

p∑
i′=1
i′ �=i

Yn−1,i (Yn−1,i − 1)Yn−1,i′
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× {[E(ξ (i)
)]⊗2 ⊗ E

(
ξ (i′))+ E

(
ξ (i)
)⊗ E

(
ξ (i′))⊗ E

(
ξ (i)
)

+ E
(
ξ (i′))⊗ [E(ξ (i)

)]⊗2}
+

p∑
i=1

p∑
i′=1
i′ �=i

Yn−1,iYn−1,i′

× {E[(ξ (i)
)⊗2]⊗ E

(
ξ (i′))+ E

(
ξ (i) ⊗ ξ (i′) ⊗ ξ (i)

)
+ E

(
ξ (i′))⊗ E

[(
ξ (i)
)⊗2]}

+
p∑

i=1

Yn−1,i (Yn−1,i − 1)(Yn−1,i − 2)
[
E
(
ξ (i)
)]⊗3 +

p∑
i=1

Yn−1,i E
[(

ξ (i)
)⊗3]

+
p∑

i=1

Yn−1,i (Yn−1,i − 1)

× {E[(ξ (i)
)⊗2]⊗ E

(
ξ (i)
)+ E

(
ξ

(i)
1,1 ⊗ ξ

(i)
1,2 ⊗ ξ

(i)
1,1

)
+ E

(
ξ (i)
)⊗ E

[(
ξ (i)
)⊗2]}

,

which can be written in the form

Sn,1=
p∑

i=1

p∑
i′=1

p∑
i′′=1

Yn−1,iYn−1,i′Yn−1,i′′ E
(
ξ (i)
)⊗ E

(
ξ (i′))⊗ E

(
ξ (i′′))

+
p∑

i=1

p∑
i′=1

Yn−1,iYn−1,i′
{
E
[(

ξ (i)
)⊗2]⊗ E

(
ξ (i′))+ E

(
ξ (i) ⊗ ξ (i′) ⊗ ξ (i)

)
+ E

(
ξ (i′))⊗ E

[(
ξ (i)
)⊗2]− [E(ξ (i)

)]⊗2 ⊗ E
(
ξ (i′))

− E
(
ξ (i)
)⊗ E

(
ξ (i′))⊗ E

(
ξ (i)
)

− E
(
ξ (i′))⊗ [E(ξ (i)

)]⊗2}
+

p∑
i=1

Yn−1,i

{
E
[(

ξ (i)
)⊗3]− E

[(
ξ (i)
)⊗2]⊗ E

(
ξ (i)
)− E

(
ξ

(i)
1,1 ⊗ ξ

(i)
1,2 ⊗ ξ

(i)
1,1

)
− E

(
ξ (i)
)⊗ E

[(
ξ (i)
)⊗2]+ 2

[
E
(
ξ (i)
)]⊗3}

.

Hence
Sn,1 = M⊗3

ξ Y⊗3
n−1 + A

(1)
3,2Y

⊗2
n−1 + A

(1)
3,1Y n−1 (17)

with

A
(1)
3,2 :=

p∑
i=1

p∑
i′=1

{
E
[(

ξ (i)
)⊗2]⊗ E

(
ξ (i′))+ E

(
ξ (i) ⊗ ξ (i′) ⊗ ξ (i)

)
+ E

(
ξ (i′))⊗ E

[(
ξ (i)
)⊗2]− [E(ξ (i)

)]⊗2 ⊗ E
(
ξ (i′))

− E
(
ξ (i)
)⊗ E

(
ξ (i′))⊗ E

(
ξ (i)
)− E

(
ξ (i′))⊗ [E(ξ (i)

)]⊗2}
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× (e�
i ⊗ e�

i′
) ∈ R

p3×p2
,

A
(1)
3,1 :=

p∑
i=1

{
E
[(

ξ (i)
)⊗3]− E

[(
ξ (i)
)⊗2]⊗ E

(
ξ (i)
)− E

(
ξ

(i)
1,1 ⊗ ξ

(i)
1,2 ⊗ ξ

(i)
1,1

)
− E

(
ξ (i)
)⊗ E

[(
ξ (i)
)⊗2]+ 2

[
E
(
ξ (i)
)]⊗3}

e�
i ∈ R

p3×p.

Moreover,

Sn,2 =
p∑

i=1

p∑
i′=1
i′ �=i

Yn−1,iYn−1,i′
{
E
(
ξ (i)
)⊗ E

(
ξ (i′))⊗ mε

+ E
(
ξ (i)
)⊗ mε ⊗ E

(
ξ (i′))+ mε ⊗ E

(
ξ (i)
)⊗ E

(
ξ (i′))}

+
p∑

i=1

Yn−1,i (Yn−1,i − 1)
{[
E
(
ξ (i)
)]⊗2 ⊗ mε + E

(
ξ (i)
)⊗ mε ⊗ E

(
ξ (i)
)

+ mε ⊗ [E(ξ (i)
)]⊗2}

+
p∑

i=1

Yn−1,i

{
E
[(

ξ (i)
)⊗2]⊗ mε + E

(
ξ (i) ⊗ ε ⊗ ξ (i)

)+ mε ⊗ E
[(

ξ (i)
)⊗2]}

,

where E(ξ (i) ⊗ε⊗ ξ (i)) is finite, since there exists a permutation matrix P ∈ R
p2×p2

such that u ⊗ v = P (v ⊗ u) for all u, v ∈ R
p (see, e.g., Henderson and Searle [5,

formula (6)]), hence

E
(
ξ (i) ⊗ ε ⊗ ξ (i)

) = E
([

P
(
ε ⊗ ξ (i)

)]⊗ ξ (i)
) = E

([
P
(
ε ⊗ ξ (i)

)]⊗ (Ipξ (i)
))

= E
(
(P ⊗ Ip)

(
ε ⊗ ξ (i) ⊗ ξ (i)

))
= (P ⊗ Ip)

(
mε ⊗ E

[(
ξ (i)
)⊗2])

.

Thus

Sn,2 =
p∑

i=1

p∑
i′=1

Yn−1,iYn−1,i′
{
E
(
ξ (i)
)⊗ E

(
ξ (i′))⊗ mε

+ E
(
ξ (i)
)⊗ mε ⊗ E

(
ξ (i′))+ mε ⊗ E

(
ξ (i)
)⊗ E

(
ξ (i′))}

+
p∑

i=1

Yn−1,i

{
E
[(

ξ (i)
)⊗2]⊗ mε + E

(
ξ (i) ⊗ ε ⊗ ξ (i)

)+ mε ⊗ E
[(

ξ (i)
)⊗2]

− [E(ξ (i)
)]⊗2 ⊗ mε − E

(
ξ (i)
)⊗ mε ⊗ E

(
ξ (i)
)

− mε ⊗ [E(ξ (i)
)]⊗2}

.

Hence
Sn,2 = A

(2)
3,2Y

⊗2
n−1 + A

(2)
3,1Y n−1 (18)

with

A
(2)
3,2 :=

p∑
i=1

p∑
i′=1

{
E
(
ξ (i)
)⊗ E

(
ξ (i′))⊗ mε + E

(
ξ (i)
)⊗ mε ⊗ E

(
ξ (i′))
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+ mε ⊗ E
(
ξ (i)
)⊗ E

(
ξ (i′))}(e�

i ⊗ e�
i′
)
,

and

A
(2)
3,1 :=

p∑
i=1

{
E
[(

ξ (i)
)⊗2]⊗ mε + E

(
ξ (i) ⊗ ε ⊗ ξ (i)

)+ mε ⊗ E
[(

ξ (i)
)⊗2]

− [E(ξ (i)
)]⊗2 ⊗ mε − E

(
ξ (i)
)⊗ mε ⊗ E

(
ξ (i)
)

− mε ⊗ [E(ξ (i)
)]⊗2}

e�
i ,

which are R
p3×p2

-valued and R
p3×p-valued matrices, respectively. Further,

Sn,3 =
p∑

i=1

Yn−1,i

{
E
(
ξ (i)
)⊗ E

(
ε⊗2)+ E

(
ε ⊗ ξ (i) ⊗ ε

)+ E
(
ε⊗2)⊗ E

(
ξ (i)
)}

= A
(3)
3,1Y n−1

with

A
(3)
3,1 :=

p∑
i=1

{
E
(
ξ (i)
)⊗E

(
ε⊗2)+E

(
ε ⊗ ξ (i) ⊗ ε

)+E
(
ε⊗2)⊗E

(
ξ (i)
)}

e�
i ∈ R

p3×p,

where E(ε ⊗ ξ (i) ⊗ ε) is finite, since

E
(
ε ⊗ ξ (i) ⊗ ε

) = E
([

P
(
ξ (i) ⊗ ε

)]⊗ ε
) = E

([
P
(
ξ (i) ⊗ ε

)]⊗ (Ipε)
)

= E
(
(P ⊗ Ip)

(
ξ (i) ⊗ ε ⊗ ε

)) = (P ⊗ Ip)
(
E
(
ξ (i)
)⊗ E

[
ε⊗2]).

Consequently, we have

E
(
Y⊗3

n | FY
n−1

) = M⊗3
ξ Y⊗3

n−1 + A3,2Y
⊗2
n−1 + A3,1Y n−1 + E

(
ε⊗3)

with A3,2 := A
(1)
3,2 + A

(2)
3,2 and A3,1 := A

(1)
3,1 + A

(2)
3,1 + A

(3)
3,1. Taking the expectation,

we get

E
(
Y⊗3

n

) = M⊗3
ξ E

(
Y⊗3

n−1

)+ A3,2 E
(
Y⊗2

n−1

)+ A3,1 E(Y n−1) + E
(
ε⊗3). (19)

Summarizing, we obtain

⎡
⎣ E(Y n)

E(Y⊗2
n )

E(Y⊗3
n )

⎤
⎦ = A3

⎡
⎣E(Y n−1)

E(Y⊗2
n−1)

E(Y⊗3
n−1)

⎤
⎦+

⎡
⎣ mε

E(ε⊗2)

E(ε⊗3)

⎤
⎦ , n ∈ N,

with

A3 :=
⎡
⎢⎣

Mξ 0 0
A2,1 M⊗2

ξ 0

A3,1 A3,2 M⊗3
ξ

⎤
⎥⎦ ∈ R

(p+p2+p3)×(p+p2+p3).
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Taking into account Y 0 = 0, we obtain⎡
⎣ E(Y n)

E(Y⊗2
n )

E(Y⊗3
n )

⎤
⎦ =

n∑
k=1

An−k
3

⎡
⎣ mε

E(ε⊗2)

E(ε⊗3)

⎤
⎦ =

n−1∑
�=0

A�
3

⎡
⎣ mε

E(ε⊗2)

E(ε⊗3)

⎤
⎦ , n ∈ N.

We have �(M⊗2
ξ ) = [�(Mξ )]2 and �(M⊗3

ξ ) = [�(Mξ )]3, and hence �(A3) =
max{�(Mξ ), �(M⊗2

ξ ), �(M⊗3
ξ )}. Taking into account �(Mξ ) < 1, we conclude that

�(A3) = �(Mξ ) < 1, and, by (11), the third moment of π is finite, and⎡
⎣
∫
Rp x π(dx)∫

Rp x⊗2 π(dx)∫
Rp x⊗3 π(dx)

⎤
⎦ = (Ip+p2+p3 − A3)

−1

⎡
⎣ mε

E(ε⊗2)

E(ε⊗3)

⎤
⎦ . (20)

Since

(Ip+p2+p3 − A3)
−1 =

⎡
⎢⎣

(Ip − Mξ )
−1 0 0

B2,1 (Ip2 − M⊗2
ξ )−1 0

B3,1 B3,2 (Ip3 − M⊗3
ξ )−1

⎤
⎥⎦ ,

where

B2,1 = (Ip2 − M⊗2
ξ

)−1
A2,1(Ip − Mξ )

−1,

B3,1 = (Ip3 − M⊗3
ξ

)−1(
A3,1(Ip − Mξ )

−1 + A3,2B2,1
)
,

B3,2 = (Ip3 − M⊗3
ξ

)−1
A3,2

(
Ip2 − M⊗2

ξ

)−1
,

we have∫
Rp

x⊗3 π(dx) = B3,1mε + B3,2 E
(
ε⊗2)+ (Ip3 − M⊗3

ξ

)−1
E
(
ε⊗3).

Proof of Proposition 1. Similarly as (12), we have

E
(
Xk | FX

k−1

) = MξXk−1 + mε, k ∈ N,

where FX
k := σ(X0, . . . ,Xk), k ∈ Z+. Consequently,

E(Xk) = Mξ E(Xk−1) + mε, k ∈ N, (21)

and, by (14),

E(X0) = (Ip − Mξ )
−1mε. (22)

Put

U k := Xk − E
(
Xk | FX

k−1

) = Xk − (MξXk−1 + mε)

=
p∑

i=1

Xk−1,i∑
�=1

(
ξ

(i)
k,� − E

(
ξ

(i)
k,�

))+ (εk − E(εk)
)
, k ∈ N.
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Then E(U k | FX
k−1) = 0, k ∈ N, and using the independence of {ξ (i)

k,�, εk : k, � ∈
N, i ∈ {1, . . . , p}}, we have

E
(
Uk,iUk,j | FX

k−1

) =
p∑

q=1

Xk−1,q Cov
(
ξ

(q,i)
k,1 , ξ

(q,j)
k,1

)+ Cov
(
ε
(i)
k , ε

(j)
k

)

= v�
(i,j)

[
Xk−1

1

] (23)

for i, j ∈ {1, . . . , p} and k ∈ N, where [Uk,1, . . . , Uk,p]� := U k , k ∈ N. For each
k ∈ N, using Xk = MξXk−1 + mε + U k and (21), we obtain

Xk − E(Xk) = Mξ

(
Xk−1 − E(Xk−1)

)+ U k, k ∈ N. (24)

Consequently,

E
((

Xk − E(Xk)
)(

Xk − E(Xk)
)� | FX

k−1

)
= E

((
Mξ

(
Xk−1 − E(Xk−1)

)+ U k

)(
Mξ

(
Xk−1 − E(Xk−1)

)+ U k

)� | FX
k−1

)
= E

(
U kU

�
k | FX

k−1

)+ Mξ

(
Xk−1 − E(Xk−1)

)(
Xk−1 − E(Xk−1)

)�
M�

ξ

for all k ∈ N. Taking the expectation, by (22) and (23), we conclude that

Var(Xk) = E
(
U kU

�
k

)+ Mξ Var(Xk−1)M
�
ξ = V + Mξ Var(Xk−1)M

�
ξ

for all k ∈ N. Under the conditions of the proposition, by Lemma 1, the unique sta-
tionary distribution π has a finite second moment, hence, using again the stationarity
of (Xk)k∈Z+ , for each N ∈ N, we get

Var(X0) = V + Mξ Var(X0)M
�
ξ

=
N−1∑
k=0

Mk
ξV
(
M�

ξ

)k + MN
ξ Var(X0)

(
M�

ξ

)N
.

(25)

Here limN→∞ MN
ξ Var(X0)(M

�
ξ )N = 0 ∈ R

p×p. Indeed, by the Gelfand formula

�(Mξ ) = limk→∞ ‖Mk
ξ‖1/k , see, e.g., Horn and Johnson [6, Corollary 5.6.14].

Hence there exists k0 ∈ N such that

∥∥Mk
ξ

∥∥1/k � �(Mξ ) + 1 − �(Mξ )

2
= 1 + �(Mξ )

2
< 1 for all k � k0, (26)

since �(Mξ ) < 1. Thus, for all N � k0,

∥∥MN
ξ Var(X0)

(
M�

ξ

)N∥∥� ∥∥MN
ξ

∥∥∥∥Var(X0)
∥∥∥∥(M�

ξ

)N∥∥
= ∥∥MN

ξ

∥∥∥∥Var(X0)
∥∥∥∥MN

ξ

∥∥�(1 + �(Mξ )

2

)2N∥∥Var(X0)
∥∥,
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hence ‖MN
ξ Var(X0)(M

�
ξ )N‖ → 0 as N → ∞. Consequently, Var(X0) =∑∞

k=0 Mk
ξV (M�

ξ )k , yielding (6). Moreover, by (24),

E
((

X0 − E(X0)
)(

Xk − E(Xk)
)� | FX

k−1

)
= (X0 − E(X0)

)
E
((

Xk − E(Xk)
)� | FX

k−1

)
= (X0 − E(X0)

)(
Xk−1 − E(Xk−1)

)�
M�

ξ , k ∈ N.

Taking the expectation, we conclude

Cov(X0,Xk) = Cov(X0,Xk−1)M
�
ξ , k ∈ N.

Hence, by induction, we obtain the formula for Cov(X0,Xk). The statement will fol-
low from the multidimensional central limit theorem. Due to the continuous mapping

theorem, it is sufficient to show the convergence N−1/2(S
(N)
0 ,S

(N)
1 , . . . ,S

(N)
k )

D−→
(X 0,X 1, . . . ,X k) as N → ∞ for all k ∈ Z+. For all k ∈ Z+, the random vec-
tors ((X

(j)
0 − E(X

(j)
0 ))�, (X

(j)
1 − E(X

(j)
1 ))�, . . . , (X

(j)
k − E(X

(j)
k ))�)�, j ∈ N, are

independent, identically distributed having zero mean vector and covariances

Cov
(
X

(j)
�1

,X
(j)
�2

) = Cov
(
X

(j)
0 ,X

(j)
�2−�1

) = Var(X0)
(
M�

ξ

)�2−�1

for j ∈ N, �1, �2 ∈ {0, 1, . . . , k}, �1 � �2, following from the strict stationarity of
X(j) and from (5).

Proof of Proposition 2. It is known that

U k = Xk − E
(
Xk | FX

k−1

) = Xk − MξXk−1 − mε, k ∈ N,

are martingale differences with respect to the filtration (FX
k )k∈Z+ . The functional

martingale central limit theorem can be applied, see, e.g., Jacod and Shiryaev [7,
Theorem VIII.3.33]. Indeed, using (23) and the fact that the first moment of X0 exists
and is finite, by (4), for each t ∈ R+, and i, j ∈ {1, . . . , p}, we have

1

n

	nt
∑
k=1

E
(
Uk,iUk,j | FX

k−1

) a.s.−→ v�
(i,j)

[
E(X0)

1

]
t = Vi,j t as n → ∞,

and hence the convergence holds in probability as well. Moreover, the conditional
Lindeberg condition holds, namely, for all δ > 0,

1

n

	nt
∑
k=1

E
(‖U k‖21{‖U k‖>δ

√
n} | FX

k−1

)
� 1

δn3/2

	nt
∑
k=1

E
(‖U k‖3 | FX

k−1

)

� C3(p + 1)3

δn3/2

	nt
∑
k=1

∥∥∥∥
[
Xk−1

1

]∥∥∥∥
3

a.s.−→ 0

(27)

with C3 := max{E(‖ξ (i) − E(ξ (i))‖3), i ∈ {1, . . . , p},E(‖ε − E(ε)‖3)}, where the
last inequality follows by Proposition 3.3 of Nedényi [12], and the almost sure con-
vergence is a consequence of (4), since, under the third order moment assumptions in
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Proposition 2, by Lemma 1 and (4),

1

n

	nt
∑
k=1

∥∥∥∥
[
Xk−1

1

]∥∥∥∥
3

a.s.−→ t E

(∥∥∥∥
[
X0
1

]∥∥∥∥
3
)

as n → ∞.

Hence we obtain

(
1√
n

	nt
∑
k=1

U k

)
t∈R+

D−→ B as n → ∞,

where B = (B t )t∈R+ is a p-dimensional zero mean Brownian motion satisfying
Var(B1) = V . Using (24), we have

Xk − E(Xk) = Mk
ξ

(
X0 − E(X0)

)+
k∑

j=1

M
k−j

ξ U j , k ∈ N.

Consequently, for each n ∈ N and t ∈ R+,

1√
n

	nt
∑
k=1

(
Xk − E(Xk)

)

= 1√
n

[(	nt
∑
k=1

Mk
ξ

)(
X0 − E(X0)

)+
	nt
∑
k=1

k∑
j=1

M
k−j

ξ U j

]

= 1√
n

[
(Ip − Mξ )

−1(Mξ − M
	nt
+1
ξ

)(
X0 − E(X0)

)+
	nt
∑
j=1

(	nt
∑
k=j

M
k−j

ξ

)
U j

]

= 1√
n

[
(Ip − Mξ )

−1(Mξ − M
	nt
+1
ξ

)(
X0 − E(X0)

)

+ (Ip − Mξ )
−1

	nt
∑
j=1

(
Ip − M

	nt
−j+1
ξ

)
U j

]
,

(28)

which implies the statement using Slutsky’s lemma, since ρ(Mξ ) < 1. Indeed,

limn→∞ M
	nt
+1
ξ = 0 by (26), hence

1√
n
(Ip − Mξ )

−1(Mξ − M
	nt
+1
ξ

)(
X0 − E(X0)

) a.s.−→ 0 as n → ∞.

Moreover, n−1/2(Ip − Mξ )
−1∑	nt


j=1 M
	nt
−j+1
ξ U j converges in L1 and hence in

probability to 0 as n → ∞, since by (23),

E
(|Uk,j |

)
�
√
E
(
U2

k,j

) =
√

v�
(j,j)

[
E(X0)

1

]
= √Vj,j (29)



On aggregation of multitype Galton–Watson branching processes with immigration 71

for j ∈ {1, . . . , p} and k ∈ N, and hence

E

(∥∥∥∥ 1√
n

	nt
∑
k=1

M
	nt
−k+1
ξ U k

∥∥∥∥
)

� 1√
n

	nt
∑
k=1

E
(∥∥M	nt
−k+1

ξ U k

∥∥)

� 1√
n

	nt
∑
k=1

∥∥M	nt
−k+1
ξ

∥∥E (‖U k‖
)
� 1√

n

	nt
∑
k=1

∥∥M	nt
−k+1
ξ

∥∥ p∑
j=1

E
(|Uk,j |

)

� 1√
n

	nt
∑
k=1

∥∥M	nt
−k+1
ξ

∥∥ p∑
j=1

√
Vj,j → 0 as n → ∞, (30)

since, applying (26) for 	nt
 � k0, we have

	nt
∑
k=1

∥∥M	nt
−k+1
ξ

∥∥

=
	nt
∑
k=1

∥∥Mk
ξ

∥∥ =
k0−1∑
k=1

∥∥Mk
ξ

∥∥+
	nt
∑
k=k0

∥∥Mk
ξ

∥∥

�
k0−1∑
k=1

∥∥Mk
ξ

∥∥+
	nt
∑
k=k0

(
1 + �(Mξ )

2

)k

�
k0−1∑
k=1

∥∥Mk
ξ

∥∥+
∞∑

k=k0

(
1 + �(Mξ )

2

)k

,

which is finite. Consequently, by Slutsky’s lemma,(
n− 1

2

	nt
∑
k=1

(
Xk − E(Xk)

))
t∈R+

D−→ (Ip − Mξ )
−1B as n → ∞,

where B = (B t )t∈R+ is a p-dimensional zero mean Brownian motion satisfying
Var(B1) = V , as desired.

Proof of Theorem 1. First, we prove (8). For all N,m ∈ N and all t1, . . . , tm ∈ R+,
by Proposition 2 and the continuity theorem, we have

1√
n

(
S

(N,n)
t1

, . . . ,S
(N,n)
tm

) D−→ (Ip − Mξ )
−1

N∑
�=1

(
B

(�)
t1

, . . . ,B
(�)
tm

)

as n →∞, where B(�) = (B
(�)
t )t∈R+ , �∈ {1, . . . , N}, are independent p-dimensional

zero mean Brownian motions satisfying Var(B(�)
1 ) = V , � ∈ {1, . . . , p}. Since

1√
N

N∑
�=1

(
B

(�)
t1

, . . . ,B
(�)
tm

) D= (B t1, . . . ,B tm), N ∈ N, m ∈ N,

we obtain the convergence (8).
Now, we turn to prove (7). For all n ∈ N and for all t1, . . . , tm ∈ R+ with t1 <

· · · < tm, m ∈ N, by Proposition 1 and by the continuous mapping theorem, we have
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1√
N

((
S

(N,n)
t1

)�
, . . . ,

(
S

(N,n)
tm

)�)� D−→
(	nt1
∑

k=1

X�
k , . . . ,

	ntm
∑
k=1

X�
k

)�

D= Npm

(
0, Var

((	nt1
∑
k=1

X�
k , . . . ,

	ntm
∑
k=1

X�
k

)�))
as N → ∞,

where (X k)k∈Z+ is the p-dimensional zero mean stationary Gaussian process given
in Proposition 1 and, by (5),

Var

((	nt1
∑
k=1

X�
k , . . . ,

	ntm
∑
k=1

X�
k

)�)

=
(

Cov

(	nti
∑
k=1

X k,

	ntj 
∑
k=1

X k

))m

i,j=1

=
(	nti
∑

k=1

	ntj 
∑
�=1

Cov(X k,X �)

)m

i,j=1

=
(	nti
∑

k=1

(k−1)∧	ntj 
∑
�=1

Mk−�
ξ Var(X0) + (	nti
 ∧ 	ntj


)
Var(X0)

+ Var(X0)

	nti
∑
k=1

	ntj 
∑
�=k+1

(
M�

ξ

)�−k
)m

i,j=1

,

where
∑q2

�=q1
:= 0 for all q2 < q1, q1, q2 ∈ N. By the continuity theorem, for all

θ1, . . . , θm ∈ R
p, m ∈ N, we conclude that

lim
N→∞E

(
exp

{
i

m∑
j=1

θ�
j n−1/2N−1/2S

(N,n)
tj

})

= exp

{
− 1

2n

m∑
i=1

m∑
j=1

θ�
i

[	nti
∑
k=1

	ntj 
∑
�=1

Cov(X k,X �)

]
θ j

}

→ exp

{
−1

2

m∑
i=1

m∑
j=1

(ti ∧ tj )θ
�
i

[
Mξ (Ip − Mξ )

−1 Var(X0) + Var(X0)

+ Var(X0)
(
Ip − M�

ξ

)−1
M�

ξ

]
θ j

}

as n → ∞. Indeed, for all s, t ∈ R+ with s < t , we have

1

n

	ns
∑
k=1

	nt
∑
�=1

Cov(X k,X �)

= 1

n

	ns
∑
k=1

k−1∑
�=1

Mk−�
ξ Var(X0) + 	ns


n
Var(X0) + 1

n
Var(X0)

	ns
∑
k=1

	nt
∑
�=k+1

(
M�

ξ

)�−k
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= 1

n

	ns
∑
k=1

(
Mξ − Mk

ξ

)
(Ip − Mξ )

−1 Var(X0) + 	ns

n

Var(X0)

+ 1

n
Var(X0)

(
Ip − M�

ξ

)−1
	ns
∑
k=1

(
M�

ξ − (M�
ξ

)	nt
−k+1)

= 1

n

(	ns
Mξ − Mξ

(
Ip − M

	ns

ξ

)
(Ip − Mξ )

−1)(Ip − Mξ )
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+ 	ns

n

Var(X0) + 1

n
Var(X0)

(
Ip − M�

ξ

)−1

× (	ns
M�
ξ − (Ip − M�

ξ

)−1(
Ip − (M�

ξ

)	ns
)(
M�

ξ

)	nt
−	ns
+1)
= 	ns


n

(
Mξ (Ip − Mξ )

−1 Var(X0) + Var(X0) + Var(X0)
(
Ip − M�

ξ

)−1
M�

ξ

)
− 1

n

(
Mξ

(
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	ns

ξ

)
(Ip − Mξ )
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+ Var(X0)
(
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ξ

)−2(
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ξ
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)(
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ξ
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→ s

(
Mξ (Ip − Mξ )

−1 Var(X0) + Var(X0) + Var(X0)
(
Ip − M�

ξ

)−1
M�

ξ

)
as n → ∞, since limn→∞ M

	ns

ξ = 0, limn→∞(M�

ξ )	ns
 = 0 and

limn→∞(M�
ξ )	nt
−	ns
+1 = 0 by (26). It remains to show that

Mξ (Ip − Mξ )
−1 Var(X0) + Var(X0) + Var(X0)

(
Ip − M�

ξ

)−1
M�

ξ

= (Ip − Mξ )
−1V

(
Ip − M�

ξ

)−1
.

(31)

We have

Mξ (Ip − Mξ )
−1 = (Ip − (Ip − Mξ )

)
(Ip − Mξ )

−1

= (Ip − Mξ )
−1 − Ip,

(32)

and hence (Ip−M�
ξ )−1M�

ξ = (Ip−M�
ξ )−1−Ip, thus the left-hand side of equation

(31) can be written as(
(Ip − Mξ )

−1 − Ip

)
Var(X0) + Var(X0) + Var(X0)

((
Ip − M�

ξ

)−1 − Ip

)
= (Ip − Mξ )

−1 Var(X0) − Var(X0) + Var(X0)
(
Ip − M�

ξ

)−1
.

By (25), we have V = Var(X0) − Mξ Var(X0)M
�
ξ , hence, by (32), the right-hand

side of the equation (31) can be written as

(Ip − Mξ )
−1(Var(X0) − Mξ Var(X0)M

�
ξ

)(
Ip − M�

ξ

)−1

= (Ip − Mξ )
−1 Var(X0)

(
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�
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(
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− ((Ip − Mξ )
−1 − Ip

)
Var(X0)

((
Ip − M�

ξ

)−1 − Ip

)
= (Ip − Mξ )

−1 Var(X0) − Var(X0) + Var(X0)
(
Ip − M�

ξ

)−1
,

and we conclude (31). This implies the convergence (7).

Proof of Theorem 2. As n and N converge to infinity simultaneously, (9) is equiva-

lent to (nNn)
− 1

2 S(Nn,n) D−→ (Ip − Mξ )
−1 B as n → ∞ for any sequence (Nn)n∈N

of positive integers such that limn→∞ Nn = ∞. As we have seen in the proof of
Proposition 2, for each j ∈ N,

U
(j)
k := X

(j)
k − E

(
X

(j)
k | FX

(j)
k−1
) = X

(j)
k − MξX

(j)

k−1 − mε, k ∈ N,

are martingale differences with respect to the filtration (FX(j)

k )k∈Z+ . We are going to
apply the functional martingale central limit theorem, see, e.g., Jacod and Shiryaev
[7, Theorem VIII.3.33], for the triangular array consisting of the random vectors

(
V

(n)
k

)
k∈N := (nNn)

− 1
2
(
U

(1)
1 , . . . ,U

(Nn)
1 ,U

(1)
2 , . . . ,U

(Nn)
2 ,U

(1)
3 , . . . ,U

(Nn)
3 , . . .

)
in the nth row for each n ∈ N with the filtration (F (n)

k )k∈Z+ given by F (n)
k := FY (n)

k =
σ(Y

(n)
0 , . . . ,Y

(n)
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(
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(n)
k
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(Nn)
0

)
,X
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1 , . . . ,X
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(1)
2 , . . . ,X
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)
.

Hence F (n)
0 = σ(X

(1)
0 , . . . ,X

(Nn)
0 ), and for each k = �Nn + r with � ∈ Z+ and
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�
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(n)
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(Nn)
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(r)
�+1 and V

(n)
k = (nNn)

− 1
2 U

(r)
�+1.

Next we check that for each n ∈ N, (V
(n)
k )k∈N is a sequence of martingale dif-

ferences with respect to (F (n)
k )k∈Z+ . We will use the equality E(ξ | σ(G1 ∪ G2)) =

E(ξ | G1) for a random vector ξ and for σ -algebras G1 ⊂ F and G2 ⊂ F such that
σ(σ (ξ) ∪ G1) and G2 are independent and E(‖ξ‖) < ∞. For each k = �Nn + 1 with

� ∈ Z+, we have E(V
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We want to obtain a functional central limit theorem for the sequence

(	nt
Nn∑
k=1

V
(n)
k

)
t∈R+

=
(

1√
nNn

	nt
∑
�=1

Nn∑
r=1
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(r)
�

)
t∈R+

, n ∈ N.

First, we calculate the conditional variance matrix of V
(n)
k . If k = �Nn + 1 with

� ∈ Z+, then

E
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k−1

) = (nNn)
−1

E
(
U

(1)
�+1

(
U

(1)
�+1

)� | σ
(∪Nn

j=1F
X(j)

�

))
= (nNn)

−1
E
(
U

(1)
�+1

(
U

(1)
�+1

)� | FX(1)

�

)
.

In a similar way, if k = �Nn + r with � ∈ Z+ and r ∈ {2, . . . , Nn}, then
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Consequently, for each n ∈ N and t ∈ R+, we have
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Next, we show that for each t ∈ R+ and i, j ∈ {1, . . . , p}, we have
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as n → ∞. Indeed, the equality follows by (23), and for the convergence in probabil-
ity, note that limn→∞ 	nt
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where we used that ‖Q‖� ∑p

i=1
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j=1 |qi,j | for any matrix Q = (qi,j )
p
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Moreover, in a similar way, the conditional Lindeberg condition holds, namely,
for all δ > 0,
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where the almost sure convergence follows by (27). Hence we obtain
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D−→ B as n → ∞,

where B = (B t )t∈R+ is a p-dimensional zero mean Brownian motion satisfying
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Var(B1) = V . Using (28), for each n ∈ N and t ∈ R+, we have
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which implies the statement using Slutsky’s lemma, since ρ(Mξ ) < 1. Indeed,
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ξ = 0 by (26), thus
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and, by Proposition 1,
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where Np(0, Var(X0)) denotes a p-dimensional normal distribution with zero mean
and covariance matrix Var(X0), and then Slutsky’s lemma yields that
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= 1√
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by (30), where for the last inequality we used (29), completing the proof.
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