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Abstract In clustering of high-dimensional data a variable selection is commonly applied
to obtain an accurate grouping of the samples. For two-class problems this selection may be
carried out by fitting a mixture distribution to each variable. We propose a hybrid method for es-
timating a parametric mixture of two symmetric densities. The estimator combines the method
of moments with the minimum distance approach. An evaluation study including both exten-
sive simulations and gene expression data from acute leukemia patients shows that the hybrid
method outperforms a maximum-likelihood estimator in model-based clustering. The hybrid
estimator is flexible and performs well also under imprecise model assumptions, suggesting
that it is robust and suited for real problems.

Keywords Inference for mixtures, method of moments, minimum distance, model-based
clustering
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1 Introduction

Mixture distributions are used in many fields of science for modeling data taken from
different subpopulations. An important medical application is clustering of gene ex-
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pression data to discover novel subgroups of a disease. This is a high-dimensional
problem and it is common to do a variable selection to obtain a subset of genes
whose expression contribute in separating the subgroups. For two-class problems this
may be carried out by fitting a univariate mixture distribution to each gene and sin-
gle out variables for which the overlap between the component distributions is small
enough [27]. There are also multivariate methods to do the variable selection, which
are more computationally demanding but take into account the possible correlations
between the genes and therefore reduce the loss of information in the univariate ap-
proach where each gene is modeled separately [9]. Further applications of mixtures
can be found in image analysis [25], outlier detection [16], remote sensing [18], and
epidemiology [24].

Karl Pearson [22] used the method of moments as a first attempt to estimate the
parameters of a mixture distribution. Since then the computational difficulty of the
problem and the increasing number of applications have sparked a vast amount of
theoretical and applied research. Maximum likelihood inference was simplified with
the introduction of the expectation-maximization (EM) algorithm in 1970s [7] and
is up to now the most applied and studied approach, see [19] and references therein.
Various modifications of the basic likelihood method have been proposed, aiming
to overcome drawbacks resulting from the unbounded likelihood function and the
sensitivity of outliers. For example, in [11] a family of divergences was introduced
that is used as a generalization of the likelihood. There are also several variants of
the EM-algorithm available, such as stochastic versions [4] and constrained formu-
lations [15]. Minimum distance estimators is another family of parametric meth-
ods that has been applied extensively for mixtures, in particular due to its robust-
ness against imprecise distributional assumptions [28, 5, 6]. Semiparametric tech-
niques have also attracted much interest in this field, for example, estimation of lo-
cation mixtures where only symmetry is imposed on the density components [2, 17].
For a comprehensive introduction to inference for mixtures, we refer to the mono-
graph [26].

In this paper, we propose a hybrid approach for estimating five parameters of a
mixture of two densities which are symmetric about their means. The approach com-
bines the method of moments with a minimum distance estimator based on a quadratic
measure of deviation between the fitted and empirical distribution functions. The mo-
tivation behind our approach is to develop a robust algorithm that produces accurate
estimates also when the parametric shape of the mixture distribution is misspecified,
which is common in practice.

The paper is organized as follows. In Section 2, we introduce the hybrid estima-
tor and describe how it is obtained from empirical data. Section 3 is devoted to a
simulation study where the proposed estimator is evaluated and compared to a con-
ventional maximum likelihood estimator obtained via the EM-algorithm. We consider
the methods’ performance in estimating the unknown partition of a data set containing
observations from two populations (model-based clustering), which is an important
application of mixture distributions. We also evaluate the methods’s ability to esti-
mate the mixing proportion. In Section 4, we report the results of a case study where
the methods are applied on gene expression data from patients with acute leukemia.
In Section 5, we discuss the results and draw some conclusions.
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2 The moment-distance hybrid method

In this section we present the novel moment-distance hybrid estimator (HM-estimator)
and describe how it can be used for model-based clustering. We consider the problem
where the real-valued random variable X has a two-component mixture distribution
F(·) with density

f (x) = pf1(x) + (1 − p)f2(x), x ∈ R,

where 0 < p < 1 is the mixing proportion and fi(·) = fi(·|μi, σ
2
i ) is the density of a

random variable Xi completely specified by its mean μi and variance σ 2
i , i = 1, 2. We

assume that the third moment E|X|3 is finite, and that the component densities f1(·)
and f2(·) are symmetric about their means. A mixture of two bounded and symmetric
densities has these properties, for example a two-component normal mixture. Let
θ = (p, μ1, μ2, σ

2
1 , σ 2

2 ) denote the parameter vector for F(·).
The HM-estimator, denoted θ̂HM , is an estimator of θ that combines the method

of moments and the minimum distance method. The method of moments is used to
reduce the parameter space and the minimum distance approach, aiming to minimize
the distance between the fitted model and the empirical distribution, is used to obtain
the estimator θ̂HM .

2.1 Definition of the HM-estimator

An estimate θ̂ = (p̂, μ̂1, μ̂2, σ̂
2
1 , σ̂ 2

2 ) of θ based on a sample x1, . . . , xn is called
relevant if

0 < p̂ < 1,

σ̂ 2
1 , σ̂ 2

2 > 0,

min(x1, . . . , xn) ≤ μ̂i ≤ max(x1, . . . , xn), i = 1, 2.

Let Ω denote the set of all relevant estimates of θ . The method of moments is applied
to reduce Ω to a subset Ω ′ of lower dimension. The first three moments of X can be
expressed as

ν1 := E(X) = pμ1 + (1 − p)μ2, (1)

ν2 := E
(
X2) = p

(
σ 2

1 + μ2
1

) + (1 − p)
(
σ 2

2 + μ2
2

)
, (2)

ν3 := E
(
X3) = p

(
3μ1σ

2
1 + μ3

1

) + (1 − p)
(
3μ2σ

2
2 + μ3

2

)
, (3)

where the last equality relies on the symmetry of the component densities f1(·) and
f2(·), see Appendix A.1 for details. Following the method of moments, we replace
the parameters in (1)–(3) by their estimators while equating the theoretical moments
{νi} with their sample counterparts

ν̂1 = 1

n

n∑
i=1

xi, ν̂2 = 1

n

n∑
i=1

x2
i , ν̂3 = 1

n

n∑
i=1

x3
i .
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These sample moments can be highly variable so we suggest below to replace them
with the more robust trimmed means, denoted {ν̂∗

k }, k = 1, 2, 3, see Section 3.1 for
further details. We get the following undetermined system of equations:

ν̂∗
1 = p̂μ̂1 + (1 − p̂)μ̂2, (4)

ν̂∗
2 = p̂

(
σ̂ 2

1 + μ̂2
1

) + (1 − p̂)
(
σ̂ 2

2 + μ̂2
2

)
, (5)

ν̂∗
3 = p̂

(
3μ̂1σ̂

2
1 + μ̂3

1

) + (1 − p̂)
(
3μ̂2σ̂

2
2 + μ̂3

2

)
. (6)

The set Ω ′ ⊆ Ω consists of all relevant estimates which solve the system (4)–(6). We
define the HM-estimator as an element of Ω ′ with a minimum distance criteria as

θ̂HM = arg min
θ̂∈Ω ′

d
(
F(·|θ̂ ), Fn(·)

)
, (7)

where the function d(F (·|θ̂ ), Fn(·)) measures the distance between the fitted model
distribution F(·|θ̂ ) and the empirical distribution Fn(·) of the sample. In this paper
we use an L2-type measure given by

d
(
F(·|θ), Fn(·)

) = 1

n

n∑
i=1

(
F(xi |θ) − Fn(xi)

)2 = 1

n

n∑
i=1

(
F(x(i)|θ) − i/n

)2
,

where x(1), . . . , x(n) is the ordered sample. It should be noted that this choice of dis-
tance is mainly due to its computational simplicity and that a number of different
measures can be considered (see [26], chap. 4)

Next we describe how the HM-estimator is obtained in practice, via a reformula-
tion of definition (7) that is more useful for computation.

2.2 How to compute the HM-estimator

In this subsection we describe how the HM-estimator (7) can be obtained in practice.
To get a representation of the solutions of the system (4)–(6), we reparametrize the
problem by introducing the proportion r̂ , defined by

σ̂ 2
2 = r̂ σ̂ 2

1 . (8)

Equations (4), (5), and (8) can be used to eliminate μ̂2, σ̂ 2
1 , σ̂ 2

2 in equation (6), and as
a result we obtain

β3μ̂
3
1 + β2μ̂

2
1 + β1μ̂1 + β0 = 0, (9)

where the coefficients are functions of p̂ and r̂ such that

β0 = −ν̂∗
3 + 3ν̂∗

1 ν̂∗
2 r̂

p̂ + r̂ − p̂r̂
+ (

ν̂∗
1

)3 3p̂ − 2(p̂ + r̂ − p̂r̂)

(1 − p̂)2(p̂ + r̂ − p̂r̂)
,

β1 = 3ν̂∗
2

r̂ − p̂ + r̂ − p̂r̂

(1 − p̂)(p̂ + r̂ − p̂r̂)
− (

ν̂∗
1

)2 3p̂(2p̂ − 2(p̂ + r̂ − p̂r̂) + 1)

(1 − p̂)2(p̂ + r̂ − p̂r̂)
,

β2 = 3ν̂∗
1
p̂(2p̂ − p̂2 + p̂2r̂ − r̂)

(1 − p̂)2(p̂ + r̂ − p̂r̂)
,
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β3 = − p̂(2p̂ − p̂2 + p̂2r̂ − r̂)

(1 − p̂)2(p̂ + r̂ − p̂r̂)
.

Furthermore, by combining (4), (5), and (8), we get that the estimated parameters μ̂2
and σ̂ 2

1 are obtained as

μ̂2 = ν̂∗
1 − p̂μ̂1

1 − p̂
, (10)

σ̂ 2
1 = ν̂∗

2 − p̂μ̂2
1 − (1 − p̂)μ̂2

2

p̂ + (1 − p̂)r̂
. (11)

If p̂ and r̂ are given, we see that (9) is a cubic equation for μ̂1 and so the reparameter-
ized system has at most three solutions that correspond to relevant estimates. Define
M to be the set of all pairs (p̂, r̂) for which at least one relevant estimate exists, and
let T (p̂, r̂) contain all relevant estimates corresponding to the pair (p̂, r̂) ∈ M . From
the definitions of Ω ′, M , and T (p̂, r̂) it follows that

min
θ̂∈Ω ′

d
(
F(·|θ̂ ), Fn(·)

) = min
(p̂,r̂)∈M

g(p̂, r̂), (12)

where the function

g(p̂, r̂) = min
θ̂∈T (p̂,r̂)

d
(
F(·|θ̂ ), Fn(·)

)
, (p̂, r̂) ∈ M,

is straightforward to compute since T (p̂, r̂) contains at most three elements and these
are solutions of the polynomial equations (8)–(11). Equation (12) reformulates the
problem of deriving the HM-estimator (7) to a minimization problem for the bivariate
function g(p̂, r̂), (p̂, r̂) ∈ M . Let (p̂HM, r̂HM) denote the point that minimizes the
function g(p̂, r̂), g(p̂, r̂) ∈ M . Then the estimator is given as

θ̂HM = arg min
θ̂∈T (p̂HM,r̂HM)

d
(
F(·|θ̂ ), Fn(·)

)
.

The minimization of g(p̂, r̂) can be obtained using a numerical optimization al-
gorithm. Here we use the simplex algorithm in [21], which is implemented in the
optim routine in R [23]. The starting value is found as the minimizer of g(p̂, r̂) over
a finite grid of values. A schematic description of how the HM-estimator is computed
is given in Figure 1.

2.3 Model-based clustering

The mixture density f (·) is typically used to model a data set x1, . . . , xn where n1
of the values are observations from component f1(·) and the remaining n2 = n − n1
are observations from f2(·). For such a sample, we can introduce a 0–1 vector z =
(z1, . . . , zn) that correctly assigns each observation to either f1(·) (1’s) or f2(·) (0’s).
This vector defines a true partition of the observations with respect to the density
components. Usually the components represent distinct subpopulations.
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Fig. 1. A schematic description of how the HM-estimator is obtained. The user provides a grid
with values (p̂, r̂). The method of moments is used to obtain all relevant estimates correspond-
ing to the grid-points. The minimum distance approach is used to select the “best” of those
estimates, which gives the starting point (p̂(0), r̂(0)). Local grid optimization, minimizing the
function g(p̂, r̂), with (p̂(0), r̂(0)) as the starting value gives the HM-estimator. Note that the
optimization step may be unnecessary if the grid is very dense

The true partition defined by z = (z1, . . . , zn) is unobservable but can be esti-
mated with the posterior membership probabilites, also known as the responsibilites,
denoted by ẑ = (ẑ1, . . . , ẑn), where

ẑi = p̂f1(xi |θ̂1)

f (xi |θ̂ )
= p̂f1(xi |θ̂1)

p̂f̂1(xi |θ̂1) + (1 − p̂)f̂2(xi |θ̂2)
, i = 1, . . . , n. (13)

The value ẑi is in the interval [0, 1] and estimates the probability that xi is an obser-
vation from component f1(·). The vector ẑ = (ẑ1, . . . , ẑn) defines a so-called soft
partition of the data x1, . . . , xn which serves as an approximation of the true parti-
tion given by z = (z1, . . . , zn). The responsibilities in (13) can be obtained for any
estimator θ̂ of θ , e.g. the proposed HM-estimator or the maximum likelihood (ML)
estimator used in the numerical studies in Sections 3 and 4.

3 Simulation study

This section presents a simulation study where the proposed hybrid method (HM)
is compared with a conventional ML-estimator derived via the EM-algorithm. We
investigate the methods’ performances in model-based clustering and their accuracy
for estimating the mixing proportion. The consequences of calculating the estimators
under incorrect model assumptions are getting particular attention.

3.1 Data and estimation

In the simulations, we restrict ourselves to the case where the component densities
f1(·) and f2(·) belong to the same family of distributions. The estimators are calcu-
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lated under the assumption that f1(·) and f2(·) are normal densities, which is a com-
mon assumption in practice. The data are generated from normal mixtures, for which
the assumption is true, and also from mixtures of Laplace, logistic and contaminated
Gaussian distributions (for details, see Appendix A.2). For the contaminated Gaussian
distribution, we set the larger prior probability to α = 0.9 and the variance proportion
parameter to η = 16. The experiment thus includes both modest and large departures
from the normal mixture assumption, allowing us to analyze the robustness of the
methods with respect to imprecise model specifications.

Besides varying the family of the component densities, we consider six configura-
tions of the parameter vector θ which correspond to a variety in shape of the mixture
distributions. In addition to these configurations a negative control with a non-mixture
distribution was added. The values are given in Table 1 and displayed graphically in
Figure 2. Three sample sizes are considered; n = 50, 100, and 500.

Table 1. The configurations (i)–(vii) of the parameter vector θ used in the simulations

Configuration

Parameter (i) (ii) (iii) (iv) (v) (vi) (vii)
μ1 0 0 0 0 0 0 0
μ2 2 3 3 4 4 3 0
σ 2

1 1 1 1 4 4 9 1

σ 2
2 1 1 1 1 1 1 1
p 0.50 0.50 0.25 0.50 0.25 0.50 0.10–0.50

The mixture data were generated as follows: first we simulated the (true) par-
tition vector z = (z1, . . . , zn) from the 0–1 variable Z with P(Z = 1) = p and
P(Z = 0) = 1 − p. Then x

(1)
1 , . . . , x

(1)
n and x

(2)
1 , . . . , x

(2)
n were simulated from the

component densities f1(·) and f2(·), respectively. Finally a sample x1, . . . , xn from
the mixture density f (·) was obtained as

xi = zix
(1)
i + (1 − zi)x

(2)
i , i = 1, . . . , n.

We generated N = 500 data sets for each considered scenario (mixture family, pa-
rameter configuration, and sample size), and for each scenario we obtained 500 inde-
pendent realizations θ̂ (1), . . . , θ̂ (500) of an estimator θ̂ , which were used for statistical
evaluation of the performance of the considered methods in clustering and in estima-
tion of the mixing proportion.

Computing the estimators

The hybrid estimator θ̂HM was obtained as described in the previous section. The
starting value for the simplex method was found as the minimizer of g(p̂, r̂) over
a two-dimensional grid constructed from 10 values of p̂ and 200 values of r̂ . The
values of p̂ and r̂ in the grid were evenly distributed in the intervals (0, 1) and [0, 20],
respectively. We used trimmed versions of the sample moments ν̂k, k = 1, 2, 3. The
2.5% smallest and 2.5% largest of values in xk

1 , . . . , xk
n were removed and the mean

ν̂∗
k of the resulting trimmed sample was used as the estimator of the kth moment νk .
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Fig. 2. The mixture distributions used in the simulations: four distribution families – mixtures
of normal, logistic, Laplace, and contaminated normal distributions – and six parameter con-
figurations (i)–(vi)
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The maximum likelihood estimator θ̂ML was calculated with the EM-algorithm
using the mixtools package in R [1]. The EM-algorithm converges at a local max-
imum of the likelihood function that depends on its starting value. We chose ten
starting values randomly as described in [14], and the estimator θ̂ML was taken as the
maximizer of the likelihood among the corresponding points of convergence.

3.2 Evaluation of the methods’ clustering performance

For a simulated dataset x1, . . . , xn the true partition z = (z1, . . . , zn) was known.
The true partition was approximated by the soft partitions ẑHM and ẑML, calculated
from the corresponding estimates θ̂HM and θ̂ML, respectively, using Equation (13). To
quantify the accuracy of an approximate partition, we used the Fuzzy Adjusted Rand
Index (FARI) proposed in [3]. The FARI for z and its approximation ẑ – written as
FARI(ẑ, z) – is a number in the interval [−1, 1] measuring their closeness; the higher
the index the better is the approximation ẑ. A brief description of this index is given
in Appendix A.3.

Let

ΔFARI = FARI(z, ẑHM) − FARI(z, ẑML)

denote the difference between the indices. Note that a positive difference ΔFARI > 0
implies that the partition obtained via the HM-estimator was more accurate than the
partition obtained via the ML-estimator.

To determine if there was a significant difference between the methods’ cluster-
ing performance, we applied the t-test and the sign-test to the pairwise differences
Δ

(1)
FARI, . . . , Δ

(500)
FARI for the 500 simulated samples. We also made a comparison of the

methods given that a difference in FARI under a certain threshold was considered
as negligible, which was achieved by applying the sign-test to the differences that
satisfied |Δ(i)

FARI | > 0.1.
The considered scenarios corresponded to problems that were more or less dif-

ficult with respect to clustering and as part of our evaluations we quantified these
difficulties. Here ẑopt denotes the optimal partition obtained when the true compo-
nent densities and parameter values in (13) were used. The index

FARIopt = FARI(z, ẑopt)

corresponded to the clustering performance obtained under correct model assump-
tions and a perfect estimator of θ . For each scenario, we used the mean of
FARI(1)

opt, . . . , FARI(500)
opt for the 500 simulated samples to measure the difficulty of

the problem and as a reference value for the corresponding FARI obtained by the
HM- and ML-estimators.

3.3 Evaluation of the methods’ ability to estimate the mixing proportion

We compared the methods in terms of their accuracy for estimating the mixing pro-
portion p. Details on how we defined the point estimators of p are given in Ap-
pendix A.4.
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The following standard characteristics for evaluating an estimator p̂ of p based
on N simulations were used:

mean = 1

N

N∑
i=1

p̂(i),

ˆbias = 1

N

N∑
i=1

(
p̂(i) − p

)
,

ˆMSE = 1

N

N∑
i=1

(
p̂(i) − p

)2
. (14)

These characteristics were calculated for the simulated estimates {p̂(i)
HM}Ni=1 and

{p̂(i)
ML}Ni=1 obtained from the HM- and ML-estimators, respectively.

To determine if there was a significant difference in efficiency between the meth-
ods, we applied the t-test to the difference in estimated mean squared error ΔMSE =

ˆMSEML − ˆMSEHM , where the subscripts HM and ML refer to the methods used in
(14). Note that a positive value of ΔMSE suggested that the hybrid method was more
efficient as an estimator of p.

3.4 Results

This section includes a detailed treatment of the results for sample size n = 50. The
results for sample sizes n = 100 and n = 500 led to similar conclusions, and are
given in Appendix A.5.

The HM- and ML-estimators were evaluated mainly by their ability to cluster the
samples in agreement with the true partition vector z and their ability to estimate
the proportion parameter p. The corresponding estimators for the difference in mean
μ2−μ1 were compared in a similar way as for the mixing proportion p. This was done
for the case when the data were generated from a normal mixture distribution (i.e.
under correct model assumptions), a logistic mixture distribution (modest violation
of model assumptions), a Laplace mixture distribution and contaminated Gaussian
distribution (serious violation of model assumptions). For each case six values of the
parameter vector were evaluated, Table 1 and Figure 2.

3.4.1 Clustering performance
The relative performance of the methods was evaluated by considering the mean
difference in FARI (ΔFARI), where a positive value indicated an advantage of the
HM-estimator, the proportion of samples that were more accurately clustered by the
HM-estimator than by the ML-estimator (propHM), and the proportion of the ob-
served considerable differences in FARI which were in favor of the HM-estimator
(propCHM), see Section 3.2 for further details.

Scenarios (i) and (vi) were hard clustering problems in the sense that the mean
optimal FARI was low in all the cases: meanopt ∈ [0.30, 0.58], whereas the other
scenarios (ii, iii, iv, v) corresponded to relatively easy clustering problems: meanopt ∈
[0.60, 0.81], Table 2.



A moment-distance method for mixtures of symmetric densities 11

Table 2. The average clustering performance of the hybrid method (HM) and the maximum
likelihood (ML) method. 500 samples with 50 observations each were generated from four
mixture distributions (normal, logistic, Laplace and contaminated Gaussian) with the parameter
configurations (i)–(vi). The fuzzy adjusted Rand index (FARI) was obtained for each sample
and estimator. The mean FARI was observed for each scenario, and the mean of the optimal
FARI (opt.) obtained using the true mixture distribution serves as a reference

Mean of fuzzy adjusted Rand index, n = 50

Mixture HM ML opt.

N
or

m
al

(i) 0.28 0.21 0.35
(ii) 0.59 0.52 0.68
(iii) 0.54 0.56 0.70
(iv) 0.57 0.53 0.60
(v) 0.64 0.65 0.70
(vi) 0.29 0.27 0.30

L
og

is
tic

(i) 0.41 0.24 0.46
(ii) 0.71 0.60 0.71
(iii) 0.65 0.52 0.71
(iv) 0.64 0.53 0.65
(v) 0.67 0.57 0.73
(vi) 0.34 0.26 0.39

L
ap

la
ce

(i) 0.32 0.22 0.40
(ii) 0.66 0.57 0.70
(iii) 0.59 0.54 0.70
(iv) 0.60 0.53 0.63
(v) 0.67 0.64 0.72
(vi) 0.30 0.27 0.33

C
on

ta
m

in
at

ed

(i) 0.44 0.26 0.58
(ii) 0.78 0.64 0.80
(iii) 0.74 0.65 0.81
(iv) 0.73 0.60 0.71
(v) 0.75 0.67 0.70
(vi) 0.39 0.33 0.42

In the case where data were generated from normal mixtures most of the ob-
served differences were significant but of varying magnitude: ΔFARI ∈ [−0.02, 0.08],
propHM ∈ [0.35, 0.68] and propCHM ∈ [0.40, 0.92]. The HM-estimator performed
significantly better than the ML-estimator for scenarios (i, ii, iv, vi) and significantly
worse for (iii, v), but the differences were rather small for (iii, v, vi), Figure 3 and
Table 3.

With the data generated from logistic mixtures, the HM-estimator outperformed
the ML-estimator for all parameter configurations, and most of the observed differ-
ences and evaluation measures were significant; ΔFARI ∈ [0.03, 0.10], propHM ∈
[0.50, 0.76], and propCHM ∈ [0.61, 0.94], Figure 4 and Table 3. The largest dif-
ferences were observed for scenarios (i, ii, iv), whereas the differences in scenarios
(iii, v) were quite moderate. The magnitude of the differences were similar to those
obtained for normal mixture data, but in this case all of them indicated an advantage
of the HM-estimator.

In the case where the data were simulated from a mixture of Laplace or con-
taminated Gaussian distributions the HM-estimator outperformed the ML-estimator
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Fig. 3. The FARI observed for the hybrid and maximum likelihood methods. 500 samples
each with 50 observations, are generated from normal mixture distributions with the parameter
configurations (i)–(vi). Samples for which the hybrid method performs considerably better
(worse) than the maximum likelihood estimator are in the upper (lower) shaded area. Points
inside the white area mark samples that correspond to inconsiderable differences. A difference
is regarded as considerable if the absolute difference in the methods’ FARI exceeds 0.1

and all the observed differences were significant: ΔFARI ∈ [0.06, 0.17], propHM ∈
[0.55, 0.85] and propCHM ∈ [0.72, 0.98], Figures 5–6 and Table 3. Overall the dif-
ferences were more distinct than in the cases of normal and logistic mixtures.

Configuration (vii) defined a non-mixture distribution for which the desired result
would be an average FARI value around zero and few high FARI values. Overall,
both methods performed as expected and no clear differences between the methods
were observed, with the exception that the ML method was more variable in the case
n = 500, see Figures 8–10 in Appendix A.7.

3.4.2 Estimation of the proportion parameter p

The methods ability to estimate the mixing proportion p was evaluated using the
mean, bias and mean squared error (MSE) for the corresponding point estimators
of p, and their relative efficiency was analyzed via the estimated difference in MSE,
see Section 3.3 for further details.

The HM-estimator (of the proportion parameter p) had lower MSE than the ML-
estimator for almost all considered scenarios and most of the observed differences
were significant, Table 4. The largest differences were observed when the model as-
sumptions were seriously violated and the data were generated by a Laplace mixture
and the smallest differences where observed for data generated by a normal mixture,
Table 4. The observed MSE varied between the six parameter vectors, where scenar-
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Table 3. The relative clustering performance of the hybrid method (HM) and the maximum
likelihood (ML) method. 500 samples each with 50 observations, are generated from four mix-
ture distributions (normal, logistic, Laplace, and contaminated Gaussian) with the parameter
configurations (i)–(vi). The fuzzy adjusted Rand index (FARI) is observed for each sample and
estimator. For each scenario we observe: the mean of the differences between the observed
average FARI values for the HM- and ML-estimators (ΔFARI) and the proportion of times the
HM-estimator have a higher FARI value than the ML-estimator (propHM). A positive value of
ΔFARI indicates a mean difference in favor of the HM-estimator. In the third column we ob-
serve the number of times nHM (nML) the hybrid method performs considerably better (worse)
than the maximum likelihood estimator. Here propCHM denotes the proportion of the samples
with considerable differences for which the HM-estimator is superior. A difference is defined
to be considerable if the distance between the methods’ FARI is larger than 0.1. For each eval-
uation measure we test if the methods have the same average performance, the p-values relate
to those tests

Comparison of HM and ML for soft clustering, n = 50

Mixture ΔFARI p-value propHM p-value propCHM p-value nHM nML

N
or

m
al

(i) 0.07 0.00 0.67 0.00 0.92 0.00 143 13
(ii) 0.08 0.00 0.68 0.00 0.86 0.00 126 20
(iii) −0.02 0.02 0.42 0.00 0.40 0.01 84 124
(iv) 0.04 0.00 0.50 0.96 0.81 0.00 82 19
(v) −0.01 0.04 0.35 0.00 0.47 0.63 51 57
(vi) 0.02 0.00 0.55 0.02 0.83 0.00 69 14

L
og

is
tic

(i) 0.10 0.00 0.76 0.00 0.94 0.00 200 14
(ii) 0.08 0.00 0.68 0.00 0.91 0.00 127 12
(iii) 0.05 0.00 0.50 0.89 0.61 0.00 138 89
(iv) 0.07 0.00 0.65 0.00 0.94 0.00 136 8
(v) 0.03 0.00 0.56 0.01 0.67 0.00 111 55
(vi) 0.03 0.00 0.62 0.00 0.80 0.00 73 18

L
ap

la
ce

(i) 0.17 0.00 0.85 0.00 0.98 0.00 268 5
(ii) 0.12 0.00 0.72 0.00 0.97 0.00 147 4
(iii) 0.13 0.00 0.62 0.00 0.79 0.00 184 49
(iv) 0.12 0.00 0.73 0.00 0.98 0.00 175 4
(v) 0.10 0.00 0.67 0.00 0.81 0.00 192 45
(vi) 0.08 0.00 0.78 0.00 0.89 0.00 161 21

C
on

ta
m

in
at

ed

(i) 0.17 0.00 0.81 0.00 0.96 0.00 264 11
(ii) 0.14 0.00 0.71 0.00 0.93 0.00 174 13
(iii) 0.08 0.00 0.55 0.04 0.72 0.00 161 61
(iv) 0.12 0.00 0.75 0.00 0.94 0.00 212 14
(v) 0.08 0.00 0.66 0.00 0.85 0.00 182 31
(vi) 0.06 0.00 0.65 0.00 0.82 0.00 157 34

ios (i) and (vi) had the highest MSE-values. Recall that these scenarios were the most
difficult ones in terms of clustering. Furthermore, the advantage of the HM-estimator
was most prominent for scenario (i) which also is in agreement with the clustering
results. Investigating the precision of the methods via the magnitude of the observed
bias revealed that the ML-estimator was more precise than the HM-estimator when
the distributional assumption was valid and that the methods had similar precision
when the assumptions were violated, Table 4. The results obtained for estimating the
difference in mean μ2 − μ1 resembled the results obtained for the mixing propor-
tion p, see Tables 11–13 in Appendix A.6.
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Fig. 4. The FARI observed for the hybrid and maximum likelihood methods. 500 samples
each with 50 observations, are generated from logistic mixture distributions with the parameter
configurations (i)–(vi). Samples for which the hybrid method performs considerably better
(worse) than the maximum likelihood estimator are in the upper (lower) shaded area. Points
inside the white area mark samples that correspond to inconsiderable differences. A difference
is regarded as considerable if the absolute difference in the methods’ FARI exceeds 0.1

4 Case study: clustering of acute leukemia data

4.1 Description of the data
In [13] a microarray experiment on human mRNA samples for measuring gene ex-
pression levels in two subtypes of acute leukemia is described, namely acute lym-
phoblastic leukemia (ALL) and acute myeloid leukemia (AML). The experiment con-
tained n = 72 samples, of which 47 were of type ALL and 25 were of type AML,
and the expression levels of 6,817 genes were observed. In this study we used the
preprocessed and filtered version of this data considered in [8], which contains the
expression values of 3,571 genes.

4.2 Identification of differentially expressed genes
We applied a supervised procedure to get a subset of the 3,571 genes which were
expressed differently with respect to the ALL/AML grouping. For each gene i we
calculated the normal mixture clustering ẑ(i) in (13) with parameter estimates ob-
tained under known group memberships (i.e. the sample means and variances). Then
we used (the measure) FARI(z, ẑ(i)), where z is the true ALL/AML grouping ex-
pressed as a 0–1 vector, to quantify the extent to which the mean expression of gene
i differs between the groups. The 342 genes that met the criterion

FARI
(
z, ẑ(i)

) ≥ 0.1
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Fig. 5. The FARI observed for the hybrid and maximum likelihood methods. 500 samples each
with 50 observations, are generated from Laplace mixture distributions with the parameter
configurations (i)–(vi). Samples for which the hybrid method performs considerably better
(worse) than the maximum likelihood estimator are in the upper (lower) shaded area. Points
inside the white area mark samples that correspond to inconsiderable differences. A difference
is regarded as considerable if the absolute difference in the methods’ FARI exceeds 0.1

were regarded as truly differently expressed genes and included in our test set. Alter-
natively, we could have used the two-sample t-test to make this selection.

We applied the HM and ML clustering methods to each of the 342 test variables to
compare their ability to divide the 72 cancer samples into the ALL and AML groups.
The analysis was carried out as described in Section 3.2.

4.3 Results

Independent of method the overall performance was rather poor; most of the cluster-
ings had a FARI between 0 and 0.4, Figure 7. This implies that it is hard to cluster the
samples accurately based on single genes.

The observed differences between the HM and ML methods were all significant
and in favor of the hybrid method. For 213 of the 342 test genes the HM method
clustered the samples more accurately than the ML method (i.e. propHM = 0.623, p-
value < 10−5). The mean difference in FARI (i.e. ΔFARI) was 0.020 (p-value < 10−5).
Moreover, of the 38 genes for which there was a considerable difference between the
methods (i.e. an absolute difference larger than 0.1), the HM clustering was superior
over the ML clustering in 32 of the cases (i.e. propCHM = 0.842, p-value < 10−4).
For notation, see Section 3.4.1.
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Fig. 6. The FARI observed for the hybrid and maximum likelihood methods. 500 samples each
with 50 observations, are generated from contaminated Gaussian mixture distributions with the
parameter configurations (i)–(vi). Samples for which the hybrid method performs considerably
better (worse) than the maximum likelihood estimator are in the upper (lower) shaded area.
Points inside the white area mark samples that correspond to inconsiderable differences. A dif-
ference is regarded as considerable if the absolute difference in the methods’ FARI exceeds 0.1

Fig. 7. Clustering results for the cancer data. The fuzzy adjusted Rand indices (FARI) observed
for the hybrid and maximum likelihood methods. Data were taken from a microarray exper-
iment on gene expression levels in two types of acute leukemia: ALL and AML. 342 genes
were measured across 72 samples. Genes for which the hybrid method performed considerably
better (worse) than the maximum likelihood estimator are in the upper (lower) shaded area.
Here a difference was defined to be considerable if the absolute difference in FARI between
the methods was larger than 0.1
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Table 4. The accuracy of the HM- and ML-estimators with regard to estimating the proportion
parameter p. 500 samples each with 50 observations, are generated from four mixture distribu-
tions (normal, logistic, Laplace and contaminated Gaussian) with the parameter configurations
(i)–(vi). The parameter p is estimated for each sample. For each scenario we observe: the true
parameter value (p), the average estimate (mean), the average deviation from the true value
(bias), the Mean Squared Error (MSE), the difference between the ML-MSE and HM-MSE
values (Δ ˆMSE) and a p-value for the test that this difference is significant. A positive (negative)
value of Δ ˆMSE indicates that the HM-estimator is more (less) efficient than the ML-estimator
of p

Estimation of the mixing proportion, n = 50

Data True Mean ˆbias ˆMSE Δ ˆMSE p-val

p HM ML HM ML HM ML

N
or

m
al

(i) 0.50 0.543 0.483 0.043 −0.017 0.052 0.084 0.033 0.000

(ii) 0.50 0.517 0.508 0.017 0.008 0.017 0.036 0.019 0.000

(iii) 0.25 0.331 0.280 0.081 0.030 0.028 0.027 −0.000 0.889

(iv) 0.50 0.471 0.481 −0.029 −0.019 0.014 0.023 0.009 0.000

(v) 0.25 0.238 0.246 −0.012 −0.004 0.011 0.013 0.002 0.104

(vi) 0.50 0.362 0.423 −0.138 −0.077 0.040 0.041 0.001 0.617

L
og

is
tic

(i) 0.50 0.553 0.518 0.053 0.018 0.043 0.081 0.037 0.000

(ii) 0.50 0.504 0.503 0.004 0.003 0.013 0.029 0.016 0.000

(iii) 0.25 0.314 0.338 0.064 0.088 0.022 0.040 0.017 0.000

(iv) 0.50 0.488 0.528 −0.012 0.028 0.012 0.024 0.012 0.000

(v) 0.25 0.254 0.297 0.004 0.047 0.010 0.020 0.011 0.000

(vi) 0.50 0.400 0.489 −0.100 −0.011 0.034 0.035 0.001 0.627

L
ap

la
ce

(i) 0.50 0.533 0.511 0.033 0.011 0.029 0.074 0.044 0.000

(ii) 0.50 0.484 0.498 −0.016 −0.002 0.011 0.025 0.015 0.000

(iii) 0.25 0.295 0.383 0.045 0.133 0.014 0.048 0.034 0.000

(iv) 0.50 0.491 0.561 −0.009 0.061 0.011 0.025 0.014 0.000

(v) 0.25 0.280 0.371 0.030 0.121 0.012 0.035 0.024 0.000

(vi) 0.50 0.445 0.536 −0.055 0.036 0.029 0.050 0.021 0.000

C
on

ta
m

in
at

ed

(i) 0.50 0.517 0.491 0.017 −0.009 0.046 0.083 0.037 0.000

(ii) 0.50 0.488 0.502 −0.012 0.002 0.008 0.025 0.016 0.000

(iii) 0.25 0.276 0.362 0.026 0.112 0.011 0.036 0.024 0.000

(iv) 0.50 0.491 0.563 −0.009 0.063 0.011 0.024 0.014 0.000

(v) 0.25 0.257 0.359 0.007 0.109 0.009 0.024 0.014 0.000

(vi) 0.50 0.426 0.527 −0.074 0.027 0.033 0.040 0.006 0.051

5 Discussion and conclusion

We consider a univariate cluster problem, which arises in many applications, where
the data are generated from a mixture distribution with two components and where the
aim is to group samples of the same type. This problem is commonly solved using the
EM-algorithm based on the assumption that the observations are generated by a mix-
ture of two normal densities. Although this is a powerful method it is also sensitive
to incorrectly specified distributions. Furthermore, the assumption that data approx-
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imately follow a normal mixture is rather restrictive, which makes the EM-approach
unfeasible in many applications.

The use of hybrid methods in mixture problems is, to the best of our knowledge,
rather unexplored. The variant we propose can be motivated as follows: the method
of moments is general in the sense that the parametric family can be left unspecified,
it is enough to assume that the component densities are symmetric and have finite
moments, and the minimum distance method is robust against symmetric departures
from the assumed normal mixture distribution.

The results suggest that the proposed HM-estimator has a considerably better
ability to cluster the samples than the ML-estimator, in particular if the assumption of
a normal mixture is incorrect. This result is observed for both simulated and real data,
and holds independently of the sample size. A slight advantage for the HM-estimator
is also observed in the case where the Gaussian mixture assumption is valid.

We also consider estimation of the mixing proportion p, a problem that has at-
tracted much interest in the literature [20]. Our results show that the HM-estimator is
more robust and efficient than the ML-estimator for estimating p for a wide range of
mixture distributions and sample sizes. This is consistent with several related studies
on minimum distance inference for p [6, 5].

It should be noted that the HM-estimator can easily be adapted to any parametric
mixture of symmetric densities, not just the normal mixture distribution. Furthermore,
we can consider a less restrictive assumption that allows the components distribu-
tions to be of several types. For example, we may use the composite assumption that
the data are generated by a mixture of two normal distributions, the mixture of two
Laplace distributions, or the mixture of one normal distribution and one Laplace dis-
tribution. In this case parameter estimates can be obtained via the proposed hybrid
method, either by extending the distance function, or by deriving the HM-estimator
for each assumed mixture distribution and take the estimator with the best fit to the
empirical data to be used as the final estimator. Further studies are needed to show
that this approach is reasonable.

A general drawback with the method of moments is that the estimating equations
sometimes lack solutions, and our variant is not an exception. However, this problem
is usually overlooked and does not seem to be of practical importance, see [26] for
a discussion. Another concern in our case is when there are no relevant estimates
close to the true parameter vector. For example, there are no solutions of the moment
equations with p̂ = 1/2 and σ̂1 = σ̂2, regardless of the data values. This issue did not
seem to have a major impact in our simulation study where cases with p = 1/2 and
σ1 = σ2 are included, but should be considered in future studies.

We use the FARI to evaluate the performance of the clustering methods, the reason
for this is that FARI has a higher resolution than the ordinary adjusted Rand index,
and is therefore better to separate approaches for which the clustering performance is
relatively similar.

We propose to robustify the hybrid estimator by using trimmed (5% removed)
versions of the sample moments. This is to enable high performance also in the pres-
ence of outliers, which are often encountered in real datasets and modeled here by
the Laplace and contaminated Gaussian mixtures. For some of our simulations we
have applied the HM method without trimming. Overall the results are usually better
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when we apply the 5% trimming, but there are some exceptions (data not shown).
Moreover, one could argue that the ML-estimator may perform better if some of the
extreme observations are removed prior to the estimation. The 5% trimming used in
our simulations is merely for illustration and should not be taken as a general recom-
mendation; how to choose the trimming level on the basis of data is a topic for future
research.

In most applications several variables are observed and the common practice is
to base the clustering on all, or at least several, of the observed variables. For high-
dimensional genomic data this type of approaches has been shown to be difficult and
non-informative variables need to be removed in order to have success [10]. It would
be interesting to derive a variable selection procedure that utilizes the robustness of
the hybrid approach for selecting informative variables in high-dimensional unsuper-
vised classification problems. An interesting generalization of this work is to adopt it
to the case were several variables are observed.

To conclude, the proposed moment-distance hybrid method has good clustering
performance, is robust against incorrect model assumptions and can easily be applied
to a wide range of problems.
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Appendix

A.1 Theoretical moments of the mixture

If fi(·) is the density of a random variable Xi, i = 1, 2, the theoretical moments
of a random variable X with mixture density f (·) = pf1(·) + (1 − p)f2(·) can be
expressed as

E
(
Xk

) = pE
(
Xk

1

) + (1 − p)E
(
Xk

2

)
, k = 1, 2, . . . .

This combined with the trivial relations E(Xi) = μi and E(X2
i ) = σ 2

i + μ2
i leads

to the first two moments of X, (1) and (2). For the cubic moment, we use the sym-
metry of the density fi(·) around its mean μi , which yields a vanishing third central
moment, i.e E(Xi − μi)

3 = 0. From this and some algebra, it follows that

E
(
X3

i

) = E
(
(Xi − μi + μi)

3)
= E

(
(Xi − μi)

3) + 3E
(
(Xi − μi)

2)μi + 3E(Xi − μi)μ
2
i + μ3

i

= 3σ 2
i μi + μ3

i .
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A.2 The Laplace, logistic, and contaminated Gaussian distributions

The Laplace distribution with mean μ and shape
parameter b > 0 has the density

g(x|μ, b) = 1

2b
e−|x−μ|/b, x ∈ R.

The variance is σ 2 = b/
√

2.

The density of the Logistic distribution with
mean μ and shape parameter b > 0 is given by

g(x|μ, b) = e
x−μ

b

b(1 + e− x−μ
b )2

, x ∈ R.

The variance is σ 2 = b/
√

2.

The contaminated Gaussian distribution is a
two-component normal variance mixture where
one of the components, with mean μ and variance
σ 2 has a large prior probability, denoted α ∈ (0, 1),
and represents “good” observations, and the other
component has the same mean but η > 1 times
larger variance and represents “bad” observations
[12]. The density is given by

g
(
x; μ, σ 2, α, η

)
= αφ

(
x; μ, σ 2) + (1 − α)φ

(
x; μ, ησ 2),

where φ(x; μ, σ 2), x ∈ R, is the normal density.
The variance is [α + η(1 − α)]σ 2.

A.3 The Rand indices for measuring similarity of partitions

The material in this section is based on the paper [3], to which we refer for more
details.
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Hard partitions
Let E = {e1, . . . , en} be a set of n elements that are to be partitioned in two groups.
A partition can be identified by a labeling vector z = (z1, . . . , zn), where zi is either
0 or 1, i = 1, . . . , n. Two elements ei and ej are assigned to the same group by the
partition z if zi = zj .

Let z(1) and z(2) be two partitions of E. Often it is of interest to quantify their
similarity, for example, when z(1) and z(2) are obtained by two different clustering
methods. Two common measures of closeness between partitions z(1) and z(2) are
defined via the following characteristics:

a = the number of pairs in E assigned to the same group both by z(1) and z(2).
b = the number of pairs in E assigned to different groups both by z(1) and z(2).
c = the number of pairs in E assigned to the same group by z(1) but to different groups
by z(2).
d = the number of pairs in E assigned to different groups by z(1) but to the same group
by z(2).

The Rand index (RI) for z(1) and z(2) is defined as

RI = a + b

a + b + c + d
= a + b(

n
2

) . (15)

It lies in the interval [0, 1], where 0 indicates that z(1) and z(2) do not agree on any pair
of elements and 1 means that z(1) and z(2) coincide. The adjusted rand index (ARI)
is a corrected version of RI that has an expected value of 0 for randomly sampled
partitions:

ARI = 2(ad − bc)

c2b2 + 2ad + (a + d)(c + b)
. (16)

The ARI attains values in the interval [−1, 1].
Next we give a more formal definition of the numbers a, b, c, and d . Two elements

ei and ej are said to be bonding in a partition z that puts them in the same group. To
each partition z there is a bonding matrix B with elements

Bij =
{

1, if ei and ej are bonding in z
0, otherwise

(17)

For a n-dimensional square matrix X, we introduce the function

h(X) = 1

2

∑
i,j

Xij ,

Now let B(1) and B(2) be the bonding matrices for the partitions z(1) and z(2), respec-
tively. Then, if we let × denote element-wise multiplication between matrices, the
numbers a, b, c, and d can be expressed in terms of the bonding matrices as

a = h
(
B(1)× B(2)

) − n

2
,

b = h
((

1 − B(1)
)× (

1 − B(2)
))

,

c = h
(
B(1)× (

1 − B(2)
))

,

d = h
((

1 − B(1)
)× B(2)

)
.
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Fuzzy partitions
The partitioning considered in the previous section is called hard (or crisp) and is
a special case of a more general concept. A fuzzy (or soft) partition of the set E =
{e1, . . . , en} into two groups is represented by a vector z = (z1, . . . , zn) with 0 ≤
zi ≤ 1. The pair (zi , 1 − zi) gives the degree to which the element ei is a member of
the two groups. Note that a hard partition is also fuzzy.

Next we introduce indexes of similarity between two fuzzy partitions z(1) and z(2)

that give the same results as RI and ARI whenever z(1) and z(2) are hard. An extended
definition of the bonding matrix B will be used. Let us measure the degree of bonding
Bij between two elements ei and ej in a fuzzy partition z with the cosine similarity
between the vectors (zi, 1 − zi) and (zj , 1 − zj ):

Bij = zizj + (1 − zi)(1 − zj )√
(z2

i + (1 − zi)2)(z2
j + (1 − zj )2)

.

Let B denote the corresponding bonding matrix. It is easy to check that this coincides
with definition (17) of the bonding matrix for a hard partition. Now we use repre-
sentation (17) of a, b, c, and d with the extended definition of a bonding matrix. The
generalizations of (15) and (16) follow directly and are called the fuzzy Rand index
(FRI) and fuzzy adjusted Rand index (FARI), respectively. The FRI and FARI mea-
sure similarity between two fuzzy partitions, and attain values in the intervals [0, 1]
and [−1, 1], respectively.

A.4 Point estimator of the mixing proportion

Despite the notation θ̂ = (μ̂1, μ̂2, σ̂
2
1 , σ̂ 2

2 , p̂) for an estimator of θ , we have to specify
what we mean by a point estimator. Note that since θ = θ(1) = (μ1, μ2, σ

2
2 , σ 2

1 , p)

and θ(2) = (μ2, μ1, σ
2
2 , σ 2

1 , 1−p) define the same distribution when the components
f1(·) and f2(·) belong to the same family, it cannot be said which of θ(1) and θ(2) is
estimated by θ̂ . This implies that θ̂ is not a point estimator in the strict sense, and that
it is unclear whether p̂ estimates p or 1 − p. To resolve this ambiguity we assume
without loss of generality that μ1 < μ2 and let the estimator θ̂ satisfy μ̂1 < μ̂2,
meaning that (μ̂1, μ̂2, σ̂

2
1 , σ̂ 2

2 , p̂) is replaced with (μ̂2, μ̂1, σ̂
2
2 , σ̂ 2

1 , 1 − p̂) whenever
μ̂1 > μ̂2. We claim that this approach of defining point estimators of θ and p is
reliable when the mean separation |μ1 − μ2| between the components is not too
small.
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A.5 Results for sample sizes n = 100 and n = 500

A.5.1 Clustering performance

Table 5. The average clustering performance of the hybrid method (HM) and the maximum
likelihood (ML) method. 500 samples with 100 observations each were generated from four
mixture distributions (normal, logistic, Laplace and contaminated Gaussian) with the parameter
configurations (i)–(vi). The fuzzy adjusted Rand index (FARI) was obtained for each sample
and estimator. The mean FARI was observed for each scenario, and the mean of the optimal
FARI (opt.) obtained using the true mixture distribution serves as a reference

Mean of fuzzy adjusted Rand index, n = 100

Data HM ML opt.

N
or

m
al

(i) 0.27 0.19 0.35

(ii) 0.64 0.61 0.69

(iii) 0.56 0.60 0.71

(iv) 0.57 0.55 0.60

(v) 0.67 0.68 0.71

(vi) 0.29 0.27 0.29

L
og

is
tic

(i) 0.43 0.19 0.45

(ii) 0.73 0.59 0.70

(iii) 0.68 0.47 0.71

(iv) 0.65 0.49 0.65

(v) 0.67 0.53 0.73

(vi) 0.35 0.26 0.40

L
ap

la
ce

(i) 0.33 0.19 0.39

(ii) 0.69 0.62 0.70

(iii) 0.65 0.58 0.71

(iv) 0.60 0.52 0.63

(v) 0.69 0.65 0.72

(vi) 0.32 0.28 0.33

C
on

ta
m

in
at

ed

(i) 0.48 0.20 0.59

(ii) 0.81 0.64 0.81

(iii) 0.78 0.61 0.80

(iv) 0.76 0.54 0.72

(v) 0.78 0.64 0.70

(vi) 0.40 0.30 0.42



24 D. Källberg et al.

Table 6. The relative clustering performance of the hybrid method (HM) and the maximum
likelihood (ML) method. 500 samples each with 100 observations, are generated from four
mixture distributions (normal, logistic, Laplace, and contaminated Gaussian) with the parame-
ter configurations (i)–(vi). The fuzzy adjusted Rand index (FARI) is observed for each sample
and estimator. For each scenario we observe: the mean of the differences between the observed
average FARI values for the HM- and ML-estimators (ΔFARI) and the proportion of times the
HM-estimator have a higher FARI value than the ML-estimator (propHM). A positive value of
ΔFARI indicates a mean difference in favor of the HM-estimator. In the third column we ob-
serve the number of times nHM (nML) the hybrid method performs considerably better (worse)
than the maximum likelihood estimator. Here propCHM denotes the proportion of the samples
with considerable differences for which the HM-estimator is superior. A difference is defined
to be considerable if the distance between the methods’ FARI is larger than 0.1. For each eval-
uation measure we test if the methods have the same average performance, the p-values relate
to those tests

Comparison of HM and ML for soft clustering, n = 100

Dist. ΔFARI p-value propHM p-value propCHM p-value nHM nML

N
or

m
al

(i) 0.09 0.00 0.74 0.00 0.95 0.00 187 10

(ii) 0.03 0.00 0.67 0.00 0.77 0.00 58 17

(iii) −0.04 0.00 0.36 0.00 0.32 0.00 69 146

(iv) 0.02 0.00 0.53 0.20 0.98 0.00 57 1

(v) −0.01 0.03 0.37 0.00 0.57 0.41 30 23

(vi) 0.02 0.00 0.64 0.00 0.91 0.00 40 4

L
og

is
tic

(i) 0.24 0.00 0.94 0.00 0.99 0.00 349 2

(ii) 0.14 0.00 0.82 0.00 0.99 0.00 144 1

(iii) 0.21 0.00 0.77 0.00 0.93 0.00 246 20

(iv) 0.16 0.00 0.84 0.00 1.00 0.00 258 0

(v) 0.14 0.00 0.77 0.00 0.94 0.00 263 17

(vi) 0.10 0.00 0.90 0.00 0.98 0.00 193 3

L
ap

la
ce

(i) 0.14 0.00 0.83 0.00 0.95 0.00 256 12

(ii) 0.08 0.00 0.73 0.00 0.93 0.00 90 7

(iii) 0.07 0.00 0.54 0.05 0.66 0.00 142 73

(iv) 0.07 0.00 0.71 0.00 0.96 0.00 157 7

(v) 0.04 0.00 0.52 0.30 0.80 0.00 114 28

(vi) 0.04 0.00 0.75 0.00 1.00 0.00 80 0

C
on

ta
m

in
at

ed

(i) 0.28 0.00 0.92 0.00 0.99 0.00 375 5

(ii) 0.17 0.00 0.84 0.00 1.00 0.00 192 0

(iii) 0.17 0.00 0.74 0.00 0.92 0.00 279 25

(iv) 0.23 0.00 0.91 0.00 1.00 0.00 366 2

(v) 0.14 0.00 0.84 0.00 0.96 0.00 277 13

(vi) 0.10 0.00 0.84 0.00 0.93 0.00 174 14
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Table 7. The average clustering performance of the hybrid method (HM) and the maximum
likelihood (ML) method. 500 samples with 500 observations each were generated from four
mixture distributions (normal, logistic, Laplace and contaminated Gaussian) with the parameter
configurations (i)–(vi). The fuzzy adjusted Rand index (FARI) was obtained for each sample
and estimator. The mean FARI was observed for each scenario, and the mean of the optimal
FARI (opt.) obtained using the true mixture distribution serves as a reference

Mean of fuzzy adjusted Rand index, n = 500

Data HM ML opt.

N
or

m
al

(i) 0.27 0.25 0.35

(ii) 0.67 0.67 0.68

(iii) 0.54 0.69 0.71

(iv) 0.57 0.59 0.60

(v) 0.69 0.71 0.71

(vi) 0.32 0.30 0.30

L
og

is
tic

(i) 0.45 0.07 0.45

(ii) 0.75 0.66 0.70

(iii) 0.74 0.34 0.71

(iv) 0.64 0.41 0.65

(v) 0.67 0.48 0.73

(vi) 0.38 0.28 0.39

L
ap

la
ce

(i) 0.33 0.16 0.39

(ii) 0.71 0.70 0.70

(iii) 0.65 0.62 0.71

(iv) 0.59 0.52 0.63

(v) 0.69 0.63 0.72

(vi) 0.34 0.30 0.33

C
on

ta
m

in
at

ed

(i) 0.48 0.04 0.59

(ii) 0.84 0.62 0.81

(iii) 0.81 0.49 0.80

(iv) 0.76 0.49 0.71

(v) 0.77 0.62 0.71

(vi) 0.45 0.36 0.42
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Table 8. The relative clustering performance of the hybrid method (HM) and the maximum
likelihood (ML) method. 500 samples each with 500 observations, are generated from four
mixture distributions (normal, logistic, Laplace, and contaminated Gaussian) with the parame-
ter configurations (i)–(vi). The fuzzy adjusted Rand index (FARI) is observed for each sample
and estimator. For each scenario we observe: the mean of the differences between the observed
average FARI values for the HM- and ML-estimators (ΔFARI) and the proportion of times the
HM-estimator have a higher FARI value than the ML-estimator (propHM). A positive value of
ΔFARI indicates a mean difference in favor of the HM-estimator. In the third column we ob-
serve the number of times nHM (nML) the hybrid method performs considerably better (worse)
than the maximum likelihood estimator. Here propCHM denotes the proportion of the samples
with considerable differences for which the HM-estimator is superior. A difference is defined
to be considerable if the distance between the methods’ FARI is larger than 0.1. For each eval-
uation measure we test if the methods have the same average performance, the p-values relate
to those tests

Comparison of HM and ML for soft clustering, n = 500

Data ΔFARI p-value propHM p-value propCHM p-value nHM nML

N
or

m
al

(i) 0.02 0.00 0.47 0.14 0.70 0.00 112 48

(ii) 0.00 0.01 0.58 0.00 0.40 1.00 2 3

(iii) −0.15 0.00 0.05 0.00 0.02 0.00 7 364

(iv) −0.01 0.00 0.21 0.00 0.80 0.38 4 1

(v) −0.01 0.00 0.18 0.00 0.00 1.00 0 1

(vi) 0.02 0.00 0.90 0.00 – – 0 0

L
og

is
tic

(i) 0.38 0.00 0.99 0.00 1.00 0.00 474 0

(ii) 0.09 0.00 0.85 0.00 1.00 0.00 68 0

(iii) 0.40 0.00 0.91 0.00 0.99 0.00 409 2

(iv) 0.22 0.00 0.97 0.00 1.00 0.00 438 0

(v) 0.18 0.00 0.99 0.00 1.00 0.00 464 0

(vi) 0.10 0.00 1.00 0.00 1.00 0.00 229 0

L
ap

la
ce

(i) 0.17 0.00 0.80 0.00 0.96 0.00 314 12

(ii) 0.01 0.00 0.69 0.00 0.83 0.22 5 1

(iii) 0.03 0.00 0.39 0.00 0.49 0.90 122 125

(iv) 0.08 0.00 0.73 0.00 0.99 0.00 206 1

(v) 0.06 0.00 0.79 0.00 1.00 0.00 156 0

(vi) 0.05 0.00 1.00 0.00 1.00 0.01 8 0

C
on

ta
m

in
at

ed

(i) 0.44 0.00 0.99 0.00 1.00 0.00 495 0

(ii) 0.22 0.00 0.95 0.00 1.00 0.00 230 0

(iii) 0.32 0.00 0.96 0.00 1.00 0.00 461 2

(iv) 0.26 0.00 1.00 0.00 1.00 0.00 496 0

(v) 0.15 0.00 1.00 0.00 1.00 0.00 416 0

(vi) 0.09 0.00 1.00 0.00 1.00 0.00 136 0
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A.5.2 Estimation of the proportion parameter p

Table 9. The accuracy of the HM- and ML-estimators with regard to estimating the propor-
tion parameter p. 500 samples each with 100 observations, are generated from four mixture
distributions (normal, logistic, Laplace and contaminated Gaussian) with the parameter config-
urations (i)–(vi). The parameter p is estimated for each sample. For each scenario we observe:
the true parameter value (p), the average estimate (mean), the average deviation from the true
value (bias), the Mean Squared Error (MSE), the difference between the ML-MSE and HM-
MSE values (Δ ˆMSE) and a p-value for the test that this difference is significant. A positive
(negative) value of Δ ˆMSE indicates that the HM-estimator is more (less) efficient than the
ML-estimator of p

Estimation of the mixing proportion, n = 100

Data True Mean ˆbias ˆMSE Δ ˆMSE p-val

p HM ML HM ML HM ML

N
or

m
al

(i) 0.50 0.594 0.524 0.094 0.024 0.049 0.088 0.040 0.000

(ii) 0.50 0.524 0.503 0.024 0.003 0.010 0.015 0.006 0.000

(iii) 0.25 0.358 0.287 0.108 0.037 0.026 0.020 −0.007 0.005

(iv) 0.50 0.489 0.488 −0.011 −0.012 0.006 0.011 0.005 0.000

(v) 0.25 0.257 0.258 0.007 0.008 0.005 0.007 0.001 0.041

(vi) 0.50 0.365 0.438 −0.135 −0.062 0.029 0.025 −0.004 0.080

L
og

is
tic

(i) 0.50 0.548 0.478 0.048 −0.022 0.020 0.094 0.074 0.000

(ii) 0.50 0.496 0.505 −0.004 0.005 0.005 0.022 0.018 0.000

(iii) 0.25 0.290 0.427 0.040 0.177 0.011 0.064 0.053 0.000

(iv) 0.50 0.509 0.610 0.009 0.110 0.006 0.026 0.020 0.000

(v) 0.25 0.284 0.404 0.034 0.154 0.008 0.039 0.031 0.000

(vi) 0.50 0.485 0.592 −0.015 0.092 0.016 0.042 0.027 0.000

L
ap

la
ce

(i) 0.50 0.584 0.506 0.084 0.006 0.033 0.090 0.057 0.000

(ii) 0.50 0.511 0.500 0.011 −0.000 0.007 0.020 0.013 0.000

(iii) 0.25 0.307 0.344 0.057 0.094 0.014 0.037 0.023 0.000

(iv) 0.50 0.509 0.556 0.009 0.056 0.006 0.016 0.010 0.000

(v) 0.25 0.264 0.308 0.014 0.058 0.005 0.014 0.009 0.000

(vi) 0.50 0.412 0.516 −0.088 0.016 0.020 0.020 0.000 0.979

C
on

ta
m

in
at

ed

(i) 0.50 0.548 0.505 0.048 0.005 0.025 0.108 0.083 0.000

(ii) 0.50 0.494 0.508 −0.006 0.008 0.004 0.022 0.018 0.000

(iii) 0.25 0.266 0.398 0.016 0.148 0.006 0.038 0.032 0.000

(iv) 0.50 0.499 0.610 −0.001 0.110 0.005 0.031 0.026 0.000

(v) 0.25 0.259 0.381 0.009 0.131 0.005 0.025 0.020 0.000

(vi) 0.50 0.469 0.555 −0.031 0.055 0.018 0.043 0.026 0.000
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Table 10. The accuracy of the HM- and ML-estimators with regard to estimating the propor-
tion parameter p. 500 samples each with 500 observations, are generated from four mixture
distributions (normal, logistic, Laplace and contaminated Gaussian) with the parameter config-
urations (i)–(vi). The parameter p is estimated for each sample. For each scenario we observe:
the true parameter value (p), the average estimate (mean), the average deviation from the true
value (bias), the Mean Squared Error (MSE), the difference between the ML-MSE and HM-
MSE values (Δ ˆMSE) and a p-value for the test that this difference is significant. A positive
(negative) value of Δ ˆMSE indicates that the HM-estimator is more (less) efficient than the
ML-estimator of p

Estimation of the mixing proportion, n = 500

Data True Mean ˆbias ˆMSE Δ ˆMSE p-val

p HM ML HM ML HM ML

N
or

m
al

(i) 0.50 0.671 0.499 0.171 −0.001 0.037 0.047 0.009 0.001

(ii) 0.50 0.530 0.497 0.030 −0.003 0.003 0.002 −0.001 0.002

(iii) 0.25 0.403 0.260 0.153 0.010 0.026 0.004 −0.023 0.000

(iv) 0.50 0.524 0.501 0.024 0.001 0.002 0.003 0.001 0.001

(v) 0.25 0.255 0.253 0.005 0.003 0.001 0.002 0.001 0.000

(vi) 0.50 0.386 0.490 −0.114 −0.010 0.016 0.003 −0.013 0.000

L
og

is
tic

(i) 0.50 0.579 0.500 0.079 0.000 0.009 0.140 0.130 0.000

(ii) 0.50 0.502 0.491 0.002 −0.009 0.001 0.012 0.011 0.000

(iii) 0.25 0.267 0.537 0.017 0.287 0.002 0.101 0.099 0.000

(iv) 0.50 0.523 0.659 0.023 0.159 0.002 0.029 0.027 0.000

(v) 0.25 0.294 0.439 0.044 0.189 0.003 0.038 0.034 0.000

(vi) 0.50 0.507 0.651 0.007 0.151 0.003 0.027 0.024 0.000

L
ap

la
ce

(i) 0.50 0.641 0.505 0.141 0.005 0.025 0.098 0.073 0.000

(ii) 0.50 0.520 0.501 0.020 0.001 0.001 0.002 0.000 0.323

(iii) 0.25 0.331 0.335 0.081 0.085 0.010 0.028 0.018 0.000

(iv) 0.50 0.535 0.583 0.035 0.083 0.002 0.012 0.010 0.000

(v) 0.25 0.272 0.345 0.022 0.095 0.001 0.013 0.011 0.000

(vi) 0.50 0.443 0.556 −0.057 0.056 0.006 0.005 −0.001 0.019

C
on

ta
m

in
at

ed

(i) 0.50 0.600 0.496 0.100 −0.004 0.013 0.175 0.162 0.000

(ii) 0.50 0.491 0.494 −0.009 −0.006 0.001 0.020 0.020 0.000

(iii) 0.25 0.268 0.473 0.018 0.223 0.002 0.054 0.053 0.000

(iv) 0.50 0.513 0.654 0.013 0.154 0.001 0.027 0.025 0.000

(v) 0.25 0.278 0.399 0.028 0.149 0.002 0.023 0.022 0.000

(vi) 0.50 0.487 0.580 −0.013 0.080 0.003 0.016 0.014 0.000
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A.6 Estimation of the difference in mean μ2 − μ1

Table 11. The accuracy of the HM- and ML-estimators with regard to estimating the difference
in mean parameter μ2 − μ1. 500 samples each with 50 observations, are generated from four
mixture distributions (normal, logistic, Laplace and contaminated Gaussian) with the parameter
configurations (i)–(vi). The parameter p is estimated for each sample. For each scenario we
observe: the true parameter value (p), the average estimate (mean), the average deviation from
the true value (bias), the Mean Squared Error (MSE), the difference between the ML-MSE and
HM-MSE values (Δ ˆMSE) and a p-value for the test that this difference is significant. A positive
(negative) value of Δ ˆMSE indicates that the HM-estimator is more (less) efficient than the
ML-estimator of μ2 − μ1

Estimation of the difference in mean μ2 − μ1, n = 50

Data True Mean ˆbias ˆMSE Δ ˆMSE p-val

μ2 − μ1 HM ML HM ML HM ML

N
or

m
al

(i) 2 2.105 2.216 0.105 0.216 0.226 0.345 0.119 0.001

(ii) 3 2.902 2.984 −0.098 −0.016 0.113 0.185 0.072 0.002

(iii) 3 2.486 2.870 −0.514 −0.130 0.711 0.539 −0.172 0.006

(iv) 4 3.953 4.166 −0.047 0.166 0.429 0.538 0.109 0.065

(v) 4 3.645 4.196 −0.355 0.196 0.816 0.908 0.092 0.215

(vi) 3 3.889 3.887 0.889 0.887 2.191 2.788 0.596 0.011

L
og

is
tic

(i) 2 2.099 2.048 0.099 0.048 0.248 0.481 0.234 0.000

(ii) 3 2.917 2.878 −0.083 −0.122 0.108 0.294 0.185 0.000

(iii) 3 2.566 2.561 −0.434 −0.439 0.627 1.004 0.376 0.000

(iv) 4 3.877 3.925 −0.123 −0.075 0.305 0.607 0.302 0.000

(v) 4 3.572 3.686 −0.428 −0.314 1.137 1.375 0.238 0.047

(vi) 3 3.521 3.323 0.521 0.323 1.679 2.378 0.699 0.039

L
ap

la
ce

(i) 2 2.075 1.815 0.075 −0.185 0.309 0.687 0.378 0.000

(ii) 3 3.011 2.855 0.011 −0.145 0.080 0.347 0.267 0.000

(iii) 3 2.673 2.342 −0.327 −0.658 0.624 1.332 0.708 0.000

(iv) 4 3.973 3.725 −0.027 −0.275 0.424 0.931 0.507 0.008

(v) 4 3.557 3.162 −0.443 −0.838 1.260 2.042 0.782 0.000

(vi) 3 3.245 3.257 0.245 0.257 1.300 3.624 2.325 0.000

C
on

ta
m

in
at

ed

(i) 2 2.336 2.029 0.336 0.029 1.634 1.365 −0.269 0.364

(ii) 3 2.950 2.799 −0.050 −0.201 0.064 0.551 0.486 0.000

(iii) 3 2.753 2.508 −0.247 −0.492 0.566 1.220 0.653 0.000

(iv) 4 3.950 3.715 −0.050 −0.285 0.542 1.360 0.818 0.005

(v) 4 3.744 3.076 −0.256 −0.924 1.158 1.800 0.643 0.000

(vi) 3 3.407 3.145 0.407 0.145 2.256 4.548 2.292 0.012
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Table 12. The accuracy of the HM- and ML-estimators with regard to estimating the difference
in mean parameter μ2 − μ1. 500 samples each with 100 observations, are generated from four
mixture distributions (normal, logistic, Laplace and contaminated Gaussian) with the parameter
configurations (i)–(vi). The parameter p is estimated for each sample. For each scenario we
observe: the true parameter value (p), the average estimate (mean), the average deviation from
the true value (bias), the Mean Squared Error (MSE), the difference between the ML-MSE and
HM-MSE values (Δ ˆMSE) and a p-value for the test that this difference is significant. A positive
(negative) value of Δ ˆMSE indicates that the HM-estimator is more (less) efficient than the
ML-estimator of μ2 − μ1

Estimation of the difference in mean μ2 − μ1, n = 100

Data True Mean ˆbias ˆMSE Δ ˆMSE p-val

μ2 − μ1 HM ML HM ML HM ML

N
or

m
al

(i) 2 2.075 2.116 0.075 0.116 0.146 0.267 0.121 0.001

(ii) 3 2.880 2.962 −0.120 −0.038 0.072 0.095 0.023 0.076

(iii) 3 2.446 2.854 −0.554 −0.146 0.501 0.414 −0.087 0.056

(iv) 4 3.770 4.033 −0.230 0.033 0.262 0.280 0.018 0.684

(v) 4 3.511 4.055 −0.489 0.055 0.547 0.543 −0.005 0.914

(vi) 3 3.805 3.486 0.805 0.486 1.361 1.347 −0.015 0.911

L
og

is
tic

(i) 2 2.054 2.031 0.054 0.031 0.160 0.486 0.326 0.000

(ii) 3 2.941 2.935 −0.059 −0.065 0.051 0.164 0.113 0.000

(iii) 3 2.609 2.605 −0.391 −0.395 0.383 0.770 0.387 0.000

(iv) 4 3.837 3.761 −0.163 −0.239 0.210 0.464 0.255 0.000

(v) 4 3.510 3.493 −0.490 −0.507 0.680 1.216 0.536 0.000

(vi) 3 3.503 2.993 0.503 −0.007 1.021 1.118 0.098 0.744

L
ap

la
ce

(i) 2 2.104 1.768 0.104 −0.232 0.179 0.779 0.599 0.000

(ii) 3 2.997 2.803 −0.003 −0.197 0.033 0.373 0.339 0.000

(iii) 3 2.776 2.085 −0.224 −0.915 0.340 1.656 1.316 0.000

(iv) 4 3.901 3.512 −0.099 −0.488 0.159 0.841 0.681 0.000

(v) 4 3.563 2.899 −0.437 −1.101 0.828 2.116 1.288 0.000

(vi) 3 2.993 2.840 −0.007 −0.160 0.571 3.014 2.443 0.000

C
on

ta
m

in
at

ed

(i) 2 2.141 2.094 0.141 0.094 0.825 2.103 1.277 0.000

(ii) 3 2.993 2.807 −0.007 −0.193 0.029 0.458 0.428 0.000

(iii) 3 2.822 2.194 −0.178 −0.806 0.217 1.208 0.991 0.000

(iv) 4 3.948 3.448 −0.052 −0.552 0.136 1.706 1.569 0.000

(v) 4 3.741 2.818 −0.259 −1.182 0.562 2.015 1.453 0.000

(vi) 3 3.146 3.039 0.146 0.039 2.391 5.900 3.509 0.071
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Table 13. The accuracy of the HM- and ML-estimators with regard to estimating the difference
in mean parameter μ2 − μ1. 500 samples each with 500 observations, are generated from four
mixture distributions (normal, logistic, Laplace and contaminated Gaussian) with the parameter
configurations (i)–(vi). The parameter p is estimated for each sample. For each scenario we
observe: the true parameter value (p), the average estimate (mean), the average deviation from
the true value (bias), the Mean Squared Error (MSE), the difference between the ML-MSE and
HM-MSE values (Δ ˆMSE) and a p-value for the test that this difference is significant. A positive
(negative) value of Δ ˆMSE indicates that the HM-estimator is more (less) efficient than the
ML-estimator of μ2 − μ1

Estimation of the difference in mean μ2 − μ1, n = 500

Data True Mean ˆbias ˆMSE Δ ˆMSE p-val

μ2 − μ1 HM ML HM ML HM ML

N
or

m
al

(i) 2 1.962 2.044 −0.038 0.044 0.016 0.078 0.063 0.008

(ii) 3 2.876 3.005 −0.124 0.005 0.027 0.012 −0.015 0.000

(iii) 3 2.231 2.986 −0.769 −0.014 0.633 0.040 −0.593 0.000

(iv) 4 3.657 3.984 −0.343 −0.016 0.161 0.068 −0.093 0.000

(v) 4 3.351 3.983 −0.649 −0.017 0.450 0.181 −0.269 0.000

(vi) 3 3.677 3.055 0.677 0.055 0.615 0.166 −0.449 0.000

L
og

is
tic

(i) 2 1.974 1.858 −0.026 −0.142 0.014 0.586 0.571 0.000

(ii) 3 2.915 3.033 −0.085 0.033 0.015 0.021 0.006 0.247

(iii) 3 2.516 2.722 −0.484 −0.278 0.302 0.494 0.192 0.000

(iv) 4 3.699 3.609 −0.301 −0.391 0.133 0.320 0.187 0.000

(v) 4 3.296 3.154 −0.704 −0.846 0.526 1.051 0.524 0.000

(vi) 3 3.222 2.639 0.222 −0.361 0.164 0.203 0.040 0.040

L
ap

la
ce

(i) 2 2.050 1.340 0.050 −0.660 0.011 1.178 1.167 0.000

(ii) 3 2.979 2.957 −0.021 −0.043 0.007 0.140 0.134 0.000

(iii) 3 2.850 1.709 −0.150 −1.291 0.054 2.159 2.105 0.000

(iv) 4 3.817 3.185 −0.183 −0.815 0.067 0.793 0.726 0.000

(v) 4 3.281 2.431 −0.719 −1.569 0.652 2.577 1.924 0.000

(vi) 3 2.836 2.312 −0.164 −0.688 0.076 0.529 0.453 0.000

C
on

ta
m

in
at

ed

(i) 2 1.956 1.123 −0.044 −0.877 0.012 2.306 2.294 0.000

(ii) 3 2.980 2.748 −0.020 −0.252 0.005 0.269 0.264 0.000

(iii) 3 2.799 1.771 −0.201 −1.229 0.087 1.674 1.587 0.000

(iv) 4 3.848 3.171 −0.152 −0.829 0.047 0.888 0.840 0.000

(v) 4 3.463 2.617 −0.537 −1.383 0.357 1.977 1.620 0.000

(vi) 3 2.955 2.440 −0.045 −0.560 0.078 0.466 0.389 0.000
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A.7 Clustering results for non-mixture distributions

Fig. 8. Clustering results in terms of fuzzy adjusted Rand index (FARI) for data containing no
information about the class labels, i.e. the mixture components coincide. For each distribution
(normal, logistic, Laplace, and contaminated normal), 5 values of the mixing proportion were
considered. 500 samples each with 50 observations were generated
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Fig. 9. Clustering results in terms of fuzzy adjusted Rand index (FARI) for data containing no
information about the class labels, i.e. the mixture components coincide. For each distribution
(normal, logistic, Laplace, and contaminated normal), 5 values of the mixing proportion were
considered. 500 samples each with 100 observations were generated
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Fig. 10. Clustering results in terms of fuzzy adjusted Rand index (FARI) for data containing no
information about the class labels, i.e. the mixture components coincide. For each distribution
(normal, logistic, Laplace, and contaminated normal), 5 values of the mixing proportion were
considered. 500 samples each with 500 observations were generated
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