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Abstract Our paper starts from presentation and comparison of three definitions for the self-
similar field. The interconnection between these definitions has been established. Then we con-
sider the Lamperti scaling transformation for the self-similar field and investigate the connection
between the scaling transformation for such field and the shift transformation for the corre-
sponding stationary field. It was also shown that the fractional Brownian sheet has the ergodic
scaling transformation. The strong limit theorems for the anisotropic growth of the sample paths
of the self-similar field at 0 and at ∞ for the upper and lower functions have been proved. It
was obtained the upper bound for growth of the field with ergodic scaling transformation for
slowly varying functions. We present some examples of iterated log-type limits for the Gaussian
self-similar random fields.
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1 Introduction

A self-similar process is a process invariant by distribution under specific time and/or
space scaling. Namely, a stochastic process {𝑋(𝑡), 𝑡 ∈ ℝ} is self-similar with index
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𝐻 ≥ 0, if for any 𝑎 > 0 {𝑋(𝑎𝑡), 𝑡 ∈ ℝ}
u�
= {𝑎u�𝑋(𝑡), 𝑡 ∈ ℝ}, where

u�
= denotes the

equality of the finite-dimensional distributions. The books by Embrechts & Maejima
[6] and Samorodnitsky & Taqqu [14] are devoted to the theory of self-similar pro-
cesses.

A classical example of a self-similar process with index 𝐻 ∈ (0, 1) is a fractional
Brownian motion {𝐵u�(𝑡), 𝑡 ∈ ℝ+} (ℝ+ = [0, +∞)) with a corresponding Hurst in-
dex. This process has centered stationary increments and the following covariance
function

𝐄(𝐵u�(𝑡)𝐵u�(𝑢)) = 1
2

(𝑡2u� + 𝑢2u� − |𝑡 − 𝑢|2u�), 𝑡, 𝑢 ∈ ℝ+.

The investigation of self-similar random fields (multiparameter processes) was
caused by the evidence of the self-similarity property of phenomena in climatology,
environmental sciences, etc. (see [10, 13]). In particular, so called anisotropic random
fields are used for modeling phenomena in spatial statistics, statistical hydrology and
image processing (see [2, 3, 5]). The attempts to extend the self-similarity concept
from processes to fields resulted in arising of the several approaches. In our paper we
present three different definitions of the self-similar fields and establish the intercon-
nection between them. We show that the covariance function of the centered Gaussian
field determines the self-similarity property and its type. The definitions of the frac-
tional Brownian fields and sheets are also presented in the paper. It is proved that they
are self-similar fields but according to the different definitions. We consider the fields
which are self-similar with respect to every coordinate with individual index. Such
fields are used to call anisotropic and in the Brownian case they usually are called
as Brownian sheets. The paper’s aim is to investigate the asymptotic growth of the
sample paths of these fields.

We introduce the notions of upper and lower functions for the sample paths of the
random field which are similar to the paper [15] and prove the zero–one law for such
functions in the case of growth at 0 and at ∞. We also assume the ergodicity of the
scaling transformation. The ergodicity property should be proved independently for
every particular case and this can be easily done for the stationary fields and processes.

Let us also mention that the non-singular self-similar process has not to be sta-
tionary. But there is a one-to-one correspondence between self-similar and stationary
processes. For every self-similar process 𝑋 with index 𝐻 > 0, its Lamperti transfor-
mation 𝑍 = {𝑍(𝑡) = 𝑡−u�𝑋(𝑒u�)} is a stationary process. The Lamperti transformation
for anisotropic random fields was introduced in the paper [7] and there was estab-
lished the correspondence between self-similar and stationary random fields as well.
In the present paper it is proved that the ergodicity of the shift transformation for the
corresponding stationary field is a sufficient condition for the ergodicity of the scal-
ing transformation. For the Gaussian fields the last statement can be ensured by the
proper conditions on the covariance function. In particular, we prove that the fractional
Brownian sheet has the ergodic scaling transformation.

In this paper the strong limit theorems for the anisotropic growth of the sample
paths of the self-similar fields for the upper and lower functions arising in the zero–
one law is proved. The similar theorems for the self-similar stochastic processes were
proved in the paper [8]. Application of these theorems to the Gaussian fields allows
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to obtain the iterated log-type lows. Comparing the results for the fractional Brow-
nian fields and sheets with the results from the paper [11] we can conclude that our
theorems enable us to obtain more precise estimates.

The paper is organized as follows. Section 2 contains the different definitions of
a self-similar field and the interconnection between them is proved. We focused on
the Gaussian case and present the definitions of the fractional Brownian field and
sheet. In Section 3, the Lamperti transformation for the self-similar field is considered
and the connection between the scaling transformation for such a field and the shift
transformation for the corresponding stationary field is stated proved. It is shown that
the fractional Brownian sheet has the ergodic scaling transformation. In Section 4, we
introduce the definitions of the upper and lower functions for asymptotic growth of
the sample paths of the self-similar field. The zero–one law is proved for the fields
with ergodic scaling transformation. The strong limit theorems for asymptotic growth
of sample paths at 0 and at ∞ are obtained in Section 5. We also establish there the
upper bounds for growth of the field with ergodic scaling transformation for the case
of the slowly varying functions. In Section 6 we apply the theorem to prove the iterated
log-type laws for the Gaussian self-similar fields.

2 Definition of self-similarity for random fields

Let us start from giving three different definitions of the self-similar random fields
and then show their interrelation. We assume that {Ω, ℱ, 𝐏} is a standard probability
space defining all the random objects considered further on.

Definition 2.1 ([14]). A random field {𝑋(𝐭), 𝐭 = (𝑡1, … , 𝑡u�) ∈ ℝu�} is self-similar
with index 𝐻 > 0 if for every 𝑎 > 0 {𝑋(𝑎𝐭), 𝐭 ∈ ℝu�}

u�
= {𝑎u�𝑋(𝐭), 𝐭 ∈ ℝu�}.

Hereinafter we shall use the designation 𝐱 ⋅ 𝐲 in order to denote the vector consist-
ing of the coordinatewise products of two vectors 𝐱, 𝐲 ∈ ℝu�

𝐱 ⋅ 𝐲 = (𝑥1𝑦1, … , 𝑥u�𝑦u�),

where 𝐱 = (𝑥1, … , 𝑥u�), 𝐲 = (𝑦1, … , 𝑦u�).

Definition 2.2 ([7]). A random field {𝑋(𝐭), 𝐭 ∈ ℝu�} is self-similar with index 𝐇 =
(𝐻1, … , 𝐻u�) ∈ ℝu�

+ if for any 𝐚 = (𝑎1, … , 𝑎u�) ∈ (0, +∞)u�

{𝑋(𝐚 ⋅ 𝐭), 𝐭 ∈ ℝu�}
u�
= {𝑎u�1

1 ⋯ 𝑎u�u�
u� 𝑋(𝐭), 𝐭 ∈ ℝu�}.

In addition it is possible to give the third definition of the self-similar field as a
field which is self-similar with respect to every time coordinate.

Definition 2.3. A random field {𝑋(𝐭), 𝐭 ∈ ℝu�} is coordinatewise self-similar with
index 𝐇 = (𝐻1, … , 𝐻u�) ∈ ℝu�

+, if for any 𝑎 > 0 and 1 ≤ 𝑘 ≤ 𝑛

{𝑋(𝑡1, … , 𝑡u�−1, 𝑎𝑡u�, 𝑡u�+1, … , 𝑡u�), 𝐭 ∈ ℝu�}
u�
= {𝑎u�u�𝑋(𝐭), 𝐭 ∈ ℝu�}.

Now let us explain how these definitions interact between each other.
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Lemma 2.1. Definitions 2.2 and 2.3 are equivalent.

Proof. (2.2 ⇒ 2.3) Assume that a random field {𝑋(𝐭), 𝐭 ∈ ℝu�} is self-similar by
Definition 2.2 with index 𝐇 = (𝐻1, … , 𝐻u�) ∈ ℝu�

+.
For arbitrary 𝑎 > 0 and 1 ≤ 𝑘 ≤ 𝑛 we put 𝑎1 = 1, … , 𝑎u�−1 = 1, 𝑎u� = 𝑎,

𝑎u�+1 = 1, … , 𝑎u� = 1, 𝐚 = (𝑎1, … , 𝑎u�). Then X is self-similar with respect to the 𝑘-th
coordinate.

(2.2 ⇐ 2.3) Let a random field {𝑋(𝐭), 𝐭 ∈ ℝu�} is self-similar by Definition 2.3
with index 𝐇 = (𝐻1, … , 𝐻u�) ∈ ℝu�

+. Then, for any 𝐚 ∈ (0, +∞)u�, 𝑚 ≥ 1, 𝐭1, … , 𝐭u� ∈
ℝu�, 𝐭u� = (𝑡u�1, … , 𝑡u�u�), 𝑥1, … , 𝑥u� ∈ ℝ we get

𝐏(
u�
⋂
u�=1

{𝑋(𝐚 ⋅ 𝐭u�) < 𝑥u�})
Def. 2.3

= 𝐏(
u�
⋂
u�=1

{𝑎u�1
1 𝑋(𝑡u�1, 𝑎2𝑡u�2, … , 𝑎u�𝑡u�u�) < 𝑥u�})

= 𝐏(
u�
⋂
u�=1

{𝑋(𝑡u�1, 𝑎2𝑡u�2, … , 𝑎u�𝑡u�u�) < 𝑥u�𝑎
−u�1
1 })

= ⋯ = 𝐏(
u�
⋂
u�=1

{𝑋(𝐭u�) < 𝑥u�𝑎
−u�1
1 ⋯ 𝑎−u�u�

u� })

= 𝐏(
u�
⋂
u�=1

{𝑎u�1
1 ⋯ 𝑎u�u�

u� 𝑋(𝐭u�) < 𝑥u�}).

The lemma is proved.

Lemma 2.2. Let a random field {𝑋(𝐭), 𝐭 = (𝑡1, … , 𝑡u�) ∈ ℝu�} be self-similar by Defi-
nition 2.2 with index 𝐇 = (𝐻1, … , 𝐻u�) ∈ ℝu�

+. Then 𝑋 is self-similar by Definition 2.1
with index 𝐻 = 𝐻1 + ⋯ + 𝐻u�.

Proof. Let us put 𝐚 = (𝑎, … , 𝑎) where 𝑎 > 0 is an arbitrary number. Then for any
𝑚 ≥ 1, 𝐭1, … , 𝐭u� ∈ ℝu�, 𝐭u� = (𝑡u�1, … , 𝑡u�u�), 𝑥1, … , 𝑥u� ∈ ℝ we obtain

𝐏(
u�
⋂
u�=1

{𝑋(𝑎𝐭u�) < 𝑥u�}) = 𝐏(
u�
⋂
u�=1

{𝑋(𝐚 ⋅ 𝐭u�) < 𝑥u�})

= 𝐏(
u�
⋂
u�=1

{𝑎u�1+⋯+u�u�𝑋(𝐭u�) < 𝑥u�})

= 𝐏(
u�
⋂
u�=1

{𝑎u�𝑋(𝐭u�) < 𝑥u�}).

The lemma is proved.

There is a strong correspondence between a type of covariance function and a
certain type of self-similarity property for centered Gaussian random fields.

Lemma 2.3. Let the covariance functions 𝐶1, 𝐶2 ∶ ℝu� × ℝu� → ℝ of the centered
Gaussian fields {𝑋1(𝐭), 𝐭 ∈ ℝu�} and {𝑋2(𝐭), 𝐭 ∈ ℝu�} respectively, satisfy the follow-
ing properties:

• For any 𝐭, 𝐬 ∈ ℝu�, 𝐚 ∈ (0, +∞)u�

𝐶1(𝐚 ⋅ 𝐭, 𝐚 ⋅ 𝐬) = 𝑎2u�1
1 ⋯ 𝑎2u�u�

u� 𝐶1(𝐭, 𝐬),

where 0 < 𝐻1 < 1, … , 0 < 𝐻u� < 1.
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• For any 𝐭, 𝐬 ∈ ℝu�, 𝑎 > 0

𝐶2(𝑎𝐭, 𝑎𝐬) = 𝑎2u�𝐶2(𝐭, 𝐬),

where 0 < 𝐻 < 1.
Then the field 𝑋1 is self-similar with index 𝐇 = (𝐻1, … , 𝐻u�) by Definition 2.2, and
the field 𝑋2 is self-similar with index 𝐻 by Definition 2.1.

Proof. The fact that the finite-dimensional distributions of the centered Gaussian
fields are uniquely determined by the covariance function implies the lemma’s proof.
Within the lemma’s conditions the covariance matrices Σ1 and Σ2 of the correspond-
ing random fields 𝑋1 and 𝑋2 have the following properties:

Σ1(𝐚 ⋅ 𝐭, 𝐚 ⋅ 𝐬) = 𝑎2u�1
1 ⋯ 𝑎2u�u�

u� Σ1(𝐭, 𝐬), 𝐭, 𝐬 ∈ ℝu�,

Σ2(𝑎𝐭, 𝑎𝐬) = 𝑎2u�Σ2(𝐭, 𝐬), 𝐭, 𝐬 ∈ ℝu�.
The lemma is proved.

Let us give a few examples of Gaussian self-similar random fields.

Definition 2.4. As a standard Levy fractional Brownian field with index 𝐻 > 0 we
shall call a centered Gaussian random field 𝐵u� = {𝐵u�(𝐭), 𝐭 ∈ ℝu�

+} with a covariance
function

𝐄(𝐵u�(𝐭)𝐵u�(𝐬)) = 1
2

(‖𝐭‖2u� + ‖𝐬‖2u� − ‖𝐭 − 𝐬‖2u�), 𝐭, 𝐬 ∈ ℝu�
+,

where ‖⋅‖ is set for the Euclidean norm in ℝu�. This field is self-similar by Definition 2.1
(see [14], Example 8.1.3).

The Lévy fractional Brownian field is isotropic. This field is the only one in law
Gaussian self-similar field within Definition 2.1 with stationary isotropic increments.

Definition 2.5. As a standard fractional Brownian sheet with index 𝐇 = (𝐻1, … , 𝐻u�),
0 < 𝐻u� < 1, 𝑖 = 1, 𝑛 we shall call a centered Gaussian random field 𝐵𝐇 = {𝐵𝐇(𝐭),
𝐭 ∈ ℝu�

+} with a covariance function

𝐄(𝐵𝐇(𝐭)𝐵𝐇(𝐬)) = 2−u�
u�

∏
u�=1

(|𝑡u�|2u�u� + |𝑠u�|2u�u� − |𝑡u� − 𝑠u�|2u�u�), 𝐭, 𝐬 ∈ ℝu�
+.

This field is self-similar by Definition 2.2 and has stationary rectangular incre-
ments. The proof of this property for the ℝ2 case can be found in the paper [1].
A similar property for the case 𝑛 > 2 can be easily proved as well.

Remark 2.1. A random field satisfying Definition 2.1 is not necessary self-similar in
a sense of Definition 2.2. Indeed, let us consider the Levy fractional Brownian field
{𝐵u�(𝐭), 𝐭 ∈ ℝu�

+}. It is self-similar by Definition 2.1 ([14], Example 8.1.3). We intend
to prove that this field is not self-similar by Definition 2.2. Let 𝑎1 = 𝑎 > 0, 𝑎2 = 1, …,
𝑎u� = 1, then

𝐄𝑋2(𝑎1, 1, … , 1) = ∥(𝑎, 1, … , 1)∥2u�𝐄𝑋2(1, … , 1).

But, if the field satisfies Definition 2.2, then there should be

𝐄𝑋2(𝑎1, 1, … , 1) = 𝑎2u�𝐄𝑋2(1, … , 1).
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3 Self-similar fields with ergodic scaling transformation

Further in the paper, we assume that the fields satisfy Definition 2.2 and are real-valued
and continuous in probability. Under such assumptions we could work with separable
versions without loss of generality. Moreover, we shall consider only the case 𝑛 = 2
since switching to the parameter of the higher dimension is rather technical.

A scaling transformation 𝑆𝐇
𝐚 for the random field 𝑋 = {𝑋(𝐭), 𝐭 ∈ ℝ2

+} and for
𝐇 = (𝐻1, 𝐻2) ∈ (0, +∞)2, 𝐚 = (𝑎1, 𝑎2) ∈ (0, +∞)2 is defined as:

(𝑆𝐇
𝐚 𝑋)(𝐭) = 𝑎−u�1

1 𝑎−u�2
2 𝑋(𝐚 ⋅ 𝐭), 𝐭 ∈ ℝ2

+. (1)

Using the notion of scaling transformation we can formulate Definition 2.2 for the
case ℝ2

+ as follows.

Definition 3.1. A random field 𝑋 = {𝑋(𝐭), 𝐭 ∈ ℝ2
+} is said to be self-similar with

index 𝐇 = (𝐻1, 𝐻2) ∈ (0, +∞)2, if for any 𝑎1 > 0, 𝑎2 > 0 the field {(𝑆𝐇
𝐚 𝑋)(𝐭), 𝐭 ∈

ℝ2
+} has the same finite-dimensional distributions as the field 𝑋.

Hereinafter we shall use the notation 𝑆𝐚 = 𝑆𝐇
𝐚 . Let us consider a self-similar field

𝑋 with index 𝐇 = (𝐻1, 𝐻2) ∈ (0, +∞)2, then 𝑋(0, 𝑠) = 𝑋(𝑠, 0) = 0, 𝑠 ≥ 0 a.s. ([7],
Proposition 2.4.1). For such a field the Lamperti transformation 𝜏𝐇 was introduced in
the paper [7]:

𝜏𝐇𝑋(𝐭) = 𝑍(𝐭) = 𝑒−u�1u�1𝑒−u�2u�2𝑋(𝑒u�1, 𝑒u�2), 𝐭 ∈ ℝ2.

The field 𝑍 is stationary. The converse is also true: for any stationary field 𝑍 the field
𝑋 = {𝑋(𝐬) = 𝑠u�1

1 𝑠u�2
2 𝑍(ln 𝑠1, ln 𝑠2), 𝐬 ∈ (0, +∞)2} is such that 𝑋(0, 𝑠) = 𝑋(𝑠, 0) = 0

a.s., 𝑠 ≥ 0} is self-similar with index 𝐇 = (𝐻1, 𝐻2). The scaling transformation 𝑆𝐚
of the field 𝑋 corresponds to the shift transformation 𝜃𝐮 of the field 𝑍 where 𝐮 =
(𝑢1, 𝑢2) = (ln 𝑎1, ln 𝑎2) and the shift transformation is defined as (𝜃𝐮𝑍)(𝐬) = 𝑍(𝑠1 +
𝑢1, 𝑠2 + 𝑢2), 𝐬 ∈ ℝ2. Indeed,

(𝜏𝐇𝑆𝐚𝑋)(𝐭) = 𝜏𝐇(𝑎−u�1
1 𝑎−u�2

2 𝑋(𝐚 ⋅ 𝐭))

= 𝑎−u�1
1 𝑎−u�2

2 𝑒−u�1u�1𝑒−u�2u�2𝑋(𝑎1𝑒u�1, 𝑎2𝑒u�2)
= 𝑒−u�1(u�1+u�1)𝑒−u�2(u�2+u�2))𝑋(𝑒u�1+u�1, 𝑒u�2+u�2)

= 𝜃𝐮𝑒−u�1u�1𝑒−u�2u�2𝑋(𝑒u�1, 𝑒u�2) = (𝜃𝐮𝜏𝐇𝑋)(𝐭) = (𝜃𝐮𝑍)(𝐭), 𝐭 ∈ ℝ2
+.

So 𝜏𝐇 ∘ 𝑆𝐚 = 𝜃𝐮 ∘ 𝜏𝐇.
Zero–one laws naturally occur for the processes and field with ergodicity property.

It follows from Definition 3.1 that the scaling transformation 𝑆𝐚 of the field 𝑋 preserves
the same distribution so the notion of ergodicity of 𝑆𝐚 can be defined in a usual way
(see [4]).

Definition 3.2. Let 𝑇 ∶ Ω → Ω be some transformation defined on the probability
space (Ω, ℱ, 𝐏). The transformation 𝑇 , which preserves the measure, is ergodic if for
every set 𝐸 ∈ ℱ such that 𝐏(𝑇−1(𝐸)Δ𝐸) = 0 either 𝐏(𝐸) = 0 or 𝐏(𝐸) = 1.
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We shall call the field 𝑋 self-similar with ergodic scaling transformation if 𝑆𝐚 is
ergodic. Further in this section we shall assume that any scaling transformation 𝑆𝐚,
𝐚 ∈ (0, +∞)2, 𝐚 ≠ (1, 1) for the self-similar field is ergodic.

It follows from the interconnection between the transformations 𝑆𝐚 and 𝜃𝐮 that the
ergodicity of the field 𝑍 = 𝜏𝐇𝑋 implies the ergodicity of the field 𝑋. In particular, the
ergodicity of the scaling transformation for the Gaussian stationary processes follows
from the covariance function properties. The class of the stationary fields that are
ergodic is quite wide.

Theorem 3.1 ([16], Proposition 4.1). Let 𝑍 = {𝑍(𝐭), 𝐭 ∈ ℝ2} be a stationary Gaus-
sian field with a mean 𝑀 and a continuous covariance function 𝑅(𝐲) = 𝐄𝑍(𝐱)𝑍(𝐱 +
𝐲) − 𝑀2, 𝐲 ∈ ℝ2. If lim‖𝐲‖→∞ 𝑅(𝐲) = 0, then 𝑍 has the ergodic shift transformation.

Let us show that fractional Brownian sheet is ergodic.

Corollary 3.1. Let 𝐵𝐇 = {𝐵𝐇(𝐭), 𝐭 ∈ ℝ2
+} be fractional Brownian sheet with index

𝐇 = (𝐻1, 𝐻2) ∈ (0, 1)2 (Definition 2.5). Then 𝐵𝐇 is the self-similar field with er-
godic scaling transformation and the stationary field 𝑍 = 𝜏𝐇𝐵𝐇 is centered with the
following covariance function

𝑅(𝐲) = 1
4

∏
u�=1,2

(𝑒u�u�u�u� + 𝑒−u�u�u�u� − ∣𝑒u�u�/2 − 𝑒−u�u�/2∣2u�u�), 𝐲 ∈ ℝ2. (2)

Proof. The proof of the equality (2) can be found in the paper [7]. All we need to do
is to prove that the field 𝑍 is ergodic. Let’s check the conditions of Theorem 3.1. The
covariance function 𝑅 is continuous and bounded, and can be represented as follows:

𝑅(𝐲) = 1
4

∏
u�=1,2

(𝑒u�u�u�u� + 𝑒−u�u�u�u� − 𝑒u�u�|u�u�|(1 − 𝑒−|u�u�|)2u�u�)

≤ 1
4

∏
u�=1,2

(𝑒u�u�u�u� + 𝑒−u�u�u�u� − 𝑒u�u�|u�u�|) = 𝑒−u�1|u�1|−u�2|u�2|

4
→ 0, ‖𝐲‖ → ∞.

Thus, it follows from Theorem 3.1 that the field 𝑍 is stationary with ergodic shift
transformation. This implies that the corresponding anisotropic Brownian sheet 𝐵𝐇 is
self-similar with ergodic scaling transformation. The corollary is proved.

4 Upper and lower functions for ergodic fields

In this section we continue considering of the self-similar fields with ergodic scaling
transformation and prove the zero–one laws for the asymptotic growth of the field’s
sample paths. Let us introduce the following definitions.

For the positively defined function 𝑔 ∶ ℝ2
+ → (0, +∞) we consider the following

random events:

𝐸0
u� = {𝜔 ∈ Ω ∶ ∃𝛿 = 𝛿(𝜔) > 0, ∀𝐭, 0 < 𝑡1 ∨ 𝑡2 < 𝛿 ∶ ∣𝑋(𝜔, 𝐭)∣ ≤ 𝑔(𝐭)},

𝐸∞
u� = {𝜔 ∈ Ω ∶ ∃𝑁 = 𝑁(𝜔) > 0, ∀𝐭, 𝑡1 ∧ 𝑡2 > 𝑁 ∶ ∣𝑋(𝜔, 𝐭)∣ ≤ 𝑔(𝐭)},

where 𝑡1 ∨ 𝑡2 = max{𝑡1, 𝑡2}, 𝑡1 ∧ 𝑡2 = min{𝑡1, 𝑡2}.
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Definition 4.1. The positive function 𝑔 ∶ ℝ2
+ → (0, +∞) is said to be the upper

(lower) function with respect to the growth at 0 if

𝐏(𝐸0
u�) = 1(= 0)

and the upper (lower) function with respect to the growth at ∞ if

𝐏(𝐸∞
u� ) = 1(= 0).

In addition we define the functionals 𝐿0
Λ,u�, 𝐿∞

Λ,u� forΛ = (𝜆1, 𝜆2), 𝜆1 > 0, 𝜆2 > 0
and positive function 𝜑 ∶ ℝ2

+ → (0, +∞) in the following way:

𝐿0
Λ,u� = lim sup

u�1∨u�2→0

|𝑋(𝐭)|

𝑡u�1
1 𝑡u�2

2 𝜑(𝐭)
, 𝐿∞

Λ,u� = lim sup
u�1∧u�2→∞

|𝑋(𝐭)|

𝑡u�1
1 𝑡u�2

2 𝜑(𝐭)
.

Remark 4.1. Let the function 𝑔(𝐭) = 𝑡u�1
1 𝑡u�2

2 𝜑(𝐭), 𝐭 ∈ ℝ2
+. If 𝐿0

Λ,u� = 0 a.s., then the
function 𝑔 is upper with respect to the growth at 0. If 𝐿0

Λ,u� = ∞ a.s., then the function
𝑔 is lower with respect to the growth at 0. If 𝐿∞

Λ,u� = 0 a.s., then the function 𝑔 is upper
with respect to the growth at ∞. If 𝐿∞

Λ,u� = ∞ a.s., then the function 𝑔 is lower with
respect to the growth at ∞.

Theorem 4.1. Let the function 𝜑 ∶ ℝ2
+ → (0, +∞) be either non-decreasing or non-

increasing in every coordinate. Then

𝐏(𝐸0
𝐇,u�) = 0 or 1, 𝐏(𝐸∞

𝐇,u�) = 0 or 1,

where the notation 𝐸0
𝐇,u� (or 𝐸∞

𝐇,u�) is used for 𝐸0
u� (or 𝐸∞

u� ) with a function 𝑔(𝐭) =

𝑡u�1
1 𝑡u�2

2 𝜑(𝐭), 𝐭 ∈ ℝ2
+ and 𝐇 = (𝐻1, 𝐻2) ∈ (0, +∞)2.

Proof. Let us consider the case when the function 𝜑 is non-decreasing in the first
coordinate and non-increasing in the second one. First we prove the theorem for 𝐸0

𝐇,u�.
Let 0 < 𝑎1 < 1, 𝑎2 > 1 and 𝜔 ∈ 𝐸0

𝐇,u�. In this case

∃𝛿 = 𝛿(𝜔) > 0 ∶ ∣𝑋(𝐭)∣ ≤ 𝑡u�1
1 𝑡u�2

2 𝜑(𝐭), 0 < 𝑡1 ∨ 𝑡2 < 𝛿.

If 𝑎1𝑡1 ∨ 𝑎2𝑡2 < 𝛿, then the definition of the scaling transformation and the last in-
equality imply

∣(𝑆𝐚𝑋)(𝐭)∣ = 𝑎−u�1
1 𝑎−u�2

2 ∣𝑋(𝐚 ⋅ 𝐭)∣ ≤ 𝑡u�1
1 𝑡u�2

2 𝜑(𝐚 ⋅ 𝐭).

Here 𝑎1𝑡1 < 𝑡1, 𝑎2𝑡2 > 𝑡2, so it follows from the monotonicity of the function 𝜑 that
𝜑(𝐚 ⋅ 𝐭) ≤ 𝜑(𝐭), 𝑡1 > 0, 𝑡2 > 0. Thus, for 𝐸0

𝐇,u� the following inequality holds true

∣(𝑆𝐚𝑋)(𝐭)∣ ≤ 𝑡u�1
1 𝑡u�2

2 𝜑(𝐭), 0 < 𝑡1 ∨ 𝑡2 < 𝛿
𝑎2

.
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So, we have proved that 𝐸0
𝐇,u� ⊂ 𝑆−1

𝐚 𝐸0
𝐇,u�, where 𝑆−1

𝐚 𝐸0
𝐇,u� denotes the set 𝐸0

𝐇,u� for
the field 𝑆𝐚𝑋. This implies that 𝐏(𝐸0

𝐇,u� △ 𝑆−1
𝐚 𝐸0

𝐇,u�) = 0. Since 𝑆𝐚 is ergodic for any
𝐚 ∈ (0, +∞)2, 𝐚 ≠ (1, 1), then 𝐏(𝐸0

𝐇,u�) = 0 or 1.
Now let 𝜔 ∈ 𝐸∞

𝐇,u�. In this case

∃𝑁 = 𝑁(𝜔) > 0 ∶ ∣𝑋(𝐭)∣ ≤ 𝑡u�1
1 𝑡u�2

2 𝜑(𝐭), 𝑡1 ∧ 𝑡2 > 𝑁.

If 𝑎1𝑡1 ∧ 𝑎2𝑡2 > 𝑁 , then the definition of the scaling transformation and the last
inequality imply that

∣(𝑆𝐚𝑋)(𝐭)∣ = 𝑎−u�1
1 𝑎−u�2

2 ∣𝑋(𝐚 ⋅ 𝐭)∣ ≤ 𝑡u�1
1 𝑡u�2

2 𝜑(𝐚 ⋅ 𝐭).

Here 𝑎1𝑡1 < 𝑡1, 𝑎2𝑡2 > 𝑡2, and it follows from the monotonicity of the function 𝜑 that
𝜑(𝐚 ⋅ 𝐭) ≤ 𝜑(𝐭), 𝑡1 > 0, 𝑡2 > 0. Thus, for 𝐸∞

𝐇,u� the following inequality holds true

∣(𝑆𝐚𝑋)(𝐭)∣ ≤ 𝑡u�1
1 𝑡u�2

2 𝜑(𝐭), 𝑡1 ∧ 𝑡2 > 𝑁
𝑎1

.

So, we have proved that 𝐸∞
𝐇,u� ⊂ 𝑆−1

𝐚 𝐸∞
𝐇,u�. This implies that 𝐏(𝐸∞

𝐇,u� △ 𝑆−1
𝐚 𝐸∞

𝐇,u�) = 0.
Since 𝑆𝐚 is ergodic for any 𝐚 ∈ (0, +∞)2, 𝐚 ≠ (1, 1), so 𝐏(𝐸∞

𝐇,u�) = 0 or 1.
For the other monotonicity types of the function 𝜑 the proofs are similar. The

theorem is proved.

Corollary 4.1. Under the condition of Theorem 4.1 there exist such constants 0 ≤
𝑐0

𝐇,u� ≤ +∞, 0 ≤ 𝑐∞
𝐇,u� ≤ +∞ that 𝐿0

𝐇,u� = 𝑐0
𝐇,u�, 𝐿∞

𝐇,u� = 𝑐∞
𝐇,u� a.s.

Proof. Let us put 𝑐0
𝐇,u� = sup{𝑐 ≥ 0, 𝐏(𝐸0

𝐇,u�u�) = 0}. It follows from Theorem 4.1
that 𝐏(𝐸0

𝐇,u�u�) = 0 or 1. Thus

∀𝜀 > 0 𝐏(𝐸0
𝐇,(u�0

𝐇,u�−u�)u�
) = 0 and 𝐏(𝐸0

𝐇,(u�0
𝐇,u�+u�)u�

) = 1.

So, the following events occur with probability one

∃𝛿 > 0 ∀𝑡1 ∨ 𝑡2 < 𝛿 ∶ |𝑋(𝐭)|

𝑡u�1
1 𝑡u�2

2 𝜑(𝐭)
≤ 𝑐0

𝐇,u� + 𝜀

and
∀𝛿 > 0 ∃(𝐭) ∶ 𝑡1 ∨ 𝑡2 < 𝛿, |𝑋(𝐭)|

𝑡u�1
1 𝑡u�2

2 𝜑(𝐭)
> 𝑐0

𝐇,u� − 𝜀.

This means that
𝑐0

𝐇,u� ≤ 𝐿0
𝐇,u� ≤ 𝑐0

𝐇,u� + 𝜀 a.s.

Since 𝜀 > 0 is arbitrary, it concludes the corollary statement. The proof for the case
of the growth at ∞ can be done in a similar way.

If we consider slowly varying functions we are able to obtain more specific result
for the functionals 𝐿0

Λ,u� and 𝐿∞
Λ,u�.
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Definition 4.2. A function 𝜑 ∶ ℝ2
+ → (0, +∞) is said to be slowly varying

• with respect to the growth at 0, if

∀𝑎1 > 0, 𝑎2 > 0 lim
u�1∨u�2→0

𝜑(𝐚 ⋅ 𝐭)
𝜑(𝐭)

= 1; (3)

• with respect to the growth at ∞, if

∀𝑎1 > 0, 𝑎2 > 0 lim
u�1∧u�2→∞

𝜑(𝐚 ⋅ 𝐭)
𝜑(𝐭)

= 1. (4)

Lemma 4.1. Let Λ = (𝜆1, 𝜆2) ≠ (𝐻1, 𝐻2) = 𝐇. If a function 𝜑 ∶ ℝ2
+ → (0, +∞) is

slowly varying
(i) with respect to the growth at 0, then 𝐿0

Λ,u� = 0 or ∞ a.s.,
(ii) with respect to the growth at ∞, then 𝐿∞

Λ,u� = 0 or ∞ a.s.

Proof. Let us introduce an auxiliary function 𝜓(𝐭) = 𝑡u�1−u�1
1 𝑡u�2−u�2

2 𝜑(𝐭), 𝐭 ∈ ℝ2
+.

Then 𝑡u�1
1 𝑡u�2

2 𝜑(𝐭) = 𝑡u�1
1 𝑡u�2

2 𝜓(𝐭), 𝐭 ∈ ℝ2
+. The function 𝜓 is not necessary monotone

in every coordinate. But we can show that 𝜓 is monotone on some neighborhood of 0,
if 𝜑 is slowly varying at 0 and ∞ if 𝜑 is slowly varying at ∞.

Let us consider the case when 𝜆1 > 𝐻1, 𝜆2 < 𝐻2 and investigate the growth at 0.
We intend to prove that the function 𝜓 increases in the first coordinate and decreases
in the second one on some neighborhood of 0. It follows from the equality (3) that for
any 𝑎1 < 1, 𝑎2 > 1 the following holds true

∀𝜀 > 0 ∃𝛿 > 0 ∶ 𝑡1 ∨ 𝑡2 < 𝛿 𝜑(𝐚 ⋅ 𝐭) < (1 + 𝜀)𝜑(𝐭).

Then, for 0 < 𝑡1 ∨ 𝑡2 < 𝛿 we get

𝜓(𝐚 ⋅ 𝐭) = 𝑎u�1−u�1
1 𝑎u�2−u�2

2 𝑡u�1−u�1
1 𝑡u�2−u�2

2 𝜑(𝐚 ⋅ 𝐭) < 𝑎u�1−u�1
1 𝑎u�2−u�2

2 (1 + 𝜀)𝜓(𝐭).

Therefore, for 𝜀 < ( 1
u�1

)u�1−u�1𝑎u�2−u�2
2 − 1 there exists such 𝛿 > 0 that the following

inequality is true
𝜓(𝐚 ⋅ 𝐭) ≤ 𝜓(𝐭), ∀𝑡1 ∨ 𝑡2 < 𝛿.

In a similar way we can prove the monotonicity for the function 𝜓 with other
choices of 𝜆1, 𝜆2 and with respect to the growth at ∞. Thus, it follows from Theo-
rem 4.1 that 𝐏(𝐸0

𝐇,u�) = 0 or 1 (𝐏(𝐸∞
𝐇,u�) = 0 or 1). According to Corollary 4.1 there

exist such constants 𝑐0
𝐇,u� and 𝑐∞

𝐇,u� that 𝑐0
𝐇,u� = 𝐿0

𝐇,u� and 𝑐∞
𝐇,u� = 𝐿∞

𝐇,u� a.s.
Let us consider 𝑐0

𝐇,u�. It is evident that 𝐿0
Λ,u� = 𝐿0

𝐇,u� = 𝑐0
𝐇,u� = 𝑐0

Λ,u� a.s. There-
fore the event {𝐿0

𝐇,u� = 𝐿0
Λ,u� = 𝑐0

Λ,u�} occurs with probability one under an arbitrary
ergodic scaling transformation 𝑆𝐚. Let 𝐿0

Λ,u� ∘ 𝑆𝐚 be a functional 𝐿0
Λ,u� applied to the

field 𝑆𝐚𝑋. Since the function 𝜑 is slowly varying, then

𝐿0
Λ,u� ∘ 𝑆𝐚 = lim sup

u�1∨u�2→0

𝑎−u�1
1 𝑎−u�2

2 |𝑋(𝐚 ⋅ 𝐭)|

𝑡u�1
1 𝑡u�2

2 𝜑(𝐭)

= lim sup
u�1∨u�2→0

𝑎u�1−u�1
1 𝑎u�2−u�2

2 |𝑋(𝐚 ⋅ 𝐭)|
(𝑎1𝑡1)u�1(𝑎2𝑡2)u�2𝜑(𝐚 ⋅ 𝐭)

𝜑(𝐚 ⋅ 𝐭)
𝜑(𝐭)

= 𝑎u�1−u�1
1 𝑎u�2−u�2

2 𝐿0
Λ,u�.
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It follows from the condition Λ = (𝜆1, 𝜆2) ≠ (𝐻1, 𝐻2) = 𝐇 that the last equality
holds true for all 𝑎1 > 0, 𝑎2 > 0 only in the case when 𝑐0

Λ,u� = 𝐿0
Λ,u� = 0 or +∞ a.s.

The proof for the case when we have the growth at +∞ can be done in a similar
way.

5 Strong limit theorems

This section is devoted to strong limit theorems for real-valued self-similar fields
within Definition 2.2. Let us prove these theorems for the function 𝑡u�1

1 𝑡u�2
2 𝜑(𝐭),

𝐭 ∈ ℝ2
+, arising in Theorem 4.1, for the fields with ergodic scaling transformation.

It worth to mention that it is possible to prove the theorems in this section without
imposing the additional condition about ergodicity of the scaling transformation.

We use the following notation defined for the self-similar field 𝑋 = {𝑋(𝐭),
𝐭 ∈ ℝ2

+} with index 𝐇 ∈ (0, +∞)2:

𝑋∗(𝜔) = sup
0≤u�1≤1,

0≤u�2≤1

∣𝑋(𝐭, 𝜔)∣. (5)

Since the distributions of a self-similar field are invariant under the scale transfor-
mation 𝑆𝐚, all distribution properties can be concentrated on any finite interval. That
is why all theorems within this section deal with the random variable 𝑋∗ defined by
the values of the random field on the unit square. The following theorems are focused
on establishing the sufficient conditions for the function to be upper or lower for the
self-similar field. Let’s start from proving one auxiliary result.

Lemma 5.1. Let a function 𝑓 ∶ ℝ+ → (0, +∞) be non-decreasing and continuous. If
𝐄[𝑓 (𝑋∗)] = 𝐾 < +∞, then for 𝑥 > 0

𝐏( sup
0≤u�1≤u�1,

0≤u�2≤u�2

∣𝑋(𝐭, 𝜔)∣ ≥ 𝑥) ≤ 𝐾
𝑓 (𝜆−u�1

1 𝜆−u�2
2 𝑥)

.

Proof. It follows from the self-similarity of the field that

sup
0≤u�1≤u�1,

0≤u�2≤u�2

∣𝑋(𝐭)∣
u�
= 𝜆u�1

1 𝜆u�2
2 sup

0≤u�1≤1,

0≤u�2≤1

∣𝑋(𝐭)∣ = 𝜆u�1
1 𝜆u�2

2 𝑋∗,

and therefore

𝐏( sup
0≤u�1≤u�1,

0≤u�2≤u�2

∣𝑋(𝐭, 𝜔)∣ ≥ 𝑥) = 𝐏(𝜆u�1
1 𝜆u�2

2 𝑋∗(𝜔) ≥ 𝑥) = 𝐏(𝑋∗(𝜔) ≥ 𝜆−u�1
1 𝜆−u�2

2 𝑥).

Since 𝑓 is positive and non-decreasing function, the Chebyshev’s inequality im-
plies that

𝐏(𝑋∗(𝜔) ≥ 𝜆−u�1
1 𝜆−u�2

2 𝑥) ≤
𝐄[𝑓 (𝑋∗)]

𝑓 (𝜆−u�1
1 𝜆−u�2

2 𝑥)
.

The lemma is proved.



84 V. Makogin, Yu. Mishura

Further in the text we shall use the following notation 𝟏 = (1, 1).

Theorem 5.1. Let 𝑓 ∶ ℝ+ → (0, +∞) be such a non-decreasing continuous function
that 𝐄[𝑓 (𝑋∗)] is finite. We assume that a continuous function 𝜑 ∶ ℝ2

+ → (0, +∞)
satisfies the following conditions

(i) 𝜑 is non-decreasing in every coordinate,

(ii) lim
u�↓1

sup
u�,u�=1,2,…

𝜑(𝑥u�, 𝑥u�)
𝜑(𝑥u�−1, 𝑥u�−1)

= 𝑐 < +∞,

(iii) ∫
+∞

1

𝑑𝑥
𝑥𝑓 (𝜑(𝑥 ⋅ 𝟏))

< +∞.

Then
lim sup

u�1∧u�2→+∞

|𝑋(𝐬)|

𝑠u�1
1 𝑠u�2

2 𝜑(𝐬)
≤ 𝑐 a.s. (6)

Proof. Let 𝜉 > 1, 𝑛, 𝑚 ∈ ℕ. We put 𝑥u�u� = 𝜉u�u�1𝜉(u�+u�)u�2𝜑(𝜉u�, 𝜉u�+u�), and

𝐴u�u� = {𝜔 ∈ Ω∣ sup
0≤u�1≤u�u�,

0≤u�2≤u�u�+u�

∣𝑋(𝐭, 𝜔)∣ ≥ 𝑥u�u�}.

The following inequality follows from Lemma 5.1

𝐏(𝐴u�u�) ≤ 𝐾
𝑓 (𝜑(𝜉u�, 𝜉u�+u�))

. (7)

Now let’s prove the convergence of the series ∑∞
u�=1 𝐏(𝐴u�u�).

The functions 𝑓 and 𝜑 are non-decreasing and their superposition {𝑓 (𝜑(𝐱)),
𝐱 ∈ ℝ2

+} is also non-decreasing in every coordinate. Thus, 𝑓 (𝜑(𝑥u�, 𝑥u�)) ≤ 𝑓 (𝜑(𝑥u�,
𝑥u�+u�)) for 𝑥 > 1.

Taking into account the inequality (7) we obtain
∞

∑
u�=1

𝐏(𝐴u�u�) ≤
∞

∑
u�=1

𝐾
𝑓 (𝜑(𝜉u�, 𝜉u�+u�))

≤
∞

∑
u�=1

𝐾
𝑓 (𝜑(𝜉u�𝟏))

.

According to the integral criterion of series convergence for the positive non-decreasing
function 𝑓 (𝜑(𝜉u�𝟏)), 𝑥 > 0 it can be concluded that the series converges if

𝐼(𝑓 , 𝜑) ∶= ∫
+∞

1

𝑑𝑥
𝑓 (𝜑(𝜉u�𝟏))

< +∞.

Let us make the substitution 𝑦 = 𝜉u� in the integral 𝐼(𝑓 , 𝜑). Then 𝑑𝑥 = 𝑑𝑦/(𝑦 ln 𝜉)
and

𝐼(𝑓 , 𝜑) = ∫
+∞

u�

𝑑𝑦
𝑦𝑓 (𝜑(𝑦𝟏)) ln 𝜉

< ∫
+∞

1

𝑑𝑦
𝑦𝑓 (𝜑(𝑦𝟏)) ln 𝜉

.

Thus, the integral 𝐼(𝑓 , 𝜑) is finite by the condition (𝑖𝑖𝑖) of the theorem.
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So, it follows from the Borel-Cantelli’s lemma that there exists with probability
one such a number 𝑛u�

0 (𝜔) that 𝐏(𝐴u�u�) = 0 for all 𝑛 ≥ 𝑛u�
0 (𝜔). It means that for all

𝑚 > 1 and 𝑛 ≥ 𝑛u�
0 (𝜔)

sup
0≤u�1≤u�u�,

0≤u�2≤u�u�+u�

∣𝑋(𝐭, 𝜔)∣ ≤ 𝜉u�u�1𝜉(u�+u�)u�2𝜑(𝜉u�, 𝜉u�+u�) a.s.

Moreover, for every 𝜉 > 1, 𝑚 > 1 and 𝑛 > 𝑛u�
0 (𝜔) we choose a point 𝐬 = (𝑠1, 𝑠2)

in such a way that 𝜉u�−1 ≤ 𝑠1 ≤ 𝜉u� and 𝜉u�+u�−1 ≤ 𝑠2 ≤ 𝜉u�+u�. Then we obtain with
probability one that

|𝑋(𝐬, 𝜔)|

𝑠u�1
1 𝑠u�2

2 𝜑(𝐬)
≤

𝜉u�u�1𝜉(u�+u�)u�2𝜑(𝜉u�, 𝜉u�+u�)
𝜉(u�−1)u�1𝜉(u�+u�−1)u�2𝜑(𝜉u�−1, 𝜉u�+u�−1)

≤ 𝜉u�1+u�2 sup
u�,u�≥1

𝜑(𝜉u�, 𝜉u�)
𝜑(𝜉u�−1, 𝜉u�−1)

.

For the case 𝑠1 ≥ 𝑠2 we get the same inequality using the similar reasoning. So,

lim sup
u�1∧u�2→+∞

|𝑋(𝐬)|

𝑠u�1
1 𝑠u�2

2 𝜑(𝐬)
≤ 𝜉u�1+u�2 sup

u�,u�≥1

𝜑(𝜉u�, 𝜉u�)
𝜑(𝜉u�−1, 𝜉u�−1)

a.s.,

and
lim sup

u�1∧u�2→+∞

|𝑋(𝐬)|

𝑠u�1
1 𝑠u�2

2 𝜑(𝐬)
≤ lim

u�↓1
sup

u�,u�≥1

𝜑(𝜉u�, 𝜉u�)
𝜑(𝜉u�−1, 𝜉u�−1)

= 𝑐 a.s.

The theorem is proved.

Let us consider the asymptotic growth at 0.

Theorem 5.2. Let 𝑓 ∶ ℝ+ → (0, +∞) be such a non-decreasing continuous function
that 𝐄[𝑓 (𝑋∗)] is finite. We assume that a continuous function 𝜑 ∶ ℝ2

+ → (0, +∞)
satisfies the following conditions

(i) 𝜑 is non-decreasing in every coordinate,

(ii) ∫
1

0

𝑑𝑥
𝑥𝑓 (𝜑(𝑥𝟏))

< +∞.

Then
lim sup
u�1∨u�2→0

|𝑋(𝐬)|

𝑠u�1
1 𝑠u�2

2 𝜑(𝐬)
≤ 1 a.s. (8)

Proof. Let 𝜉 > 1. We put 𝑥u�u� ∶= 𝜉−u�u�1𝜉−(u�+u�)u�2𝜑(𝜉−u�, 𝜉−u�−u�), 𝑛, 𝑚 ∈ ℕ, and

𝐴u�u� = {𝜔 ∈ Ω ∣ sup
0≤u�1≤u�−u�,

0≤u�2≤u�−u�−u�

∣𝑋(𝐭, 𝜔)∣ ≥ 𝑥u�u�}.

Lemma 5.1 implies the following inequality

𝐏(𝐴u�u�) ≤ 𝐾
𝑓 (𝜑(𝜉−u�, 𝜉−u�−u�))

. (9)
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It follows immediately from the inequality (9) that in order to prove the conver-
gence of the series ∑∞

u�=1 𝐏(𝐴u�u�) it is sufficient to prove that

∞

∑
u�=1

𝐾
𝑓 (𝜑(𝜉−u�, 𝜉−u�−u�))

< +∞.

The function 𝑓 is non-decreasing and the function 𝜑 is non-increasing, so their
super-position 𝑓 (𝜑(⋅)) is non-increasing in coordinate.

Thus, 𝑓 (𝜑(𝑥−u�𝟏)) ≤ 𝑓 (𝜑(𝑥−u�, 𝑥−u�−u�)) for 𝑥 > 1. Therefore,
∞

∑
u�=1

𝐾
𝑓 (𝜑(𝜉−u�, 𝜉−u�−u�))

≤
∞

∑
u�=1

𝐾
𝑓 (𝜑(𝜉−u�𝟏))

.

The last series converges if

𝐼(𝑓 , 𝜑) ∶= ∫
+∞

1

𝑑𝑥
𝑓 (𝜑(𝜉−u�𝟏))

< +∞.

Let’s make the substitution 𝑦 = 𝜉−u� in the integral 𝐼(𝑓 , 𝜑). Then 𝑑𝑥 = −𝑑𝑦/(𝑦 ln 𝜉)
and

𝐼(𝑓 , 𝜑) = ∫
u�−1

0

𝑑𝑦
𝑦𝑓 (𝜑(𝑦𝟏)) ln 𝜉

< ∫
1

0

𝑑𝑦
𝑦𝑓 (𝜑(𝑦𝟏)) ln 𝜉

.

The integral 𝐼(𝑓 , 𝜑) is finite by the condition (𝑖𝑖) of the theorem.
Thus, it follows from the Borel-Cantelli’s lemma that there exists with probability

one such a number 𝑛u�
0 (𝜔) that 𝐏(𝐴u�u�) = 0 for all 𝑛 ≥ 𝑛u�

0 (𝜔). It means that for all
𝑚 > 1 and 𝑛 ≥ 𝑛u�

0 (𝜔)

sup
0≤u�1≤u�−u�,

0≤u�2≤u�−u�−u�

∣𝑋(𝐭, 𝜔)∣ ≤ 𝜉−u�u�1𝜉−(u�+u�)u�2𝜑(𝜉−u�, 𝜉−u�−u�) a.s.

Furthermore, for every 𝜉 > 1, 𝑚 > 1 and 𝑛 > 𝑛u�
0 (𝜔) we choose the point 𝐬 = (𝑠1, 𝑠2)

in such a way that 𝜉−u�−1 ≤ 𝑠1 ≤ 𝜉−u� and 𝜉−u�−u�−1 ≤ 𝑠2 ≤ 𝜉−u�−u�. Then, we obtain
with probability one the following

|𝑋(𝐬, 𝜔)|

𝑠u�1
1 𝑠u�2

2 𝜑(𝐬)
≤

𝜉−u�u�1𝜉−(u�+u�)u�2𝜑(𝜉−u�, 𝜉−u�−u�)
𝜉−(u�+1)u�1𝜉−(u�+u�+1)u�2𝜑(𝜉−u�, 𝜉−u�−u�)

≤ 𝜉u�1+u�2,

and
lim sup
u�1∨u�2→0

|𝑋(𝐬)|

𝑠u�1
1 𝑠u�2

2 𝜑(𝐬)
≤ lim

u�↓1
𝜉u�1+u�2 = 1 a.s.

The theorem is proved.

Now we can use these theorems for the self-similar fields with ergodic scaling
transformation. The following corollary gives the sufficient conditions for the function
to be upper one for such fields.
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Corollary 5.1. Let for the self-similar field 𝑋 = {𝑋(𝐭), 𝐭 ∈ ℝ2
+} with ergodic scaling

transformation there exists such a constant 𝛾 > 0 that

𝐄(𝑋∗)u� < +∞.

Then for any 𝜀 > 0 and an arbitrary slowly varying function 𝜑 ∶ ℝ2
+ → (0, +∞) with

respect to the growth at 0 (at ∞)

𝐿0
𝐇−u�,u� = 0 a.s. (𝐿∞

𝐇+u�,u� = 0 a.s.)

Proof. Let 𝜀 > 0 be fixed. We put 𝑓 (𝑥) = 𝑥u�, 𝑥 > 0. Then 𝐄[𝑓 (𝑋∗)] < +∞. Let
us check whether the functions 𝜓∞(𝐭) = 𝑡u�1 𝑡u�2 and 𝜓0(𝐭) = 𝑡−u�

1 𝑡−u�
2 , 𝐭 ∈ (0, +∞)2

satisfy the conditions of Theorems 5.1 and 5.2, respectively. It is evident that the con-
ditions (𝑖) of both theorems are fulfilled.

Now we consider the behavior on ∞. Let us check the condition (𝑖𝑖) of Theo-
rem 5.1 for the function 𝜓∞:

lim
u�↓1

sup
u�,u�≥1

𝜓∞(𝑥u�, 𝑥u�)
𝜓∞(𝑥u�−1, 𝑥u�−1)

= lim
u�↓1

sup
u�,u�≥1

𝑥2u� = 1.

The condition (𝑖𝑖𝑖) is also fulfilled since

∫
+∞

1

𝑑𝑥
𝑥𝑓 (𝑥2u�)

= ∫
+∞

1

𝑑𝑥
𝑥1+2u�u� < +∞.

Thus, Theorem 5.1 implies that 𝐿∞
𝐇+u�,1 ≤ 1 a.s. Since the constant 1 can be regarded

as slowly varying function, so it follows from Lemma 4.1 that 𝐿∞
𝐇+u�,1 = 0 or ∞ a.s.

Therefore, 𝐿∞
𝐇+u�,1 = 0 a.s. for any 𝜀 > 0.

Let us now consider the behavior at 0. We check the condition (𝑖𝑖) of Theorem 5.2
for the function 𝜓0.

∫
1

0

𝑑𝑥
𝑥𝑓 (𝑥−2u�)

= ∫
1

0

𝑑𝑥
𝑥1−2u�u� < +∞.

Thus, Theorem 5.2 implies that 𝐿0
𝐇−u�,1 ≤ 1 a.s. It follows from Lemma 4.1 that

𝐿0
𝐇−u�,1 = 0 or ∞ a.s. Therefore, 𝐿0

𝐇−u�,1 = 0 a.s. for any 𝜀 > 0.
Further we intend to prove that 𝐿0

𝐇−u�,u� = 0 a.s. (𝐿∞
𝐇+u�,u� = 0 a.s.). Let’s investigate

the behavior at ∞. We assume that 𝑎0 > 1, 𝐚 = (𝑎1, 𝑎2). The convergence in (4) is
uniform in 𝐚 on any finite rectangle, for instance, on [1, 𝑎2

0]2. Let 0 < 𝛼 < 𝜀. We
choose such 𝛿 > 0 that 0 < 𝛿 < 1 − 𝑎u�−u�

0 . Since the limit in (4) is uniform then there
exists 𝑡0 > 0 ∀(𝑡1, 𝑡2) ∈ ℝ2

+, 𝑡1 ∧ 𝑡2 > 𝑡0 ∶ 𝜑(𝐚 ⋅ 𝐭) > 𝜑(𝐭)(1 − 𝛿), ∀𝐚 ∈ [1, 𝑎2
0]2.

Now for the arbitrary 𝐭 with 𝑡1 > 𝑡0, 𝑡2 > 𝑡0 we can define such numbers 𝑛, 𝑚 ∈ ℕ,
𝐚 ∈ [𝑎0, 𝑎2

0]2 that 𝑎u�
0 ≤ u�1

u�0
≤ 𝑎u�+1

0 , 𝑎u�
0 ≤ u�2

u�0
≤ 𝑎u�+1

0 and 𝑡1 = 𝑎u�
1𝑡0, 𝑡2 = 𝑎u�

2 𝑡0. Then

𝑡u�1 𝑡u�2 𝜑(𝐭) = 𝑡2u�
0 𝑎u�u�

1 𝑎u�u�
2 𝜑(𝑎u�

1𝑡0, 𝑎u�
2 𝑡0) > 𝑡2u�

0 𝑎u�u�
1 𝑎u�u�

2 𝜑(𝑎u�
1𝑡0, 𝑎u�−1

2 𝑡0)(1 − 𝛿) > ⋯

> 𝑡2u�
0 𝑎u�u�

1 𝑎u�u�
2 𝜑(𝑎u�

1𝑡0, 𝑡0)(1 − 𝛿)u� > ⋯ > 𝑡2u�
0 𝑎u�u�

1 𝑎u�u�
2 𝜑(𝑡0𝟏)(1 − 𝛿)u�+u�

> 𝑡2u�
0 𝑎u�u�

1 𝑎u�u�
2 𝜑(𝑡0𝟏)𝑎(u�−u�)(u�+u�)

0 > 𝑡2u�
0 𝑎u�u�

1 𝑎u�u�
2 𝜑(𝑡0𝟏)𝑎(u�−u�)u�

1 𝑎(u�−u�)u�
2



88 V. Makogin, Yu. Mishura

> (𝑡0𝑎u�
1)u�(𝑡0𝑎u�

2 )u�𝑡2(u�−u�)
0 𝜑(𝑡0𝟏) = 𝑡u�1 𝑡u�2 𝜑(𝑡0𝟏)𝑡2(u�−u�)

0 .

Thus, 𝑡u�1 𝑡u�2 𝜑(𝐭) → +∞, 𝑡1 ∧ 𝑡2 → +∞ and 𝐿∞
𝐇+u�,u� = 0.

The proof of the equality 𝐿0
𝐇−u�,u� = 0 a.s. can be done in a similar way.

The following theorem includes the sufficient conditions for the function to be
lower one. But before we shall prove the auxiliary lemma.

Lemma 5.2. Let 𝑔 ∶ ℝ+ → (0, +∞) be such a continuous non-increasing function
that 𝐄[𝑔(𝑋∗)] = 𝐾′ < +∞. Then for any 𝑥 > 0

𝐏( sup
0≤u�1≤u�1,

0≤u�2≤u�2

∣𝑋(𝐭, 𝜔)∣ ≤ 𝑥) ≤ 𝐾′

𝑔(𝜆−u�1
1 𝜆−u�2

2 𝑥)
.

Proof. Using the similar argumentation as in Lemma 5.1 we obtain

𝐏( sup
0≤u�1≤u�1,

0≤u�2≤u�2

∣𝑋(𝐭, 𝜔)∣ ≤ 𝑥) = 𝐏(𝑋∗(𝜔) ≤ 𝜆−u�1
1 𝜆−u�2

2 𝑥).

Since the condition of the lemma implies that the function 𝑔 is positively defined
and continuous, then

𝐄𝑔(𝑋∗) ≥ 𝐄𝑔(𝜆−u�1
1 𝜆−u�2

2 𝑥)𝜒{u�∗≤u�−u�1
1 u�−u�2

2 u�}

= 𝐏(𝑋∗ ≤ 𝜆−u�1
1 𝜆−u�2

2 𝑥)𝑔(𝜆−u�1
1 𝜆−u�2

2 𝑥).

The lemma is proved.

Theorem 5.3. Let 𝑔 ∶ ℝ+ → (0, +∞) be such a continuous non-increasing function
that 𝐄[𝑔(𝑋∗)] is finite. We assume that a function 𝜓 ∶ ℝ2

+ → (0, +∞) is continuous
and satisfies the conditions:

(i) 𝜓 is non-increasing in every coordinate,

(ii) ∫
+∞

1

𝑑𝑥
𝑥𝑔(𝜓(𝑥𝟏))

< +∞.

Then

lim inf
u�1∧u�2→∞

sup𝐭∈[0,u�1]×[0,u�2] |𝑋(𝐭)|

𝑠u�1
1 𝑠u�2

2 𝜓(𝐬)
≥ 1 a.s.

Proof. Let 𝜉 > 1, 𝑥, 𝑚 ∈ ℕ. We put 𝑦u�u� = 𝜉u�u�1𝜉(u�+u�)u�2𝜓(𝜉u�, 𝜉u�+u�) and define a
sequence of the random events

𝐵u�u� = {𝜔 ∈ Ω ∣ sup
0≤u�1≤u�u�,

0≤u�2≤u�u�+u�

∣𝑋(𝐭, 𝜔)∣ ≤ 𝑦u�u�}.

The following inequality for the probability of such events follows from Lemma 5.2

𝐏(𝐵u�u�) ≤ 𝐾′

𝑔(𝜓(𝜉u�, 𝜉u�+u�))
. (10)
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In order to prove the theorem we shall show that starting from some number the events
𝐵u�u� have zero probability. For this we need to prove the convergence of the series
∑∞

u�=1 𝐏(𝐵u�u�).
Let us recall that the functions 𝑔 and 𝜓 are non-decreasing under the theorem

conditions and their superposition 𝑔(𝜓(⋅, ⋅)) is a non-decreasing function in every
coordinate. So, the reasons similar to the ones from Theorem 5.1 will lead us to the
relations ∞

∑
u�=1

𝐏(𝐵u�u�) ≤
∞

∑
u�=1

𝐾′

𝑔(𝜓(𝜉u�, 𝜉u�+u�))
≤

∞

∑
u�=1

𝐾′

𝑔(𝜓(𝜉u�𝟏))
.

Since the function 𝑔(𝜓(𝜉u�, 𝜉u�)), 𝑥 > 0 is non-decreasing, the integral criterion of
series convergence implies that it is sufficient to prove the finiteness of the integral

𝐼(𝑔, 𝜓) = ∫
+∞

1

𝑑𝑥
𝑔(𝜓(𝜉u�𝟏))

< +∞.

Let’s make the substitution 𝑦 = 𝜉u� in the integral 𝐼(𝑔, 𝜓). Then 𝑑𝑦 = 𝑦(ln 𝜉)𝑑𝑥 and

𝐼(𝑔, 𝜓) = ∫
+∞

u�

𝑑𝑦
𝑦𝑔(𝜓(𝑦𝟏)) ln 𝜉

≤ ∫
+∞

1

𝑑𝑦
𝑦 𝑔(𝜓(𝑦𝟏)) ln 𝜉

.

So, the integral 𝐼(𝑔, 𝜓) is finite according to the condition (𝑖𝑖) of the theorem.
Therefore, the series ∑∞

u�=1 𝐏(𝐵u�u�) is convergent. It follows from the Borel-Can-
telli’s lemma that there exists with probability one such a number 𝑁u�

0 (𝜔) that for all
𝑛 ≥ 𝑁u�

0 (𝜔) ∶ 𝐏(𝐵u�u�) = 0. It means that

sup
0≤u�1≤u�u�,

0≤u�2≤u�u�+u�

∣𝑋(𝐭, 𝜔)∣ ≥ 𝜉u�u�1𝜉(u�+u�)u�2𝜓(𝜉u�, 𝜉u�+u�).

Now, for arbitrary 𝜉 > 1, 𝑚 > 0 and 𝑛 > 𝑁u�
0 (𝜔) we choose such a point 𝐬 =

(𝑠1, 𝑠2) that 𝜉u� ≤ 𝑠1 ≤ 𝜉u�+1, 𝜉u�+u� ≤ 𝑠2 ≤ 𝜉u�+u�+1. Then, the following is true with
probability one

sup0≤u�1≤u�1,0≤u�2≤u�2
|𝑋(𝐭, 𝜔)|

𝑠u�1
1 𝑠u�2

2 𝜓(𝐬)
≥

sup0≤u�1≤u�u�,0≤u�2≤u�u�+u� |𝑋(𝐭, 𝜔)|

𝜉(u�+1)u�1𝜉(u�+u�+1)u�2𝜓(𝜉u�, 𝜉u�+u�)

≥
𝜉u�u�1𝜉(u�+u�)u�2𝜓(𝜉u�, 𝜉u�+u�)

𝜉(u�+1)u�1𝜉(u�+u�+1)u�2𝜓(𝜉u�, 𝜉u�+u�)
= 𝜉−u�1−u�2.

And therefore,

lim inf
u�1∧u�2→∞

sup𝐭∈[0,u�1]×[0,u�2] |𝑋(𝐭)|

𝑠u�1
1 𝑠u�2

2 𝜓(𝐬)
≥ 1 a.s.

The theorem is proved.

6 Strong limit theorems for Gaussian fields

Let us consider a few examples of how Theorems 5.1 and 5.3 can be applied to centered
Gaussian fields. In this section we assume that the real-valued Gaussian fields have
continuous sample paths.
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The first condition of Theorems 5.1 and 5.3 is an existence of such a non-decreasing
function 𝑓 and a non-increasing function 𝑔 that 𝐄[𝑓 (𝑋∗)] < +∞, 𝐄[𝑔(𝑋∗)] < +∞.
It is not so easy to check these conditions directly. But there are a lot of well-known
results for the Gaussian fields concerning the tail probability behavior and the proba-
bility of the small deviations. The following lemma shows how this information can
be utilized for checking the first condition of Theorems 5.1 and 5.3.

Lemma 6.1. Let 𝑓 , 𝑔 ∶ ℝ+ → (0, +∞), 𝑓 be non-decreasing, 𝑔 be non-increasing,
𝑓 , 𝑔 ∈ 𝐶1(ℝ+). We assume that 𝑍 is a positive random variable and the functions
𝑎, 𝑏 ∶ ℝ+ → ℝ+ are such that 𝐏(𝑍 > 𝑥) ≤ 𝑎(𝑥) and 𝐏(𝑍 ≤ 𝑥) ≤ 𝑏(𝑥). If

∫
+∞

⋅
𝑓 ′(𝑥)𝑎(𝑥)𝑑𝑥 < +∞ ( or ∫

⋅

0
−𝑔′(𝑥)𝑏(𝑥)𝑑𝑥 < +∞),

then 𝐄[𝑓 (𝑍)] < +∞ (or 𝐄[𝑔(𝑍)] < +∞ respectively).

Proof. The following relations are valid for the function 𝑓

𝐄[𝑓 (𝑍)] = ∫
+∞

0
𝑓 (𝑥)𝑑𝐏(𝑍 ≤ 𝑥) = − ∫

+∞

0
𝑓 (𝑥)𝑑𝐏(𝑍 > 𝑥)

= − 𝑓 (𝑥)𝐏(𝑍 > 𝑥)|∞0 + ∫
+∞

0
𝑓 ′(𝑥)𝐏(𝑍 > 𝑥)𝑑𝑥

= − lim
u�→∞

𝑓 (𝑥)𝐏(𝑍 > 𝑥) + 𝑓 (0) + ∫
+∞

0
𝑓 ′(𝑥)𝐏(𝑍 > 𝑥)𝑑𝑥

≤ 𝑓 (0) + ∫
+∞

0
𝑓 ′(𝑥)𝑎(𝑥)𝑑𝑥 < +∞.

And for the function 𝑔 the following is true

𝐄[𝑔(𝑍)] = ∫
+∞

0
𝑔(𝑥)𝑑𝐏(𝑍 ≤ 𝑥) = 𝑔(𝑥)𝐏(𝑍 ≤ 𝑥)|∞0 − ∫

+∞

0
𝑔′(𝑥)𝐏(𝑍 ≤ 𝑥)𝑑𝑥

= 𝑔(+∞) − lim
u�→0

𝑔(𝑥)𝐏(𝑍 ≤ 𝑥) − ∫
+∞

0
𝑔′(𝑥)𝐏(𝑍 ≤ 𝑥)𝑑𝑥

≤ 𝑔(+∞) − ∫
+∞

0
𝑔′(𝑥)𝑏(𝑥)𝑑𝑥 < +∞.

The lemma is proved.

So, if there is an inequality for the tail probability 𝐏(𝑋∗ ≥ 𝑥) ≤ 𝑎(𝑥) then it is suffi-
cient to find such a positive non-decreasing function 𝑓 that ∫+∞

⋅ 𝑓 ′(𝑥)𝑎(𝑥)𝑑𝑥 < +∞.
Lemma 6.1 implies that the expectation 𝐄[𝑓 (𝑋∗)] will be finite. Similarly, Lemma 6.1
can be used for the probability of small deviations 𝐏(𝑋∗ ≤ 𝑥) ≤ 𝑏(𝑥).

Example 1. Let us apply Theorem 5.1 to the centered Gaussian self-similar field 𝑋 =
{𝑋(𝐭), 𝐭 ∈ ℝ2

+} with index 𝐇 = (𝐻1, 𝐻2) ∈ (0, 1)2. It follows from [9] that there
exists such a constant 𝑐1 > 0, that 𝐄[𝑓 (𝑋∗)] < +∞ for the function

𝑓 (𝑦) = exp{(𝑐1 − 𝜀)
𝑦2

2
}, 0 < 𝜀 < 𝑐1.

Now we need to define the non-decreasing function 𝜑 ∶ ℝ2
+ → (0, +∞) in such a way

that the condition (𝑖𝑖𝑖) of Theorem 5.1 is fulfilled; namely, ∫+∞
1

u�u�
u�u� (u�(u�𝟏)) < +∞. Let
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us choose 𝜑 satisfying 𝑓 (𝜑(𝑥𝟏)) = (ln(𝑥 + 𝑒))1+u�. In this case the condition (𝑖𝑖𝑖) of
Theorem 5.1 holds true for every 𝜂 > 0. Thus, for 𝜂 = 𝜀 we obtain

exp{(𝑐1 − 𝜀)
𝜑2(𝑥𝟏)

2
} = (ln(𝑥 + 𝑒))1+u�, 𝑥 ∈ ℝ+.

Furthermore, the function 𝜑 is defined on {(𝑥𝟏), 𝑥 ≥ 0}

𝜑(𝑥𝟏) = √2(1 + 𝜀)
𝑐1 − 𝜀

ln ln(𝑥 + 𝑒), 𝑥 ∈ ℝ+.

Moreover, the function 𝜑 can be extended to the plane arbitrarily with imposing
the conditions (𝑖) and (𝑖𝑖) of Theorem 5.1. For example, the following three functions
satisfy the mentioned conditions:

• 𝜑1(𝐱) = √(2 + 𝛿) ln ln( u�1+u�2
2 + 𝑒),

• 𝜑2(𝐱) = √(2 + 𝛿) ln(ln √𝑥1 + 𝑒 + ln √𝑥2 + 𝑒),
• 𝜑3(𝐱) = √2 + 𝛿 4√ln ln(𝑥1 + 𝑒) 4√ln ln(𝑥2 + 𝑒),

where 𝐱 = (𝑥1, 𝑥2) ∈ ℝ2
+ and 𝛿 = 2 3u�+1−u�1

u�1−u� > 2 1−u�1
u�1

.
Indeed, these functions are convex and non-decreasing in every coordinate. So, the

supremum in the condition (𝑖𝑖) of Theorem 5.1 is attained when 𝑛, 𝑚 = 1. Therefore,
𝑐 = 1 and

∀𝑖 ∈ {1, 2, 3} ∶ lim sup
u�1∧u�2→∞

|𝑋(𝐬)|

𝑠u�1
1 𝑠u�2

2 𝜑u�(𝐬)
≤ 1 a.s.

Example 2. Now let us consider how Theorem 5.3 can be applied. As it was mention
before, the estimates for the probability of small deviations can be used for check-
ing the first condition of the theorem. Such estimates are quite crude for the general
Gaussian random fields. But for the narrower class of fields, namely, for the fractional
Brownian sheet, there exist more precise results.

Let {𝐵𝐇(𝐭), 𝐭 ∈ ℝ2
+} be an fractional Brownian sheet with index 𝐇 = (𝐻1, 𝐻2) ∈

(0, 1)2 (Definition 2.5). It had been proved in the paper [12] that the following limit
holds for 𝐻1 ≠ 𝐻2

− lim
u�↘0

𝑥2/u� ln 𝐏{𝐵∗
𝐇 ≤ 𝑥} = 𝜏u� ,

where 𝐻 is a minimum between 𝐻1, 𝐻2; 𝜏u� is some constant depending on 𝐻. And
for the case 𝐻1 = 𝐻2 = 𝐻 there is an inequality for the probability of small deviations

ln 𝐏{𝐵∗
𝐇 ≤ 𝑥} ≤ −𝐾1

(− ln 𝑥)2/u�

𝑥2/u� ≤ −𝐾1
1

𝑥2/u� , 0 < 𝑥 < 1,

where 𝐾1 is some constant.
Summarizing the results for both cases we conclude that there exist such constants

𝑐2 > 0 and 𝑏 > 0 that for all 𝑦 ∈ (0, 𝑏) the following inequality holds true

𝐏{𝐵∗
𝐇 ≤ 𝑦} ≤ exp{−

𝑐2

𝑦2/u� }.
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Let us define a function 𝑔 ∶ ℝ+ → (0, +∞) for arbitrary 0 < 𝛿 < 𝑐2 as

𝑔(𝑦) = exp{
𝑐2 − 𝛿
𝑦2/u� }.

Then Lemma 6.1 implies that 𝐄[𝑔(𝐵∗
𝐇)] < +∞.

Let us choose the function 𝜓 ∶ ℝ2
+ → (0, +∞) in such a way that the condition (𝑖𝑖)

of Theorem 5.3 is fulfilled for it. It means that ∫+∞
1

u�u�
u�u�(u�(u�𝟏)) < +∞. This condition

holds if 𝑔(𝜓(𝑥𝟏)) = (ln(𝑥 + 𝑒))1+u�, 𝜀 > 0. Then,

𝜓(𝑥𝟏) = (
𝑐2 − 𝛿
1 + 𝜀

)
u�/2

(ln ln(𝑥 + 𝑒))−u�/2, 𝑥 > 0.

Further, we need to define the function 𝜓 on ℝ2
+ in such a way that this function re-

mains non-increasing in every coordinate. Let 𝜀 = u�
u�2−2u� , 2𝛿 < 𝑐2, then the following

functions satisfy the conditions (𝑖)–(𝑖𝑖) of Theorem 5.3:

𝜓1(𝐱) = (𝑐2 − 2𝛿)
u�
2 (ln ln(

𝑥1 + 𝑥2
2

+ 𝑒))
− u�

2 ,

𝜓2(𝐱) = (𝑐2 − 2𝛿)
u�
2 (ln ln(𝑥1 + 𝑒))− u�

4 (ln ln(𝑥2 + 𝑒))− u�
4 ,

where 𝐱 = (𝑥1, 𝑥2) ∈ ℝ+.
Thus, we obtain the following inequalities

lim inf
u�1∧u�2→∞

[ln ln( u�1+u�2
2 + 𝑒)]

u�
2

𝑠u�1
1 𝑠u�2

2

sup
0≤u�1≤u�1,

0≤u�2≤u�2

∣𝐵𝐇(𝐭)∣ ≥ 𝑐
u�
2

2 a.s.,

lim inf
u�1∧u�2→∞

[ln ln(𝑠1 + 𝑒)]
u�
4 [ln ln(𝑠2 + 𝑒)]

u�
4

𝑠u�1
1 𝑠u�2

2

sup
0≤u�1≤u�1,

0≤u�2≤u�2

∣𝐵𝐇(𝐭)∣ ≥ 𝑐
u�
2

2 a.s.

So, we have presented the examples of the upper and lower limiting functions for
fractional Brownian sheet 𝐵𝐇.
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